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ABSTRACT 
 
This paper presents a model for the analysis of duration data, called momentum 
autoregressive conditional duration (MACD) model, which considers price and 
duration changes. The model allows the process of the conditional expected duration 
to switch in a smooth transition process, which broadens the autoregressive 
conditional duration (ACD) model in Engle and Russell (1998). The model is applied 
to empirical data and estimation results indicate that the process of the conditional 
expected durations is nonlinear and positively affected by the unexpected trade 
durations in the downward market. The negative shocks generate a larger impact on 
trade durations than positive shocks. 
 
JEL: C51, G14 
Keywords: Autoregressive Conditional Duration Model, Smooth Transition, Trade 

Duration, Momentum 
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1 Introduction 
 

The information residing in the asset prices is revealed to the market through 
investors’ trades. Thus, retrieving and extracting information from the order sequence 
can help us understand the information assimilation process of asset prices. Easley 
and O'Hara (1992) build up a model demonstrating that time between trades may 
contain information due to event uncertainty. Accordingly, the correlation between 
time between trades and information occurs as the order sequence can be connected 
with time between trades. 

The seminal paper by Engle and Russell (1998) establishes the autoregressive 
conditional duration model (ACD) to capture the dynamic behavior of trade durations 
(time between trades). The ACD model considers the intensity of trades and expresses 
the conditional expectation of trade durations as an autoregressive relationship of past 
trade durations. Such modeling for high-frequency data has been proven useful in 
examining empirical implications of the market microstructure theory. Engle and 
Russell (1997) apply the ACD model to investigate foreign exchange quotes and 
support the asymmetric information model of price setting. Hamelink (1998) 
discovers significant correlation between durations and returns of French CAC 40 
using the ACD model. Consequently, durations are a channel of information of asset 
prices. 

Following Engle and Russell (1998), there are several duration models put forth. 
Jasiak (1998) considers the long range of time dependence in trade durations and 
introduces a fractionally integrated ACD model. Bauwens and Giot (2000) consider 
the logarithmic ACD model which is able to avoid the positivity constrain in 
parameters. Gramming and Maurer (2000) apply the Burr distribution to make the 
conditional hazard function more flexible. Zhang et al. (2001) propose a threshold 
ACD (TACD) model in which the nonlinearity in the ACD model depends on the past 
trade duration. Bauwens and Giot (2003) propose an asymmetric ACD model in 
which the asymmetry in the ACD model relies on price change states. Bauwens and 
Veredas (2004) introduce a stochastic conditional duration (SCD) model with a 
mixture of distributions which allows the conditional expected duration to be random. 
Ghysels et al. (2004) also develop an ACD model with a mixture of distributions, 
called the stochastic volatility duration (SVD) model, in which the conditional mean 
and the conditional overdispersion are driven by two dynamic factors. Considering the 
relationship between price movements and trade durations, Russell and Engle (2004) 
propose a joint model of the autoregressive conditional multinomial model (ACM) 
and the autoregressive conditional duration (ACD) model, called ACM-ACD model, 
in which the discrete price movements are modeled as a multinomial model. In 
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general, the variants of the ACD model above rest on features of nonlinearity, past 
price changes, past durations, or distribution assumptions. However, neither of them 
considers the combined features of nonlinearity, past price changes and past durations. 

Previous empirical studies have indicated that past price changes and past trade 
durations are important factors influencing the trade duration process. Hamelink 
(1998) studies the French CAC 40 by clustering duration regimes based on returns 
and durations. He finds that the duration processes are distinct among different 
regimes. Zhang et al. (2001) apply the threshold ACD (TACD) model to the IBM 
stock in the Trades, Orders, Reports and Quotes (TORQ) data set and find that 
nonlinearity in the ACD model identified by past trade durations delineates the trade 
duration process much better. On the other hand, Bauwens and Giot (2003) apply the 
asymmetric ACD model to IBM and Disney stocks and find that there exist 
asymmetries in the trade duration process during the upward and downward price 
changes. Examining Airgas stock (ticker symbol ARG) using the ACM-ACD model, 
Russell and Engle (2004) find that past price returns influence trade durations. Chiang 
et al. (2005) study the trade durations of the futures markets using the ACD model and 
find that the trade duration dynamics vary according to the size of price changes. 
Consequently, the trade duration process is not a simple linear function of past trade 
durations but can be affected by sizes of past price changes and past trade durations. 

