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A Note on Correct Duration-Convexity Hedges Using Treasury Futures  

 

 
 

 

ABSTRACT 

This note is motivated by rarely understood hedging implications of the CBOT 

Conversion Factoring System that (1) the convexity-based hedge using Treasury futures is 

essential since the convexity of Treasury futures can be negative and (2) there are arbitrage-free 

relations between the projected duration and convexity exposures of Treasury futures and those 

of cheapest-to-deliver Treasuries around the first day of delivery month. This note takes into 

account the hedging implications in deriving correct equations for the convexity-based hedge 

using Treasury futures. Our hedge is a forward-looking cross hedge since the hedge ratios are 

obtained from cross matching the projected exposures of the cash bonds and the cheapest-to-

deliver Treasuries as of the first day of delivery month. A numerical analysis indicates that on 

average, the forward-looking hedge is about 1.8% cheaper than traditional duration-convexity 

hedges. The analysis also indicates that the hedge cost saving would be substantially larger in 

circumstances where convexity-based hedges are most needed, namely, when high-duration 

bonds are hedged, term structure of interest rates is steep, or the cheapest to deliver pays high 

coupons.  
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I. INTRODUCTION 

This note is motivated by rarely understood hedging implications of the CBOT 

Conversion Factoring System (CFS): namely, (1) the convexity-based hedge using Treasury 

futures is essential since the duration-based hedge ignores the possibility of a negative convexity 

of Treasury futures; and (2) there are arbitrage-free relations between the projected duration and 

convexity exposures of Treasury futures and those of cheapest-to-deliver (CTD) Treasuries 

around the first day of delivery month. This note takes into account the hedging implications in 

deriving correct equations for the convexity-based hedge using Treasury futures. 

The rarely understood hedging implications of the CFS have been partially recognized 

only recently in Rendleman Jr. (1999) who took into account the arbitrage-free relations at the 

first day of delivery month in developing a forward-looking duration-based hedge. Extant 

literature on the duration-convexity hedge using Treasury futures1 did not incorporate the hedging 

implications mainly because they did not fully recognize the bias in the CFS2, which not only 

leads to the arbitrage-free relations around the first day of delivery month but also indicates the 

necessity of convexity-based hedge.  

This note fills in the gap in extant literature by explaining hedging implications of the bias 

in the CFS, deriving correct equations for duration-convexity hedges, and providing detailed 

comparisons of the costs for the forward-looking and the traditional convexity-based hedges. 

Hence, this note attempts to contribute to relevant literature by providing: (1) a non-trivial 

extension of the duration-based hedge in Rendleman Jr (1999) to a convexity-based hedge; (2) a 

                                                           
1 Traditional duration-convexity hedges using Treasury futures are explained in, e.g., Schaefer (1984), Bierwag, et al. 
(1988), Goodman and Vijayaraghavan (1988), Daigler (1993), Daigler and Copper (1998a, 1998b), and Lien and Tse 
(2000). For other types of hedges, see, e.g., combination hedge (e.g., Leschhorn, 2001), key rate hedge (e.g., Ho, 
1992), and scenario hedge (e.g., Hill and Vaysman, 1998).  
2 For early discussions on the CFS bias and its implications on the CTD determination, see Kane and Marcus (1984), 
Daigler (1993), and Benninga and Wiener (1999).  



 4

logical framework for a non-option theoretic approach to convexity-based hedges3; and (3) 

analytical details on how to pair hedge positions in different Treasury futures in the face of, 

among other things, different maturity-coupon characteristics of the cash bonds being hedges and 

the CTDs, different shapes of the term structure of interest rates, and different hedge horizons.  

The forward-looking duration-convexity hedge is of interests also to market practitioners 

for several reasons. First, such price-based hedge rules can be superior to regression-based 

backward-looking hedge rules. For empirical evidence and related arguments, see Sercu and Wu 

(2000). Second, the hedge-ratio equations can show how each hedging instrument contributes to 

respective hedges against duration and convexity exposures as well as short-term spot and 

forward interest-rate exposures. As illustrated in the numerical analysis, the hedge-ratio equations 

can provide detailed information useful for non-arbitrary pairing of long and short Treasury 

futures contracts.  

The numerical analysis indicates that on average, the forward-looking hedge is about 

1.8% cheaper than traditional duration-convexity hedges. The analysis also indicates that the 

hedge cost saving would be substantially larger when high-duration bonds are hedged, term 

structure of interest rates is steep, or the cheapest to deliver pays high coupons. These practically 

important results are robust across various hedge horizons, different shapes of term structure, and 

alternative pairing of Treasury futures. 

The remainder of this note is arranged as follows. The next section explains the hedging 

implications of the CBOT CFS. In the third section, this note develops the forward-looking 

convexity-based hedge. The fourth section provides a detailed numerical analysis on hedge costs 

                                                           
3 See Daigler (1993) for a description of delivery-related options and see Koenigsberg (1990 and 1991), Boyle 
(1989), and Hemler (1990) for pricing these options. Because the price-volatility linkage between Treasury futures 
and their CTDs is yet to be quantified in an option-theoretic framework, an option-theoretic approach to convexity-
based hedge is yet to be developed. One noteworthy problem to an option-theoretic approach to convexity-based 
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of the forward-looking and traditional convexity-based hedges as well as practical implications of 

the main results of our numerical analysis. The final section contains a summary and conclusions.   

 

II. The CBOT Conversion Factoring System and Its Hedging Implications  

The Treasury futures market is unique in several aspects. For market liquidity, short 

positions are allowed to deliver any Treasuries as long as they meet certain eligibility criteria. For 

example, deliverable Treasuries for the 30-year bond futures must have noncallable remaining 

maturities of 15 years or longer. Yet, only one price is quoted for each type of Treasury futures 

contracts. For example, in the case of 30-year bond futures, the futures quote closely follows the 

present value of a notional 20-year 6% coupon straight Treasury of US$1 par. To make short 

positions indifferent to delivering different coupon-maturity grades, CBOT computes the 

conversion factor for each deliverable Treasury and applies it in computing the invoice price: 

[Futures Settlement Price X Conversion Factor] + Accrued Coupons. The settlement price is the 

settlement quote times the futures contract size that is $100,000 for most futures contracts, 

whereas the conversion factor is computed from discounting to the first day of delivery month the 

future cashflows of the deliverable Treasury at the 6% flat rate and then dividing by its par 

value.4 Due to the value of delivery-related options that short positions implicitly bought from 

long positions, the invoice amount tends to be smaller than the market price of the Treasury: I.e., 

[Treasury Price – Invoice Price] = Delivery Cost. Since the delivery cost can substantially differ 

across deliverables, the short position delivers the cheapest to deliver Treasury.  

                                                                                                                                                                                            
hedge is the difficulty in quantifying the possible relation between a negative convexity in Treasury futures and a 
positive convexity in their CTDs. See Koenigsberg (1990) and Koenigsberg (1991).  
4 The flat rate was 8% for many years until 2000 March Treasury futures contracts, whereas the par amount is 
$100,000 for most Treasuries. 
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In computing the CF, CBOT rounds down the remaining maturity of the deliverable 

Treasury as of the first day of delivery month to the nearest quarter in the case of 30-year and 10-

year Treasury futures and to the nearest month in the case of 5-year and 2-year Treasury futures: 

i.e., n years and q quarters in the case of long bond and note futures; n years and z months in the 

case of short note futures. Due to this feature of maturity rounding down, the CBOT CF formula 

is stated as: [ ] dcbCaCF −++×= 5.0 . Loosely speaking, “0.5C” is the first semi-annual coupon 

in decimals, “c” captures the value of all other coupons in decimals as of the first coupon date, 

and “b” captures the value of $1 par Treasury as of the same date. Hence, [ ]cbC ++5.0  reflects 

the deliverable Treasury’s full price as of the first coupon date. Since “a” is the discount factor 

for the period between the first coupon date and the first day of delivery month, [ ]cbCa ++× 5.0  

reflects the deliverable Treasury’s full price as of the first day of delivery month. Since “d” 

captures the accrued coupons, the [ ] dcbCaCF −++×= 5.0  can be regarded as the Treasury’s 

relative quote in decimals. 56 

In the case of long-maturity futures, the first coupon is assumed to be paid either on the 

first day of the delivery month if the rounded-down maturity is n years and even quarters or on 

the first day of the next March-cycle month if the remaining maturity is n years and odd quarters. 

In the case of short-maturity futures, it is assumed to be paid on the first day of either the delivery 

month or one of the next 11 months. Since Treasury futures follow March quarterly-cycle 

                                                           
5 Since the a, For alternative explanations of CF computation, see Daigler (1993), Burghardt et al. (1994), Hull 
(1998), and the CBOT Website.   
6 In the CBOT formulae for CF, )6/()2/%61( va −+= , nb 2)2/%61( −+= if z is less than 7 but, if otherwise, 

)12()2/%61( +−+= nb , )1()06.0/( bCc −×= , and )6/1(5.0 vCd −= , where n is the number of whole 
years from the first day of delivery month to deliverable Treasury’s maturity, z is the number of months between n 
years and the Treasury’s maturity rounded down to the nearest quarter in the case of Treasuries for 30-year T-bond 
and 10-year T-note futures (so that z can take on the values 0, 3, 6, or 9) and to the nearest month in the case of 
Treasuries for 5-year and 2-year T-note futures (so that z can be any integer between 0 and 11), and v = z if z is less 
than 7 and, if otherwise, v = 3 in the case of T-bond and 10-year T-note futures but v = z - 6 in the case of 5-year and 
2-year T-note futures. 
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delivery months and Treasury coupons fall on the middle of February quarterly-cycle months, the 

maturity rounding-down brings forward the future cashflows of Treasuries by about 2.5 months 

in the case of long-maturity futures and about 15 days in the case of short-maturity futures.7  

The CBOT’s CF measure contains a bias that can arise from rounding-down the 

remaining maturity of deliverable Treasury. Given Treasury futures’ expiration in March 

quarterly-cycle months and Treasuries’ coupon payment in February quarter-cycle months, the 

maturity rounding-down results in bringing up the future cashflows by 2.5 months in the case of 

deliverable Treasuries for T-bond and 10-year T-note futures (and 15 days in the case of 

deliverable Treasuries for 5-year and 2-year T-note futures). Hence, the CF measure for relative 

quote of deliverable Treasuries should yield a non-negligible upward bias.8 But, this bias due to 

the maturity rounding-down is not the main bias in CF.  

When the prevailing spot rates are substantially different from the 6% flat term structure, 

which are quite often, the CF bias due to using the 6% flat discount rate in computing the 

CBOT’s CF can be more substantial. This bias in CF measure varies by the coupon-maturity 

characteristic of the deliverable Treasury. Note that the forward rates applicable to the delivery 

day and beyond should be used for computing the expected price of deliverable Treasury as of 

the delivery day. When the forward rate curve lies above the 6% flat term structure, for example, 

the use of a flat 6% discount rate will produce a substantially upward-biased CF for the 

deliverable Treasury with long remaining maturity, low coupon, high yield, or large duration. 

This is so because the cashflows of such deliverable Treasury receive relatively favorable 

treatment from the use of a low flat discount rate. All else being equal, short positions will prefer 

                                                           
7 This upward bias in the CF measure as a relative quote for deliverable Treasury as of the first day of delivery 
month is alternatively recognized as a “pull-to-par” effect in Grieves and Mann (2001). 
8 In fact, this upward bias in CF is alternatively recognized as a “pull-to-par” effect in Grieves and Mann (2001). It 
can be shown that the bias is about log (1.065/24) in the case of deliverable Treasuries for T-bond and 10-year T-note 
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to deliver Treasuries with such characteristics because these Treasuries will command relatively 

large invoice amounts. In general, the CTD tends to have the lowest (highest) duration when the 

yield is lower (higher) than 6%, although, given the duration, the Treasury with higher yield 

tends to be the CTD.9  

Short position will choose the Treasury with the cheapest delivery cost (i.e., the purchase 

price of deliverable Treasury minus the invoice amount to be paid by CBOT). Given limited 

deliverable Treasuries, limited open interest of respective Treasury and the presence of CF bias, 

the deliver-cost minimizing short positions will be able to identify a unique CTD Treasury. As 

the term structure of interest rates changes during the life span of Treasury futures, the 

corresponding forward rate curve will change accordingly. Then, the CF bias will change 

differently across different coupon-maturity characteristics of the deliverable Treasuries. As a 

consequence, the CTD will change too. The CTD change triggers cash-futures arbitrages that can 

affect Treasury futures’ quote. The time-varying CF bias contributes to CTD existence, the CTD 

changes over time, and the cash-futures arbitrages.  

The arbitrage forces dictate a price-volatility linkage between Treasury futures and the 

CTD. This is so because, given the CTD existence, the Treasury futures will trade as if it is a 

contract written on the CTD. This means that Treasury futures’ interest-rate exposure should 

reflect the CTD’s interest-rate exposure. As time approaches the delivery day, the Treasury quote 

should approach the clean price of CTD divided by its conversion factor because cash-futures 

arbitrages will force the adjusted basis to shrink to zero.10 In an equilibrium situation where the 

                                                                                                                                                                                            
futures and about log (1.062/52) in the case of deliverable Treasuries for 5-year and 2-year T-note futures. The upward 
bias is roughly equal to 120 and 24 basis points, respectively. 
9 Alternatively stated, the CTD tends to be the deliverable Treasury with the highest repo rate. For details, see 
Daigler (1993) and Burghardt et al. (1994). For details on CTD choice, see Benninga and Wiener (1999), Livingston 
(1984), Castelino and Chatterjee (1988), and Kane and Marcus (1984). 
10 In this paper, the adjusted basis refers to the basis adjusted for the CF: namely, a deliverable Treasury’s quote 
minus the corresponding Treasury futures’ quote times the CF of the deliverable Treasury. To have the equilibrium 
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complex effect of delivery-related options is assumed away, the clean price of CTD divided by its 

CF should be the same as the futures’quote. The arbitrage-free price relationship between 

Treasury futures and CTD indicates that the dollar duration (convexity) of Treasury futures 

should equal the dollar duration (convexity) of CTD Treasury divided by the CF.11  

 

III. A MODEL OF CONVEXITY-BASED HEDGES WITH TREASURY FUTURES 

The assumptions essential in developing the forward-looking cross-hedge model are as 

follows:12 the term structure of interest rates may not be flat but shifts in parallel; the forward 

price of bond is an unbiased estimator of the expected spot price of bond at maturity of the 

forward contract; neither the marking to market nor the margin requirement exists for Treasury 

futures contracts; and both the hedge expiration and the futures’ expiration fall on the first day of 

delivery month.  

  

1. Interest Rate Sensitivity of Bond Price 

The first and second assumptions imply that an investment strategy of simultaneous 

buying and selling the bond and the forward bond should generate a zero profit. Hence, a simple 

carry-cost representation of an arbitrage-free relationship between a bond price and a forward 

                                                                                                                                                                                            
convergence between Treasury futures and CTD prices, the adjusted bases for all non-CTD Treasuries should be 
negative on the delivery day. Treasury futures’ quote can be also affected through the change in the value of 
delivery-related options. For example, the change in term structure can affect the values of delivery-related options, 
which in turn will affect Treasury futures’ quote. This alternative route is not allowed in this paper, whose relevant 
details are provided in the following section.  
11 For alternative explanations, see Kishimoto (1998) and Rendleman, Jr. (1999).  Namely, 

'''' /)(' CTDCTDCTDCTDF
fAPDDF +′′= and '''' /)(' CTDCTDCTDCTDF

fAPCCF +′′= , where F ′ is the 

Treasury futures’ quote, 'F
D′ ( ''

FC ) is the Treasury futures’ duration (convexity), F ′ 'F
D′ ( F ′ ''

FC ) is the 

Treasury futures’ dollar duration (convexity), ( CTDP′ + CTDA′ ) is the CTD Treasury’s full price (i.e., clean price + 

accrued coupon), CTDD′ ( CTDP′ + CTDA′ ) is the CTD Treasury’s dollar duration, CTDC ' ( CTDP′ + CTDA′ ) is the CTD 

Treasury’s dollar convexity, and CTDf ′  is the CTD Treasury’s conversion factor. 
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bond price is possible. The arbitrage-free relationship dictates that the forward price should 

exactly equal the cash bond price plus the net cost of carrying the cash bond position through the 

expiration of forward contract. The net carry cost is computed as the cost of financing the bond 

purchase minus the revenue of cash coupon to be received during the life span of the forward 

contract. With the addition of the fourth assumption, the full (dirty) price of coupon bond can be 

expressed as a sum of certainty-equivalent values of both a forward bond and a series of zero-

coupon bonds:  

∑
=

−− +′+′=+
m

k

tr
k

rt kkeIeAPAP
1

)(  (1) 

where A is the accrued coupon as of now, P is the clean (quoted) price, P + A is the full (dirty) 

price of bond, P′ + A′ is the dirty forward price of bond, P′ is the clean forward price of bond, A′  

is the accrued coupon as of the maturity of forward, e-rt is the discount factor for the t period 

between now and the expiration of forward bond contract, r is the spot interest rate continuously 

compounded for the t period, m denotes the number of cash coupon payments prior to the 

expiration of forward bond contract, Ik denotes the k-th interest cash coupon payment occurring 

at the tk-th time, and rk is the continuously-compounded spot interest rate for the period between 

now and the tk-th time. 