This paper proposes a nonlinear type of the autoregressive conditional duration 
model, called momentum autoregressive conditional duration (MACD) model, in 
which the previous price change and the previous duration change are taken into 
consideration. The nonlinearity in the MACD model allows the process of the 
conditional expected trade duration to follow a regime switching behavior. In the 
meantime, the regime switches in a smooth transition process where the smooth 
transition probabilities vary according to momenta of previous price and duration (i.e., 
trends of price change and duration change). Originated by Bacon and Watts (1971) 
and made popular and in-depth by Teräsvirta (1994) and Granger and Teräsvirta 
(1993), the smooth transition model characterizes the regime switching process as 
gradualness and continuity instead of instancy in the Markov switching model or of 
discontinuity in the threshold model. The gradualness and continuity properties make 
the smooth transition model more suitable for high-frequency data since intraday 
trades are so intensive and are likely to be persistent.1 (Lin et al. (1995), Hasbrouck 
(1991), and Choi et al. (1988)) Consequently, the MACD model is able to capture the 
process of the conditional expected trade duration subject to variations in price and 
duration. 

                                                 
1 The order persistence is referred to an order submission phenomenon that buy (sell) orders tend to 
follow buy (sell) order. 
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The MACD model is employed to investigate intraday transaction data of the 
IBM stock traded on the New York Stock Exchange (NYSE). Empirical results show 
that the process of the conditional expected trade durations is nonlinear. The 
conditional expected trade duration is significantly affected by the unexpected trade 
duration in the downward market while the persistence of trade durations has 
relatively larger impact on the conditional expected trade duration in the upward 
market. Simulated moments point out that means of trade durations in the upward 
market is larger than in the downward market. Thus, the trading activity is more 
intensive in the downward market. In addition, results of the generalized impulse 
response function indicate that negative shocks have a larger impact on the trade 
durations than positive shocks. 
 
The remainder of this paper is organized as follows. Section 2 reviews the ACD 
model and logarithmic ACD model. The specification and the likelihood function of 
the momentum ACD model are constructed. Section 3 develops the specification tests 
of the momentum ACD model. Section 4 presents and discusses the empirical results. 
Section 5 concludes. 
 
2 The Specification of the Momentum ACD 
 
The autoregressive conditional duration (ACD) model by Engle and Russell (1998) is 
an intraday duration model which accommodates the clustering property of durations. 
Fundamentally, Engle and Russell (1998) consider a sequence of arrival times and 
assume that the actual duration can be expressed as a random process in which the 
conditional expected duration is an autoregressive process of past conditional and 
actual durations. Let 1i i ix t t −= −  be the duration between two successive arrival 
times, it  and 1it − . The observed trade duration in the ACD model can be represented 
as follows: 
 

i i ix ε= Θ  (1)
 
where { }iε  are positive i.i.d. random variables with a certain distribution over (0,∞ ), 
and ( )iE uε = . Therefore, the conditional distribution of ix  given a certain 
distribution of { }iε  and an information set of 1i−Ω  up to the transaction 1i − , 

1( | )i iE x −Ω , is iψ  equal to iuΘ  which is specified as follows:2 

                                                 
2 Basically, the ACD model can have more lags of ix  and 

i
ψ . We use ACD (1,1) throughout the 

paper since empirical results in most previous studies show one lag is enough (e.g., Hamelink (1998), 
Bauwens and Giot (2003), and Zhang et al. (2001)). 
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1 1i i iw xψ α βψ− −= + +  (2)
 
where the root of the difference equation lies outside the unit circle and w  is larger 
than zero. Those two conditions guarantee that the unconditional mean of the duration 
exists and is positive. On the other hand, Bauwens and Giot (2000) propose a 
logarithmic ACD model, called log-ACD, in which the positivity constraint in the 
ACD model can be relaxed. The observed duration in the log-ACD model is 
expressed as follows: 
 

exp( )i i i i ix ε φ ε= Θ =  (3)
 
where the logarithm of the conditional mean of ix  given a certain distribution of 
{ }iε  and an information set of 1i−Ω  up to the transaction 1i − , 1ln[ ( | )]i iE x −Ω , is 

iψ  which is equal to lni uφ + . In addition, the logarithm of the conditional mean, 

iψ , can be specified as follows: 
 

1 1i i iwψ αε βψ− −= + +  (4)
 

where β  is less than 1 in order to make sure the stationarity of iψ  (Geweke (1986) 

and Bauwens et al. (2004)). Actually, the specification of the log-ACD model is close 
to exponential GARCH setting in Nelson (1991) and assures the non-negative 
conditional expectation of the trade duration.  
 