 The equation (1) simply states a mathematical equivalence between the market price of 

the generic bond (the left-hand side) and the intrinsic value of a synthetic position (the right-hand 

side). The synthetic position is equivalent to the position of both selling the forward bond for the 

hedge horizon and lending, at a risk-free rate, the present value of all cash coupons to be received 

between now and the expiration of forward bond. The value of the synthetic position contains 

two parts. One is the present price of the forward bond that matures at end of the hedge. The 

                                                                                                                                                                                            
12 Detailed discussions of such assumptions are available upon request. 
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other is a series of short-term zero-coupon bonds, which have an identical maturity value equal to 

the generic bond coupon and their respective maturity matching the respective coupon payment 

date of the generic bond. When there is only one coupon to be received from now till the maturity 

of forward contract, the second part contains only one zero-coupon bond. When there is no 

coupon from now till the maturity, then the second part in the right-hand side of equation (1) 

simply disappears. To focus on the interest-rate exposure of clean ex-coupon price, different 

notations are used for the clean and dirty prices. These prices can be same, however, when a 

coupon payment has just been made and hence there is no accrued coupon.13  

Under the first assumption, a Taylor expansion of the change in clean bond price with 

respect to a change in short-term spot interest rate will produce a simple expression containing 

only two terms when only the first- and second-order terms of differentiation are considered as in 

the usual practice.14 The application of the usual definitions for duration and convexity measure 

leads to an equation for the change in clean price:  

2)]()()()[(])()([ drCAPDtCeAPdrDAPeDAPdP rtrt ′′++′+′′+′+′′+−′′+′−= −−         (2)15 

                                                           
13 For alternative explanation of the equation (1), see Rendleman, Jr. (1999). 
14 In the current mathematical framework, higher-order measures of bond price volatility are not required. For such 
higher order measures, see, e.g., Nawalkha and Lacey (1990) and Jeffrey (2000). See, also, Chance and Jordan 
(1996), where the investment holding horizon is also considered as one of the factors affecting bond returns (and, 
implicitly, the bond price-volatility).  
15 where 

APdr
APdD

′+′
′+′

−≡′
1)(  is a forward-looking Macaulay duration for the bond as of the maturity of 

forward bond, 
APdr

APdC
′+′

′+′
≡′

1)(
2
1

2

2
 is the corresponding convexity measure, 

)(

)(
1

AP

eIteAPt
D

m

k

tr
kk

rt kk

+

+′+′
≡′′

∑
=

−−

 is a forward-looking Macaulay duration of the synthetic bond that pays the 

forward price of bond at the expiration of forward bond and makes m coupon payments prior to the expiration of 

forward bond, and 
)(2

)(
1

22

AP

eItteAP
C

m

k

tr
kk

rt kk

+

+′+′
≡′′

∑
=

−−

 is the corresponding convexity measure of the synthetic 

bond position. 
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The equation for clean price change contains the first-order effect (the bracket term in 

front of dr) and the second-order effect (the bracket term in front of (dr)2). These two terms can 

be shown to be the same as the two terms in the corresponding equation for the generic bond. The 

first-order effect is nothing but a linear combination of dollar durations of forward bond and 

synthetic bond, which is equivalent to dollar duration of the generic bond. Similarly, the second 

order effect is a linear combination of dollar convexities of forward bond and synthetic bond as 

well as dollar duration of forward bond. 

Unlike the traditional measure for dollar duration, the bracket term in front of dr 

decomposes dollar duration into two components: (i) dollar duration with respect to changes in 

short-term forward rates beyond hedge expiration and (ii) dollar duration with respect to changes 

in short-term spot rates through hedge expiration. The bracket term in front of (dr)2 similarly 

decomposes the dollar convexity into two components. Such decomposition of the dollar price 

changes is essential for the forward-looking hedge ratio equations to contain an explicit process 

that both the short-term spot and the forward rate exposures determine the cross hedge ratios. 

This explicit process makes a non-arbitrary mix of short- and long-term Treasury futures possible 

because additional information on the interdependency between the two instruments’ respective 

hedges is available.   

 

2. Interest Rate Sensitivity of Treasury Futures’ Quote 

Under the first, third, and fourth assumptions, a Taylor-series expansion of the change in 

Treasury futures quote (dF′) with respect to a spot interest-rate change (ignoring terms of higher 

than the second order) leads to:  

2
2

2

)(
2
1 dr

dr
Fddr

dr
FdFd

′
+

′
=′  (3) 
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 Under the first assumption, the CTD (i.e., the one with the most severe upward bias in 

CF) will exist and can be known. Under the fourth assumption, it will be delivered on the first 

business day of delivery month. Then, the Treasury futures will trade as if it is a contract written 

on the CTD not on the notional Treasury. As time approaches the delivery day, the Treasury 

quote should approach the clean price of CTD divided by its conversion factor. In such a stable 

equilibrium situation, the arbitrage-free price relationship between Treasury futures and CTD will 

indicate that the dollar duration (convexity) of Treasury futures should equal the dollar duration 

(convexity) of CTD Treasury divided by the CF.16 

Using the arbitrage-free price-volatility relationship, the equation for the change in 

Treasury futures’ quote can be specified in terms of the CTD price, its price-volatility measures 

and the CF: 

2)(
)()(

drC
f

AP
drD

f
AP

Fd CTD
CTD

CTDCTD
CTD

CTD

CTDCTD ′
′

′+′
+′

′
′+′

−=′  (4) 

Equation (4) incorporates the correct arbitrage-free relationship between futures’ price 

volatility (duration and convexity) and corresponding CTD’s price volatility (duration and 

convexity). The first-order effect (the term in front of dr) is nothing but an alternative expression 

for Treasury futures’ dollar duration, whereas the second-order effect (the term in front of (dr)2) 

is nothing but an alternative expression of Treasury futures’ dollar convexity.  

                                                           
16 Namely, with i = 1 or 2 for either Treasury futures, '''' /)(

iiiii CTDCTDCTDCTDFi fAPDDF +′′= and 
'''' /)(

iiiii CTDCTDCTDCTDFi fAPCCF +′′= , where F ′ is the Treasury futures’ quote, 'F
D′ ( ''

FC ) is the Treasury 

futures’ duration (convexity), F ′ 'F
D′ ( F ′ ''

FC ) is the Treasury futures’ dollar duration (convexity), 

CTDP′ + CTDA′  is the CTD Treasury’s full price (i.e., clean price + accrued coupon), CTDD′ ( CTDP′ + CTDA′ ) is the CTD 

Treasury’s dollar duration, CTDC ' ( CTDP′ + CTDA′ ) is the CTD Treasury’s dollar convexity, and CTDf ′  is the CTD 
Treasury’s conversion factor. 
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In this paper, the CTD exists due to the bias in CF. The CTD can change over time as the 

change in term structure can affect the CFs of deliverable Treasuries differently. Unlike 

traditional hedges, the cross hedges in this paper allow the CTD to vary during the hedge horizon. 

Using the arbitrage-free convergence of Treasury futures and adjusted CTD price at end of the 

hedge horizon, the cross hedge in this paper matches the projected measures for interest-rate 

exposures of bond and Treasury futures prices. In this sense, the cross hedge is forward-looking 

and captures the correct price and price-volatility linkages between Treasury futures and the 

CTD.17  

 

3. Simultaneous Equations for Convexity-based Hedge Ratios 

To derive the convexity-based cross hedge ratios, a straightforward matching of the 

exposures of hedging and hedged securities is considered. The two hedging instruments 

considered here are the T-bond and T-note futures traded in CBOT. Their hedge ratios are 

denoted as 21 handh  respectively. In the current analysis, a positive value for hedge ratio 

indicates the number of short positions in Treasury futures relative to a unit position in the cash 

bond, whereas a negative value indicates the number of long positions in the Treasury futures.  

Matching the bond’s forward-looking duration exposure (the first term in equation (2)) to 

the two futures’ forward-looking duration exposures (the first term in equation (4)) yields 

equation (5). Equating the bond’s forward-looking convexity exposure (the second term in 

equation (2)) to the two futures’ forward-looking convexity exposures (the second term in 

equation (4)) yields equation (6):  

                                                           
17 For the case of duration hedges, see the Exhibit 1 in Rendleman Jr. (1999) for a comparison between correct and 
incorrect hedge-ratio formulas. 
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′

′+′
+′

′

′+′
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Using the correct definitions for duration and convexity of Treasury futures, these 

equations can further simplify as equations (7) and (8) for duration matching and convexity 

matching, respectively: 

2211 21
)()( FDhFDhDAPeDAP FF

rt ′′+′′=′′++′′+′ −   (7)  

2211 21
)()()( FChFChCAPDtCeAP FF

rt ′′+′′=′′++′+′′+′ −  (8) 

The solutions for simultaneous equations (7) and (8) are:  

11
1
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 The hedge ratio for T-bond futures (h1) can be decomposed into two parts. The first 

component refers to the portion of T-bond futures’ hedge against long-term interest rate 

exposure, whereas the second component refers to the portion of T-bond futures’ hedge against 

short-term interest rate exposure. The hedge ratio for T-note futures (h2) can be similarly 

decomposed into two parts.  

 Unlike traditional hedge ratios, the hedge ratios and their decomposition in this paper can 

provide an additional guidance to the desirable mix of short- and long-term Treasury futures as 

well as to the performance evaluation of selected hedges. Note that the second hedge ratio (h2) 

formula can be further simplified when shorter-term Treasury futures (e.g., 1-year or shorter-term 
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T-bill or Euro-dollar futures) are employed as the second hedging instrument because, then, the 

price and price-volatility measures for such futures take simpler expressions. Traditional hedge 

ratios are equivalent to the current hedge ratios if they are obtained using the correct price-

volatility measures of Treasury futures. This mathematical equivalence can be easily shown by 

recombining the decomposed terms (in the equation (2) and (4)) into the expressions for modified 

duration and convexity measure of the generic bond. 

 

IV. NUMERICAL ANALYSIS  

The magnitude of hedge ratios is mainly determined by the shape of term structure of 

interest rates, the hedge horizon, the characteristics of the bond or bond portfolio being hedged, 

the characteristics of cheapest-to-deliver Treasuries, and the characteristics of different types of 

Treasury futures and their pairing. The numerical analysis in the following highlights the relative 

difference between the cross hedge ratios of traditional and the current model, which is 

conditional upon (1) the location and slope parameters in a general term-structure specification, 

(2) the length of hedge horizon, (3) the coupon-maturity characteristics of the bond being hedged 

and cheapest-to-deliver Treasuries (CTD), and (4) various pairing of long- and short-term 

Treasury futures. Descriptive statistics on selected results of these sensitivity analyses are 

reported in Table I through Table V.  

***Insert Table I about here*** 

Table I reports descriptive statistics on the difference between the absolute sum of hedge 

ratios of traditional and the forward-looking approaches for 6 different hedge horizons and 3 

different levels of durations for the bond being hedged. The descriptive statistics for each hedge 

horizon in each Panel are based on 189 numerical observations.  
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In Panel B of Table I (i.e., the case of bond with the medium-level duration of 7.61), the 

percentage difference in the mean hedge cost ranges from 1.57% to 1.81% whereas the 

percentage difference based on the maximum hedge cost ranges from 2.53% to 3.99%. The hedge 

horizon does not have a statistically significant effect on the variability in the percentage 

difference in the mean hedge cost. The hedge horizon effect is not statistically significant for the 

case of bond either of relatively high duration (9.90) or of relatively low duration (3.28). The 

bond duration does have a statistically significant effect on the percentage difference in the mean 

hedge cost. For the bond with relatively high duration, the mean percentage difference in mean 

hedge costs is about 1.9% whereas the same is about 1.3% for the bond with relatively low 

duration. Although the percentage difference in mean hedge costs for the bond with medium-

level duration varies relatively more across hedge horizon, the percentage difference in hedge 

costs by and large increases with bond duration. 18 

***Insert Table II about here*** 

Table II reports descriptive statistics on the difference between the absolute sum of hedge 

ratios of traditional and the forward-looking approaches for 6 different shapes of term structure 

and 3 different levels of durations for the bond being hedged. The shape of term structure is 

captured by the intercept (α) and the slope (β) parameters of a general term-structure 

specification. For example, the term structure specification with α = 6.5% and β = 0.5% reflects a 

nearly flat term structure with high level of spot interest rate for short term, whereas the term 

structure specification with α = 0.5% and β = 6.5% reflects a very-steep term structure with low 

                                                           
18 It is possible that the hedge-horizon effect does exist but is subdued by the bond duration effect. It is also possible 
that the hedge-horizon effect may exist in longer horizons of 6 to 12 months. To check this possibility, alternative 
descriptive statistics are obtained without controlling the duration level and for hedge horizons of 1 to 12 months. 
These alternative descriptive statistics are based on 1701 (= 189*3*3) observations because 3 bond maturities and 3 
bond coupon rates are additionally considered. The detailed analysis not reported here indicates that the hedge-
horizon effect does not exist even when the duration level is not controlled for and that the lack of hedge-horizon 
effect becomes even more distinct when the horizon becomes longer. 
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level of spot interest rate for short term. The shape of term structure (with α = 3.5% and β = 

3.5%) corresponding to the middle of the range in term-structure shape reflect the typical term 

structure that existed toward the end of 2000. The descriptive statistics for each shape of term 

structure in each Panel are based on 189 numerical observations.  

In Panel B of Table II (i.e., the case of bond with the medium-level duration of 7.90), the 

percentage difference in the mean hedge cost ranges from 1.75% to 1.92% whereas the 

percentage difference based on the maximum hedge cost ranges from 3.21% to 3.83%. The effect 

of term-structure shape does not have a statistically significant effect on the variability in the 

percentage difference of the mean hedge cost. The effect of term-structure shape is not 

statistically significant for the case of bond either of relatively high duration (9.92) or of 

relatively low duration (3.48). The bond duration seems to have a weakly statistically significant 

effect on the variability in the percentage difference of the mean hedge cost. For the bond with 

relatively high duration, the mean percentage difference in the mean hedge cost is about 1.9% 

whereas the same is about 1.7% for the bond with relatively low duration. The percentage 

difference in the mean hedge cost by and large increases with bond duration.19 

***Insert Table III about here*** 

Table III reports descriptive statistics on the difference between the absolute sum of 

hedge ratios of traditional and the forward-looking approaches for 6 different coupon rates of the 

CTD and 3 different levels of durations for the bond being hedged. The descriptive statistics for 

each CTD coupon rate in each Panel are based on 189 numerical observations.  

                                                           
19 It is possible that the effect of term-structure shape does exist but is subdued by the bond duration effect. To check 
this possibility, alternative descriptive statistics are obtained without controlling the duration level. These alternative 
descriptive statistics are based on 1701 (= 189*3*3) observations because 3 bond maturities and 3 bond coupon rates 
are additionally considered. The detailed analysis not reported here indicates that the effect of term-structure shape 
does not exist even when the duration level is not controlled for. A further analysis not reported here indicates, 
however, a statistically significant positive relationship between the term-structure slope parameter (β) and the mean 
difference in the mean hedge cost. 
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In Panel B of Table III (i.e., the case of bond with the medium-level duration of 7.90), the 

percentage difference in the mean hedge cost ranges from 1.26% to 2.22% whereas the 

percentage difference based on the maximum hedge cost ranges from 1.96% to 4.00%. The effect 

of CTD coupon has a statistically significant positive effect on the variability in the percentage 

difference of the mean hedge cost. This positive effect of CTD coupon carries over to the case of 

bond either of relatively high duration (9.93) or of relatively low duration (3.47). 20 

***Insert Table IV about here*** 

Table IV reports descriptive statistics on the difference between the absolute sum of 

hedge ratios of traditional and the forward-looking approaches for 6 different bond coupon rates 

and 3 different bond maturities. Given the strong CTD coupon effect (reported in Table III), 

Table IV no longer assumes identical coupon rates for the CTD T-bonds and T-notes.  The 

descriptive statistics for each bond coupon rate in each Panel are therefore based on 567 (= 189 * 

3) numerical observations.  

In Panel B of Table IV (i.e., the case of bond with the medium remaining maturity of 

14.25 years), the percentage difference in the mean hedge cost ranges from 1.81% to 1.86% 

whereas the percentage difference based on the maximum hedge cost ranges from 3.75% to 

4.11%. The bond coupon does not have a statistically significant effect on the variability in the 

percentage difference of the mean hedge cost. The bond coupon effect does not exist for the 

bonds with relatively short (4.25 years) and long (24.25 years) remaining maturities. For the case 

of relatively long maturity, the percentage difference in the mean hedge cost ranges from 1.75% 

                                                           
20 It is possible that the CTD coupon effect may not exist but it appears so because of its interaction with the bond 
duration effect. To check this possibility, alternative descriptive statistics are obtained without controlling the 
duration level and for 11 levels of CTD coupon. These alternative descriptive statistics are based on 1701 (= 
189*3*3) observations because 3 bond maturities and 3 bond coupon rates are additionally considered. The detailed 
analysis not reported here indicates that the CTD coupon effect does exist even when the duration level is not 
controlled for. 
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to 1.93% whereas the same does not vary across bond coupon rate in the case of relatively short 

maturity of 4.25 years.21 

***Insert Table V about here*** 

Table V reports descriptive statistics on the difference between the absolute sum of hedge 

ratios of traditional and the forward-looking approaches for 6 different bond maturities and 3 

different bond coupon rates. Although similar to Table IV, Table V intends to ensure the lack of 

the bond coupon and maturity effects. It also attempts to determine the relative strength between 

bond coupon and bond maturity effects, if any. The descriptive statistics in each Panel are also 

based on 567 numerical observations.  