We consider a new nonlinear ACD model which includes the feature of log-ACD and 
makes use of information contained in the price and duration movements, i.e., 
momenta of price and duration. The observed trade duration in this new model takes 
the form of the log-ACD model as in the equation (3). In addition, the logarithm of 
the conditional trade duration is modeled as a smooth transition model. Consider a 
transaction i with a price change 1i i ip pδ −= −  where ip  and 1ip −  are two 
successive transaction prices and with a trade duration 1i i ix t t −= −  where it  and 

1it −  are two successive arrival times, it  and 1it − . The standardized durations, 
xi

i i
ε Θ= , are assumed to be i.i.d. with some distribution over (0,∞ ) as in Engle and 
Russell (1998). Then, the conditional duration which is affected by the price change 
can be modeled as the following specification with a smooth transition probability, 

1 1 1 1( ; , )i iG cδ γ− − : 
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(1) 1 1 1 1 1 2 1 1 1 1( (1 ( ; , )) ( ; , ))i i iG c G cδψ δ γ δ γ− −= Ψ − +Ψ  

1 1 1 1 1 1i iw α ε βψ− −Ψ = + +  

2 2 2 1 2 1i iw α ε β ψ− −Ψ = + +  

(5)

 
where 1 1 1 1( ; , )i iG cδ γ− −  is a transition probability function with a state variable of price 
change, 1iδ − , which is assumed to be at least twice differentiable and range from 0 to 
1, 1γ  is the smoothness parameter, and 1c  is a threshold value. The specification in 
equation (5) models the conditional duration process as a regime switching process in 
which the conditional duration process is governed by the price changes. This kind of 
specification accommodates the features of allowing the conditional duration process 
to alternate when the price changes. The popular choice of the transition function is 
the logistic function: 
 

 1 1 1 1
1 1 1

1( ; , ) 1 exp( ( ))i
i

G c cδ γ γ δ−
−

= + − −                     (6) 

 
If the 1 0γ → , the transition probability becomes 0.5 and then equation (5) becomes 
linear. On the other hand, if 1γ →∞ , the transition probability function becomes a 
Heaviside function with a value of 1 when 1 1i cδ − >  or with a value of 0 when 

1 1i cδ − > . In addition to the price change effects, the conditional duration process may 
be affected by the duration itself which causes the conditional duration process to take 
changes. Therefore, we expand equation (5) to the following specification: 
 

(1) (1) 2 1 2 2 (2) 2 1 2 2(1 ( ; , )) ( ; , )i i i i iG x c G x cδ δψ ψ γ ψ γ− −= − +  

(1) 1 1 1 1 1 2 1 1 1 1(1 ( ; , )) ( ; , )i i iG c G cδψ δ γ δ γ− −= Ψ − +Ψ  

(2) 3 1 1 1 1 4 1 1 1 1(1 ( ; , )) ( ; , )i i iG c G cδψ δ γ δ γ− −= Ψ − +Ψ  

(7)

 
where 2 1 2 2( ; , )iG x cγ−  is a transition probability function with a state variable of the 
lagged duration, 1ix − , 2γ  is the smoothness parameter, and 2c  is the threshold value 
associated with 2G . Therefore, 2G  can be written as follows: 
 

2 1 2 2
2 1 2

1( ; , ) 1 exp( ( ))i
i

G x c x cγ γ−
−

= + − −  (8)
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Like 1G , 2G  is assumed to be at least twice differentiable and ranges from 0 to 1 as 

well. Within equation (7) governed by the transition probability function, 2G , the 

movement of the conditional duration process transits between two conditional 

duration processes, (1)i
δψ and (2)i

δψ , which are also duration processes governed by 

price changes. Accordingly, the specification in equation (7) contains the features 

which allow not only price changes to have impacts on the duration process but also 

past duration changes to affect the duration process. The model setting above adopts 

the framework of the multiple-regime smooth transition autoregressive model by Dijk 

and Franses (1999) which is an extension of basic smooth-transition autoregressive 

model (STAR) made popular by Chan and Tong (1986), Granger and Teräsvirta (1993) 

and Teräsvirta (1994). Since the conditional duration process above takes price 

changes and past duration effects into consideration, the model is called the 

momentum autoregressive conditional duration model (MACD). 