In Panel B of Table V (i.e., the case of bond with the medium-level coupon rate of 8%), 

the percentage difference in the mean hedge cost ranges from 1.79% to 1.85% whereas the 

percentage difference based on the maximum hedge cost ranges from 3.42% to 4.80%. The bond 

maturity does not have a statistically significant effect on the variability in the percentage 

difference of the mean hedge cost. A positive bond maturity effect does exist, however, for the 

bonds with relatively high (13%) and low (3%) coupon rates. For the case of relatively high 

coupon bond, the percentage difference in the mean hedge cost ranges from 1.47% to 1.75% 

whereas the same ranges from 1.66% to 1.87% in the case of relatively low coupon bond. The 

bond coupon does not have a statistically significant effect on the percentage difference.22 

                                                           
21 Note that bond duration monotonically increases in bond maturity and monotonically decreases in bond coupon 
rate. Then, given the positive duration effect on the percentage difference, one should expect a positive bond 
maturity effect and a negative bond coupon-rate effect. It is possible that the bond coupon effect may exist but it does 
not appear so because of its interaction with the bond maturity effect. To check this possibility, alternative 
descriptive statistics are obtained without controlling the bond maturity and for 11 levels of bond maturity. These 
alternative descriptive statistics are based on 1701 (= 567*3) observations because 3 bond maturities are additionally 
considered. The detailed analysis not reported here indicates that the bond coupon effect does not exist even when 
the bond maturity is not controlled for. 
22 It is possible that the bond maturity effect may exist but it does not appear so because of its interaction with the 
bond coupon effect. To check this possibility, alternative descriptive statistics are obtained without controlling the 
bond coupon and for 11 levels of bond maturity. These alternative descriptive statistics are based on 1701 (= 567*3) 
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V. Practical Implications   

The series of numerical analysis indicates that the mean hedge-cost saving of forward-

looking hedge is about 1.8%. The hedge-cost saving, when high coupon (13%) Treasury is the 

CTD, becomes around 2.25% in the case of hedging 8% coupon 14.25-year bond.   

The larger hedge-cost saving when the high-coupon Treasury is the CTD has an important 

practical implication. Note, for example, that recent market interest rates for long-term maturity 

(say, 20 years) Treasuries have been hovering around 6% (the coupon rate for notional Treasury 

underlying Treasury futures).23 Note also that, at present, certain seasoned Treasuries with long-

term remaining maturities have coupon rates much (at least 6 percentage points) higher than the 

market interest rates for equivalent maturities. The conversion factor for such high coupon-rate 

Treasury would be larger than its intrinsic relative value because its future cash flows are 

discounted at rates lower than the current ones. It is intuitively obvious that such high coupon 

Treasury with an upward-biased conversion factor would tend to be the CTD. In fact, it has been 

demonstrated in relevant literature that, for a nearly flat term structure, the CTD would be a high 

coupon Treasury when (1) the market interest rate for long-term bond is larger than 6% and (2) 

the coupon rate of eligible Treasury exceeds the market interest rate for comparable maturity.24  

In other words, when actual coupon rates of eligible Treasuries (i.e., those issued previously at 

times of high interest rates) exceed the market interest rates for equivalent maturities, the 

Treasury with highest coupon rate tends to be the CTD. Hence, the practical importance of the 

                                                                                                                                                                                            
observations because 3 bond coupon rates are additionally considered. The detailed analysis not reported here 
indicates that the bond maturity effect does not exist even when the bond coupon is not controlled for. 
23 In July 2001, the market rate has been always at least few basis points higher than 6%. In the previous two years, 
the market rate has been much higher than 6% (e.g., at least 50 basis points higher on average during January 2001). 
24 See, e.g., Benninga and Wiener (1999). 
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finding applies not only to current times of declining interest rates but also to recent past (and 

forthcoming future time) of increasing interest rates.  

The hedge-cost saving is about 1.95% when hedging high duration bond (say, 3% coupon 

bond with 24.25-year maturity). This finding that the hedge-cost saving will be more in the case 

of hedging high duration bond has also an important practical implication. This is so because, 

under increasing uncertainty on interest-rate changes, convexity-based hedges of such high 

duration bonds will be the main tasks facing bond portfolio managers.  

 

VI. A SUMMARY AND CONCLUSIONS 

This paper addresses the two problems inherent in traditional convexity-hedge models: (i) 

the neglect of important volatility linkage between Treasury futures and cheapest-to-deliver 

Treasuries, which leads to incorrect hedge ratios; and (ii) the arbitrary selection of any two non-

redundant Treasury futures as hedging instruments.  

To address the problem arising from the neglected price-volatility linkage, the current 

analysis first provides detailed explanations on the nature of conversion factor system and the 

bias in the CBOT’s CF measure for relative quote of deliverable Treasury. It then establishes an 

arbitrage-free price linkage between Treasury futures and cheapest-to-deliver Treasury and 

determines an arbitrage-free price volatility (duration and convexity) linkage between them. In so 

doing, the cross hedge ratio equations incorporate the correct volatility measures for Treasury 

futures. To address the problem arising from arbitrary selection of any two hedge-instruments, 

the current analysis considers the interest-rate exposure of a synthetic position rather than the 

generic bond (or bond portfolio) position. Doing so leads to the forward-looking cross hedge-

ratio equations containing an explicit channel through which the cross hedge ratios are affected 

by both the short-term spot and the forward interest rates beyond the hedge horizon. Hence, 
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hedgers can draw additional information from the hedge-ratio equations and utilize them in 

choosing a specific mix of hedge instruments.  

This paper also provides detailed numerical analysis that documents the main difference 

between traditional and the forward-looking hedge ratios. The most important finding is that the 

forward-looking hedge costs less about 1.8% on average, with the maximum hedge-cost saving 

reaching up to 4.8%. More detailed analysis indicates that the hedge cost saving becomes larger 

for hedging high duration bond especially when higher coupon Treasury is the cheapest-to-

deliver. The hedge-cost saving of forward-looking hedges persists across various maturities of 

the bond being hedged and the cheapest-to-deliver Treasury. The hedge-cost saving is 

particularly large when the cheapest-to-deliver is high coupon Treasury. As explained in the main 

text, high coupon Treasury would tend to be the cheapest-to-deliver Treasury under the current 

interest rate cycle. The hedge-cost saving will be even larger if term structure becomes steeper as 

in the recent past.  

Given relatively high interest rate environments in the past three decades, the practical 

importance of the CTD coupon effect is likely to remain strong for many years to come. It is also 

likely to remain strong even in the next cycles of rising interest rates and subsequent upward 

revisions of the coupon rate of notional Treasury. This is so because the current interest rates are 

very low relative to comparable interest rates in the past three decades. 

One of the most critical assumptions that facilitated the development of the forward-

looking hedge model and numerical analysis is the implicit assumption that delivery-related 

options do not exist. The issue is of direct relevance to the major numerical findings in this paper. 

The pricing of these options itself is a very complicated issue that is yet to be resolved. Hence, 

the relaxation of this unrealistic assumption remains as a promising future research agenda. The 

relaxation may not, however, change the qualitative direction of the major findings in this paper. 
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To understand this conjecture, note that the existence of CTD in the current paper is due to the 

bias in conversion factor and that the CTD choice implies a negative convexity relationship 

between the interest rate and the Treasury futures’ quote. Note also that the main difference 

between traditional and the current hedge arises from the negative convexity implied by the 

conversion factor bias. The existence of full-blown delivery-related options would further 

strengthen the existence of CTD, the importance of CTD choice, and the negative convexity of 

Treasury futures’ quote. An intuition then suggests that the stronger negative convexity resulting 

from the existence of delivery-related options would rather magnify the relative overhedge in the 

traditional approach.  

The forward-looking duration-convexity hedges using Treasury futures can also apply to 

other fixed income markets, e.g., UK and Japan markets, since these markets adopt similar 

conversion-factor systems to deliverable Treasuries. To the extent that the interest rate cycles in 

these markets closely follow the interest rate cycles in the US, which is quite often, one would 

find results that are similar to those in this paper.      
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TABLE I 

Descriptive Statistics of the Difference between Traditional and Forward-looking Cross-Hedge Ratios  
(by Various Hedge Horizons and Bond Durations) 

 

Panel A: High-Duration Bond (24.25-year maturity; 3% coupon; 9.90 Duration; 83.9 Convexity) 
Hedge Horizon Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 

6 months 0.9805 0.9799 0.9727 0.9925 1.9485 2.7346 0.7467 
5 months 0.9808 0.9800 0.9733 0.9927 1.9244 2.6740 0.7324 
4 months 0.9797 0.9792 0.9639 0.9908 2.0298 3.6106 0.9250 
3 months 0.9813 0.9805 0.9742 0.9930 1.8745 2.5786 0.7021 
2 months 0.9815 0.9809 0.9744 0.9931 1.8484 2.5645 0.6863 
1 months 0.9805 0.9801 0.9643 0.9904 1.9501 3.5675 0.9614 

Panel B: Medium-Duration Bond (14.25-year maturity; 8% coupon; 7.61 Duration; 42.3 Convexity) 
Hedge Horizon Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 

6 months 0.9843 0.9837 0.9689 0.9989 1.5656 3.1097 0.1100 
5 months 0.9842 0.9834 0.9702 0.9986 1.5816 2.9807 0.1385 
4 months 0.9825 0.9823 0.9614 0.9932 1.7540 3.8552 0.6818 
3 months 0.9840 0.9827 0.9731 0.9980 1.5952 2.6919 0.1971 
2 months 0.9840 0.9824 0.9747 0.9977 1.6039 2.5314 0.2270 
1 months 0.9819 0.9814 0.9601 0.9916 1.8109 3.9906 0.8356 

Panel C: Low-Duration Bond (4.25-year maturity; 13% coupon; 3.28 Duration; 6.40 Convexity) 
Hedge Horizon Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 

6 months 0.9880 0.9872 0.9767 0.9973 1.2021 2.3306 0.2693 
5 months 0.9874 0.9864 0.9760 0.9964 1.2637 2.3952 0.3573 
4 months 0.9839 0.9850 0.9546 0.9955 1.6062 4.5390 0.4471 
3 months 0.9861 0.9848 0.9747 0.9950 1.3905 2.5328 0.5001 
2 months 0.9854 0.9839 0.9739 0.9940 1.4604 2.6065 0.5955 
1 months 0.9816 0.9826 0.9524 0.9931 1.8385 4.7571 0.6928 
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Note: 
(1) Selected descriptive statistics on both the difference and percentage difference are computed for bonds with high-, medium-, and 

low-duration for six different hedge horizons. The bond maturity is the remaining maturity at end of the hedge horizon. The 
difference between traditional and forward-looking hedge ratios is computed as “the absolute sum of traditional hedge ratios minus 
the absolute sum of forward-looking hedge ratios.” The %Diff_Mean is computed as the mean difference divided by the absolute 
sum of traditional hedge ratios, whereas the %Diff_Min (%Diff_Max) is computed as the minimum (maximum) difference divided 
by the traditional hedge ratios. These percentage differences reflect, therefore, the respective mean and minimum (maximum) 
percentage differences in hedge costs of traditional and the forward-looking hedges.  

(2) As six different hedge horizons, 1-, 2-, 3-, 4-, 5-, and 6-month horizons are considered. Each hedge horizon matches the Treasury 
futures’ expiration.  

(3) In using the term structure specification, r(t) = α + β [ln(t+5.0) – ln(5.0)], three pairs of α, β values are considered. For example, 
the pair “0.005, 0.065” reflects a very-steep term structure with a low spot rate for short term, whereas the pair “0.065, 0.005” 
reflects a nearly-flat term structure with a high spot rate for short term. The pair “0.035, 0.035” reflects a term structure that is 
neither too steep nor too flat and indicates a term structure with a short-term spot rate that is neither too high nor too low.  

(4) Table I does not assume a unique CTD T-bond for the 30-year T-bond futures and a unique CTD T-notes for each of the 10-year, 
5-year, or 2-year T-note futures. It considers, instead, 3 kinds of CTD T-bonds and 7 kinds of CTD T-notes, which differ only by 
their remaining maturities. As the CTD T-bond’s remaining maturities, near-maximum (29.25), near-medium (22.25 years), and 
near-minimum (15.25 years) eligible maturities are considered. As the remaining maturities of the CTD T-note corresponding to 
the 10-year T-note futures, near-maximum (9.25 years), near-medium (7.75 years), and near-minimum (6.25 years) eligible 
maturities are considered. As the remaining maturities of the CTD T-note corresponding to the 5-year T-note futures, near-
maximum (4.75 years), near-medium (4.50 years), and near-minimum (4.25 years) eligible maturities are considered. As the 
remaining maturity of the CTD T-note corresponding to the 2-year T-note futures that seldom trade, only the near-minimum (1.75 
years) eligible maturity is considered because the near-minimum is only 3 months away from the near-maximum (2.0 years) 
eligible maturity. As CTD coupon rates, 3%, 8%, and 13% are considered. Since, given the 3 CTD coupon rates, each combination 
of 3 CTD T-bonds and 7 CTD T-notes corresponds to each alternative pairing of T-bond futures with T-note futures, the total 
number of hedge-instrument pairs considered for Table I is 63 (= 3*3*7).  

(5) Since there are 63 hedge-instrument pairs and 3 shapes of term structure for each horizon for each type of bond being hedged, the 
total number of observations used for the descriptive statistics in each row of Table I is 189 (= 63*3). 

(6) All the descriptive statistics are statistically significantly positive at the 1% level.  
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TABLE II 
Descriptive Statistics of the Difference between Traditional and Forward-looking Cross-Hedge Ratios  

(by Various Shapes of Term Structure and Bond Durations) 
Panel A: High-Duration Bond (24.25-year maturity; 3% coupon; 9.92 Duration; 83.9 Convexity) 

Term-Str. (α, β) Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 
0.005, 0.065 0.9790 0.9784 0.9685 0.9875 2.1046 3.1524 1.2490 
0.015, 0.055 0.9795 0.9789 0.9678 0.9882 2.0464 3.2213 1.1752 
0.025, 0.045 0.9801 0.9794 0.9671 0.9891 1.9880 3.2904 1.0885 
0.035, 0.035 0.9807 0.9800 0.9664 0.9902 1.9292 3.3594 0.9824 
0.045, 0.025 0.9813 0.9804 0.9657 0.9911 1.8698 3.4285 0.8866 
0.055, 0.015 0.9816 0.9807 0.9650 0.9920 1.8437 3.4979 0.8000 
0.065, 0.005 0.9826 0.9817 0.9643 0.9928 1.7417 3.5675 0.7216 

Panel B: Medium-Duration Bond (14.25-year maturity; 8% coupon; 7.90 Duration; 43.4 Convexity) 
Term-Str. (α, β) Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 

0.005, 0.065 0.9808 0.9806 0.9677 0.9954 1.9215 3.2288 0.4599 
0.015, 0.055 0.9812 0.9809 0.9679 0.9953 1.8783 3.2090 0.4713 
0.025, 0.045 0.9816 0.9812 0.9666 0.9952 1.8375 3.3431 0.4773 
0.035, 0.035 0.9820 0.9817 0.9650 0.9952 1.7999 3.5022 0.4779 
0.045, 0.025 0.9825 0.9822 0.9633 0.9958 1.7469 3.6664 0.4190 
0.055, 0.015 0.9823 0.9818 0.9617 0.9970 1.7697 3.8330 0.2974 
0.065, 0.005 0.9808 0.9806 0.9677 0.9954 1.9215 3.2288 0.4599 

Panel C: Low-Duration Bond (4.25-year; 13% coupon; 3.48 Duration; 7.39 Convexity) 
Term-Str. (α, β) Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 

0.005, 0.065 0.9830 0.9830 0.9568 0.9973 1.7011 4.3180 0.2693 
0.015, 0.055 0.9830 0.9830 0.9562 0.9972 1.7030 4.3830 0.2774 
0.025, 0.045 0.9829 0.9830 0.9555 0.9971 1.7058 4.4486 0.2854 
0.035, 0.035 0.9829 0.9831 0.9549 0.9971 1.7098 4.5145 0.2933 
0.045, 0.025 0.9829 0.9831 0.9542 0.9970 1.7149 4.5808 0.3010 
0.055, 0.015 0.9828 0.9830 0.9535 0.9969 1.7212 4.6473 0.3086 
0.065, 0.005 0.9827 0.9830 0.9529 0.9968 1.7287 4.7141 0.3161 
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Note: 
(1) Selected descriptive statistics on both the difference and percentage difference are computed for bonds with high-, medium-, and 

low-duration for six different hedge horizons. The bond maturity is the remaining maturity at end of the hedge horizon. The 
difference between traditional and forward-looking hedge ratios is computed as “the absolute sum of traditional hedge ratios minus 
the absolute sum of forward-looking hedge ratios.” The %Diff_Mean is computed as the mean difference divided by the absolute 
sum of traditional hedge ratios, whereas the %Diff_Min (%Diff_Max) is computed as the minimum (maximum) difference divided 
by the traditional hedge ratios. These percentage differences reflect, therefore, the respective mean and minimum (maximum) 
percentage differences in hedge costs of traditional and the forward-looking hedges. 

(2) As various shapes of the term structure specification, r(t) = α + β [ln(t+5.0) – ln(5.0)], seven combinations of α’s and β’s values 
are considered. For example, the term structure specification with α = 5.5% and β = 0.5% reflects a nearly-flat term structure with 
high level of spot interest rate for short term, whereas the term structure specification with α = 0.5% and β = 5.5% reflects a very-
steep term structure with low level of spot interest rate for short term.  

(3) As hedge horizons, 1-, 3-, and 6-month horizons are considered. Each Treasury futures’ expiration is assumed to match the hedge 
expiration. 