 
As for the estimation of the MACD model, we adopt the maximum likelihood 
estimation approach. The distribution assumption of standardized durations is the 
Weibull distribution.3 Accordingly, the associated conditional intensity process, λ, 
can be represented as follows (Engle and Russell (1998)): 
 

1 1
1 2

1( | , ,..., ) ( (1 ) ) ( )r r
i i it x x x t t rrλ − −= Γ + Θ −  

(9)

 
where Γ(⋅) is the gamma function and r is the Weibull distribution parameter which 
governs the shape of the conditional intensity process. Consequently, the density 
function under the Weibull distribution can be expressed as follows: 
 

1

1 1(1 ) (1 )
( | , ) exp

r r

i i
i i

i i i

x xr r rf x xθ−

⎛ ⎞⎛ ⎞ ⎡ ⎤Γ + Γ +⎜ ⎟⎜ ⎟ ⎢ ⎥Ω = −⎜ ⎟⎜ ⎟ ⎢ ⎥Θ Θ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎣ ⎦⎝ ⎠

 (10)

 
Furthermore, if the location parameter of the Weibull distribution is set to zero and the 
scale parameter is set to equal to iΘ , then the density function becomes (Hamelink 
(1998) and Lee (1992)): 

                                                 
3 The reason why we use the Weibull distribution assumption is that the Weibull distribution has been 
widely used in the literature, such as Engle and Russell (1997, 1998), Hamelink (1998), Bauwens and 
Giot (2000, 2003), and embeds a feature of non-constant conditional trading intensity function. 
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1

1( | , ) exp
r r

i i
i i

i i i

x xrf x θ
−

−

⎛ ⎞⎛ ⎞ ⎡ ⎤Ω = −⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟Θ Θ Θ⎝ ⎠ ⎣ ⎦⎝ ⎠
 (11)

 
Hence, the conditional intensity process will become: 
 

1
1 2( | , ,..., ) ( )r r

i i it x x x t t rλ − −= Θ −  
(12)

 
Following equation (11), the log-likelihood function for the MACD model can be 
written as follows: 
 

1
ln log log ( 1) log

rN
i i

i
i ii

x xL r r
=

⎡ ⎤⎛ ⎞ ⎛ ⎞= − Θ + − −⎢ ⎥⎜ ⎟ ⎜ ⎟Θ Θ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∑  (13)

 
3 The Specification Test for the Momentum ACD Model 
 
To test for whether the MACD is much more suitable than a regular ACD, we adopt 
the following approach in which the test for the price change effect is diagnosed first 
and then the duration effect is examined subsequently. We notice that the trade 

duration process jΨ  for a given regime j can be expressed as follows: 

 

1 1 1j j j i j i j iw Yα ε β ψ− − −′Ψ = + + = Π ,  j =1,2,3,4 

[ , , ]j j j jw α β ′Π =  

1 1 1[1, , ]i i iY ε ψ− − − ′=  

(14)

 
Therefore, in order to test whether the price changes affect the trade duration process, 
we first rearrange the equation (5) into the following form: 
 

*
1 2 1 2 1 1 1 1 1

1 ( ) ( ) ( ; , )2i i i iY Y G cδψ δ γ− −′ ′ ′ ′= Π +Π + Π −Π  
(15)

 

where * 1
21 1 1 1 1 1 1 1( ; , ) ( ; , )i iG c G cδ γ δ γ− −= − . Replacing the transition function 
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*
1 1 1 1( ; , )iG cδ γ−  with a third order Taylor expansion at 1 0γ =  for equation (15), we 

can express equation (15) as follows: 
 

2 3
(1) 0 1 1 1 1 2 1 1 3 1 1i i i i i i i iY Y Y Yδ δ

δψ λ ς δ ς δ ς δ− − − − − − −′= +Φ + + +                       (16) 

3 3
1 2 1 2 1 1 2 1

1 1 1( ) ( ) ( )2 4 48c cδ γ γ′ ′ ′ ′ ′ ′ ′Φ = Π +Π − Π −Π − Π −Π           

3 2
1 1 2 1 1 2 1

1 1( ) ( )4 16 cς γ γ′ ′ ′ ′= Π −Π + Π −Π                       

3 2
2 1 2 1

1 ( )16 cς γ ′ ′= − Π −Π                                  

3
3 1 2 1

1 ( )48ς γ ′ ′= Π −Π                                     

where 0
δλ  is the intercept. This kind of transformation can avoid the Davies problem. 

That is, there are some unidentified nuisance parameters under the null hypothesis. 

This method is proposed by Luukkonen et al. (1988). After the transformation, the 

null hypothesis 0 1: 0H γ =  can be restated as 0 1 2 3: 0H ς ς ς= = = . Consequently, 

using equation (16) above and plugging it into the log likelihood function of equation 

(13), we have a test statistics of the lagrangian multiplier (LM) type, pcLM , for no 

price change effects stated in the following theorem: 
 
Theorem 1 The LM-type test for no price change effect on the conditional duration 
model can be expressed as: 
 

1 2(9)pcLM S H Sδ δ δ χ−′= ⇒  

 
where Ξ is the parameter set and Sδ  and Hδ  are the followings: 

 

0

ln
H

LSδ
δδ

∂= Ξ  

0

2 ln
H

LHδ
δ δ

∂= ′∂Ξ ∂Ξ  

Remark 1: If the MACD model is extended to incorporate p lags of iε  and q lags of 

iψ , then the degree of freedom is 3(p+q+1) 
 

The pcLM test above involves the first and second derivatives, which may not be 



 11

applicable when data expose some irregular behaviors. On the other hand, if we keep 

the parameter r of the Weibull distribution is fixed, the first derivative of the log 

likelihood function for each observation i under the null hypothesis can be calculated 

as follows: 
 

 
0 1

i
H i i

l Yδ
δ

ζ −
∂ =∂Φ                                    (17) 

0 1 1, 1, 2,3ji
H i i i

j

l Y jδζ δς − −
∂ = =∂                           (18) 

r
i

i
i

xr rδζ ⎛ ⎞= − + ⎜ ⎟Θ⎝ ⎠
                        (19) 

 
As suggested by Luukkonen et al (1988) and Dijk and Franses (1999), the LM-type 
test statistic to test null hypothesis of no price change effects can be performed in the 
following steps: 
 

Theorem 2 The following procedure can be taken to form the pcLM ′ : 

 

0 1

1

( ) / 9 (9, ( 12))
/( 12)pc

SSR SSRLM F T
SSR T

δ δ

δ
−′ = ⇒ −

−
 

 
where 0SSR  and 1SSR  are computed from the following steps: 

1. The MACD model is estimated using equation (4) as the conditional expectation 

model and the associated î

δζ  in equation (19) are calculated. 

2. Regress î

δζ  on 1iY −  to obtain residuals i

δζ%  and calculate the 
2

0 1

N

ii
SSRδ δζ

=
= ∑ %  

3. Regress i

δζ%  on 1 1, 1, 2,3j
i iY jδ− − =  to obtain residuals i

δζ  and calculate 
2

1 1

N

ii
SSRδ δζ

=
= ∑  

 
In order to test whether the duration effect exists, we follow the same procedure as we 
test the price change effect. First of all, equation (7) is rewritten as follows: 
 

* * * *
1 2 1 1 1 1 3 2 1 2 2 4 1 1 1 1 2 1 2 2( ; , ) ( ; , ) ( ; , ) ( ; , )x

i i i i iG c G x c G c G x cψ δ γ γ δ γ γ− − − −= Ψ +Ψ +Ψ +Ψ    (20) 

* *
1 1 2 2 1,Ψ = Ψ Ψ = Ψ −Ψ                                        

* *
3 3 1 4 1 2 3 4,Ψ = Ψ −Ψ Ψ = Ψ −Ψ −Ψ −Ψ                           
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After replacing 2 1 2 2( ; , )iG x cγ−  with a third-order Taylor expansion around the point 

2 1 2( ) 0ix cγ − − = , then the model becomes 
 

2 3
0 1 1 2 1 1 1 1 1 1 1 1 2 1 1 3 1 1

2 3
4 1 1 5 1 1 6 1 1 1 1 1 1

( ; , )

( ) ( ; , )

x x
i i i i i i i i i i

i i i i i i i

Y Y G c Y x Y x Y x

Y x Y x Y x G c

ψ λ δ γ κ κ κ

κ κ κ δ γ
− − − − − − − − −

− − − − − − −

′ ′= +Φ +Φ + + + +

+ +
 

1 1 2 2 1, ( )′ ′ ′ ′ ′Φ = Π Φ = Π −Π  

1 1 3 1

2 2 3 1

3 3 3 1

4 1 1 2 3 4

5 2 1 2 3 4

6 3 1 2 3 4

( ),
( ),
( ),
( ),
( ),
( )

κ η
κ η
κ η
κ η
κ η
κ η

′ ′= × Π −Π
′ ′= × Π −Π
′ ′= × Π −Π
′ ′ ′ ′= × Π −Π −Π +Π
′ ′ ′ ′= × Π −Π −Π +Π
′ ′ ′ ′= × Π −Π −Π +