(4) Table II does not assume a unique CTD T-bond for the 30-year T-bond futures and a unique CTD T-notes for each of the 10-year, 
5-year, or 2-year T-note futures. It considers, instead, 3 kinds of CTD T-bonds and 7 kinds of CTD T-notes, which differ only by 
their remaining maturities. As the CTD T-bond’s remaining maturities, near-maximum (29.25), near-medium (22.25 years), and 
near-minimum (15.25 years) eligible maturities are considered. As the remaining maturities of the CTD T-note corresponding to 
the 10-year T-note futures, near-maximum (9.25 years), near-medium (7.75 years), and near-minimum (6.25 years) eligible 
maturities are considered. As the remaining maturities of the CTD T-note corresponding to the 5-year T-note futures, near-
maximum (4.75 years), near-medium (4.50 years), and near-minimum (4.25 years) eligible maturities are considered. As the 
remaining maturity of the CTD T-note corresponding to the 2-year T-note futures that seldom trade, only the near-minimum (1.75 
years) eligible maturity is considered because the near-minimum is only 3 months away from the near-maximum (2.0 years) 
eligible maturity. As CTD coupon rates, 3%, 8%, and 13% are considered. Since, given the 3 CTD coupon rates, each combination 
of 3 CTD T-bonds and 7 CTD T-notes corresponds to each alternative pairing of T-bond futures with T-note futures, the total 
number of hedge-instrument pairs considered for Table II is 63 (= 3*3*7).  

(5) Since there are 63 hedge-instrument pairs and 3 hedge horizons for each type of bond being hedged under each term-structure 
shape, the total number of observations used for the descriptive statistics in each row of Table II is 189 (= 63*3).  

(6) All the descriptive statistics are statistically significantly positive at the 1% level. 
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TABLE III 

Descriptive Statistics of the Difference between Traditional and Forward-looking Cross-Hedge Ratios  
(by Various Coupon Rates of CTD and Bond Durations) 

Panel A: High-Duration Bond (24.25-year maturity; 3% coupon; 9.93 Duration; 84.0 Convexity) 
CTD Coupon Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 

3% 0.9853 0.9849 0.9792 0.9928 1.4737 2.0776 0.7217 
5% 0.9818 0.9821 0.9746 0.9913 1.8168 2.5414 0.8685 
7% 0.9803 0.9806 0.9748 0.9905 1.9717 2.5232 0.9505 
9% 0.9793 0.9792 0.9708 0.9900 2.0703 2.9238 1.0009 
11% 0.9781 0.9779 0.9673 0.9897 2.1940 3.2676 1.0337 
13% 0.9772 0.9770 0.9643 0.9894 2.2788 3.5675 1.0560 

Panel B: Medium-Duration Bond (14.25 years, 8% coupon, 7.90 Duration, 43.4 Convexity) 
CTD Coupon Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 

3% 0.9874 0.9878 0.9804 0.9980 1.2625 1.9639 0.1971 
5% 0.9836 0.9842 0.9750 0.9971 1.6404 2.4960 0.2906 
7% 0.9810 0.9818 0.9712 0.9965 1.8969 2.8836 0.3529 
9% 0.9792 0.9801 0.9668 0.9960 2.0798 3.3227 0.3969 
11% 0.9779 0.9789 0.9631 0.9957 2.2141 3.6882 0.4293 
13% 0.9778 0.9779 0.9600 0.9955 2.2230 3.9992 0.4540 

Panel C: Low-Duration Bond (4.25-year maturity; 13% coupon; 3.47 Duration; 7.40 Convexity) 
CTD Coupon Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 

3% 0.9905 0.9914 0.9802 0.9973 0.9475 1.9797 0.2693 
5% 0.9867 0.9880 0.9756 0.9951 1.3302 2.4381 0.4902 
7% 0.9837 0.9845 0.9685 0.9962 1.6306 3.1510 0.3809 
9% 0.9812 0.9820 0.9625 0.9960 1.8844 3.7530 0.3955 
11% 0.9790 0.9802 0.9573 0.9959 2.0999 4.2682 0.4081 
13% 0.9771 0.9780 0.9529 0.9958 2.2862 4.7141 0.4191 
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Note: 
(1) Selected descriptive statistics on both the difference and percentage difference are computed for bonds with high-, medium-, and 

low-duration for six different hedge horizons. The bond maturity is the remaining maturity at end of the hedge horizon. The 
difference between traditional and forward-looking hedge ratios is computed as “the absolute sum of traditional hedge ratios minus 
the absolute sum of forward-looking hedge ratios.” The %Diff_Mean is computed as the mean difference divided by the absolute 
sum of traditional hedge ratios, whereas the %Diff_Min (%Diff_Max) is computed as the minimum (maximum) difference divided 
by the traditional hedge ratios. These percentage differences reflect, therefore, the respective mean and minimum (maximum) 
percentage differences in hedge costs of traditional and the forward-looking hedges. 

(2) As the six different coupon rates of CTD, 3%, 5%, 7%, 9%, 11%, and 13% are considered. 
(3) As hedge horizons, 1-, 3-, and 6-month horizons are considered. Each Treasury futures’ expiration is assumed to match the hedge 

expiration.   
(4) In using the term structure specification, r(t) = α + β [ln(t+5.0) – ln(5.0)], three pairs of α, β values are considered. The pair 

“0.005, 0.065” reflects a very-steep term structure with a low spot rate for short term, whereas the pair “0.065, 0.005” reflects a 
nearly-flat term structure with a high spot rate for short term. The pair “0.035, 0.035” reflects a term structure that is neither too 
steep nor too flat. It also reflects a term structure with a short-term spot rate that is neither too high nor too low.  

(5) Table III does not assuming a unique CTD T-bond for the 30-year T-bond futures and a unique CTD T-notes for each of the 10-
year, 5-year, or 2-year T-note futures. It considers, instead, 3 kinds of CTD T-bonds and 7 kinds of CTD T-notes, which differ only 
by their remaining maturities. As the CTD T-bond’s remaining maturities, near-maximum (29.25), near-medium (22.25 years), and 
near-minimum (15.25 years) eligible maturities are considered. As the remaining maturities of the CTD T-note corresponding to 
the 10-year T-note futures, near-maximum (9.25 years), near-medium (7.75 years), and near-minimum (6.25 years) eligible 
maturities are considered. As the remaining maturities of the CTD T-note corresponding to the 5-year T-note futures, near-
maximum (4.75 years), near-medium (4.50 years), and near-minimum (4.25 years) eligible maturities are considered. As the 
remaining maturity of the CTD T-note corresponding to the 2-year T-note futures that seldom trade, only the near-minimum (1.75 
years) eligible maturity is considered because the near-minimum is only 3 months away from the near-maximum (2.0 years) 
eligible maturity. Since each combination of 3 CTD T-bonds and 7 CTD T-notes corresponds to each alternative pairing of T-bond 
futures with T-note futures, the total number of hedge-instrument pairs considered for Table III is 27 (= 3*7).  

(6) Since there are 27 hedge-instrument pairs, 3 hedge horizons, and 3 shapes of term structure for each type of bond being hedged for 
each CTD coupon rate considered, the total number of observations used for the descriptive statistics in each row of Table III is 
189 (= 27*3*3).  

(7) All the descriptive statistics are statistically significantly positive at the 1% level. 
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TABLE IV 
Descriptive Statistics of the Difference between Traditional and Forward-looking Cross-Hedge Ratios  

(by Various Coupon Rates and Remaining Maturities of Bond Being Hedged) 
Panel A: Long-Maturity Bond (24.25 years) 

Bond Coupon Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 
3% 0.9807 0.9801 0.9643 0.9928 1.9251 3.5675 0.7217 
5% 0.9811 0.9807 0.9651 0.9943 1.8936 3.4851 0.5725 
7% 0.9818 0.9810 0.9658 0.9953 1.8238 3.4188 0.4715 
9% 0.9821 0.9814 0.9664 0.9959 1.7886 3.3642 0.4099 
11% 0.9823 0.9815 0.9668 0.9963 1.7705 3.3184 0.3684 
13% 0.9825 0.9818 0.9672 0.9966 1.7537 3.2796 0.3385 

Panel B: Medium-Maturity Bond (14.25 years) 
Bond Coupon Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 

3% 0.9818 0.9810 0.9625 0.9968 1.8244 3.7523 0.3194 
5% 0.9819 0.9816 0.9612 0.9974 1.8069 3.8802 0.2572 
7% 0.9818 0.9814 0.9603 0.9979 1.8190 3.9660 0.2140 
9% 0.9814 0.9813 0.9597 0.9982 1.8567 4.0276 0.1823 
11% 0.9814 0.9814 0.9593 0.9984 1.8552 4.0740 0.1581 
13% 0.9815 0.9814 0.9589 0.9986 1.8538 4.1101 0.1389 

Panel C: Short-Maturity Bond (4.25 years) 
Bond Coupon Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 

3% 0.9833 0.9825 0.9524 0.9987 1.6728 4.7586 0.1324 
5% 0.9833 0.9830 0.9525 0.9981 1.6706 4.7477 0.1917 
7% 0.9833 0.9833 0.9526 0.9976 1.6686 4.7380 0.2353 
9% 0.9833 0.9834 0.9527 0.9973 1.6666 4.7292 0.2747 
11% 0.9833 0.9834 0.9528 0.9967 1.6671 4.7213 0.3285 
13% 0.9833 0.9835 0.9529 0.9973 1.6656 4.7141 0.2693 
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Note: 
(1) Selected descriptive statistics on both the difference and percentage difference are computed for bonds with high-, medium-, and 

low-duration for six different hedge horizons. The bond maturity is the remaining maturity at end of the hedge horizon. The 
difference between traditional and forward-looking hedge ratios is computed as “the absolute sum of traditional hedge ratios minus 
the absolute sum of forward-looking hedge ratios.” The %Diff_Mean is computed as the mean difference divided by the absolute 
sum of traditional hedge ratios, whereas the %Diff_Min (%Diff_Max) is computed as the minimum (maximum) difference divided 
by the traditional hedge ratios. These percentage differences reflect, therefore, the respective mean and minimum (maximum) 
percentage differences in hedge costs of traditional and the forward-looking hedges. Each Treasury Futures’ expiration is also 
assumed to match the hedge expiration. 

(2) As the six different coupon rates of Bond, 3%, 5%, 7%, 9%, 11%, and 13% are considered. 
(3) As hedge horizons, 1-, 3-, and 6-month horizons are considered.  
(4) In using the term structure specification, r(t) = α + β [ln(t+5.0) – ln(5.0)], three pairs of α, β values are considered. The pair 

“0.005, 0.065” reflects a very-steep term structure with a low spot rate for short term, whereas the pair “0.065, 0.005” reflects a 
nearly-flat term structure with a high spot rate for short term. The pair “0.035, 0.035” reflects a term structure that is neither too 
steep nor too flat. It also reflects a term structure with a short-term spot rate that is neither too high nor too low.  

(5) Table IV does not assuming a unique CTD T-bond for the 30-year T-bond futures and a unique CTD T-notes for each of the 10-
year, 5-year, or 2-year T-note futures. It considers, instead, 3 kinds of CTD T-bonds and 7 kinds of CTD T-notes, which differ only 
by their remaining maturities. As the CTD T-bond’s remaining maturities, near-maximum (29.25), near-medium (22.25 years), and 
near-minimum (15.25 years) eligible maturities are considered. As the remaining maturities of the CTD T-note corresponding to 
the 10-year T-note futures, near-maximum (9.25 years), near-medium (7.75 years), and near-minimum (6.25 years) eligible 
maturities are considered. As the remaining maturities of the CTD T-note corresponding to the 5-year T-note futures, near-
maximum (4.75 years), near-medium (4.50 years), and near-minimum (4.25 years) eligible maturities are considered. As the 
remaining maturity of the CTD T-note corresponding to the 2-year T-note futures that seldom trade, only the near-minimum (1.75 
years) eligible maturity is considered because the near-minimum is only 3 months away from the near-maximum (2.0 years) 
eligible maturity. As CTD coupon rates, 3%, 8%, and 13% are considered. Since, given the 3 CTD coupon rates, each combination 
of 3 CTD T-bonds and 7 CTD T-notes corresponds to each alternative pairing of T-bond futures with T-note futures, the total 
number of hedge-instrument pairs considered for Table IV is 63 (= 3*3*7). 

(6) Since there are 63 hedge-instrument pairs, 3 hedge horizons, and 3 shapes of term structure for each coupon rate and remaining 
maturity of bond, the total number of observations used for the descriptive statistics in each row of Table IV is 567 (= 63*3*3). 

(7) All the descriptive statistics are statistically significantly positive at the 1% level. 
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TABLE V 
Descriptive Statistics of the Difference between Traditional and Forward-looking Cross-Hedge Ratios  

(by Various Remaining Maturities and Coupon Rates of Bond Being Hedged) 
 

Panel A: High-Coupon (13%) Bond 
Bond Maturity Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 

24.25 0.9825 0.9818 0.9672 0.9966 1.7537 3.2796 0.3385 
20.25 0.9828 0.9816 0.9645 0.9977 1.7240 3.5501 0.2298 
16.25 0.9836 0.9826 0.9608 0.9989 1.6385 3.9235 0.1138 
12.25 0.9845 0.9833 0.9575 0.9998 1.5458 4.2528 0.0192 
8.25 0.9853 0.9842 0.9547 0.9999 1.4675 4.5342 0.0147 
4.25 0.9854 0.9855 0.9524 0.9970 1.4648 4.7571 0.3050 

Panel B: Medium-Coupon (8%) Bond 
Bond Maturity Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 

24.25 0.9817 0.9811 0.9658 0.9980 1.8314 3.4217 0.1977 
20.25 0.9815 0.9811 0.9655 0.9986 1.8463 3.4537 0.1388 
16.25 0.9818 0.9813 0.9621 0.9974 1.8158 3.7883 0.2630 
12.25 0.9818 0.9816 0.9581 0.9987 1.8223 4.1926 0.1311 
8.25 0.9821 0.9820 0.9547 0.9999 1.7887 4.5280 0.0144 
4.25 0.9815 0.9821 0.9520 0.9944 1.8528 4.7976 0.5626 

Panel C: Low-Coupon (3%) Bond 
Bond Maturity Mean Median Min Max %Diff_Mean %Diff_Max %Diff_Min 

24.25 0.9813 0.9808 0.9642 0.9946 1.8694 3.5805 0.5441 
20.25 0.9815 0.9809 0.9654 0.9944 1.8503 3.4605 0.5620 
16.25 0.9817 0.9810 0.9666 0.9963 1.8270 3.3352 0.3663 
12.25 0.9825 0.9815 0.9602 0.9981 1.7496 3.9849 0.1906 
8.25 0.9834 0.9821 0.9556 0.9996 1.6636 4.4394 0.0355 
4.25 0.9833 0.9825 0.9524 0.9987 1.6728 4.7586 0.1324 
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Note: 
(1) Selected descriptive statistics on both the difference and percentage difference are computed for bonds with high-, medium-, and 

low-duration for six different hedge horizons. The bond maturity is the remaining maturity at end of the hedge horizon. The 
difference between traditional and forward-looking hedge ratios is computed as “the absolute sum of traditional hedge ratios minus 
the absolute sum of forward-looking hedge ratios.” The %Diff_Mean is computed as the mean difference divided by the absolute 
sum of traditional hedge ratios, whereas the %Diff_Min (%Diff_Max) is computed as the minimum (maximum) difference divided 
by the traditional hedge ratios. These percentage differences reflect, therefore, the respective mean and minimum (maximum) 
percentage differences in hedge costs of traditional and the forward-looking hedges. 

(2) As the six different remaining maturities of bond being hedged, 4.25, 8.25, 12.25, 16.25, 20.25, and 24.25 years are considered.  
(3) As hedge horizons, 1-, 3-, and 6-month horizons are considered. Each Treasury futures’ expiration is assumed to match the hedge 

expiration. 
(4) In using the term structure specification, r(t) = α + β [ln(t+5.0) – ln(5.0)], three pairs of α, β values are considered. The pair 

“0.005, 0.065” reflects a very-steep term structure with a low spot rate for short term, whereas the pair “0.065, 0.005” reflects a 
nearly-flat term structure with a high spot rate for short term. The pair “0.035, 0.035” reflects a term structure that is neither too 
steep nor too flat. It also reflects a term structure with a short-term spot rate that is neither too high nor too low.  

(5) Table V does not assuming a unique CTD T-bond for the 30-year T-bond futures and a unique CTD T-notes for each of the 10-
year, 5-year, or 2-year T-note futures. It considers, instead, 3 kinds of CTD T-bonds and 7 kinds of CTD T-notes, which differ only 
by their remaining maturities. As the CTD T-bond’s remaining maturities, near-maximum (29.25), near-medium (22.25 years), and 
near-minimum (15.25 years) eligible maturities are considered. As the remaining maturities of the CTD T-note corresponding to 
the 10-year T-note futures, near-maximum (9.25 years), near-medium (7.75 years), and near-minimum (6.25 years) eligible 
maturities are considered. As the remaining maturities of the CTD T-note corresponding to the 5-year T-note futures, near-
maximum (4.75 years), near-medium (4.50 years), and near-minimum (4.25 years) eligible maturities are considered. As the 
remaining maturity of the CTD T-note corresponding to the 2-year T-note futures that seldom trade, only the near-minimum (1.75 
years) eligible maturity is considered because the near-minimum is only 3 months away from the near-maximum (2.0 years) 
eligible maturity. As CTD coupon rates, 3%, 8%, and 13% are considered. Since, given the 3 CTD coupon rates, each combination 
of 3 CTD T-bonds and 7 CTD T-notes corresponds to each alternative pairing of T-bond futures with T-note futures, the total 
number of hedge-instrument pairs considered for Table V is 63 (= 3*3*7). 

(6) Since there are 63 hedge-instrument pairs, 3 hedge horizons, and 3 shapes of term structure for each coupon rate and remaining 
maturity of bond, the total number of observations used for the descriptive statistics in each row of Table V is 567 (= 63*3*3). 

(7) All the descriptive statistics are statistically significantly positive at the 1% level. 
  


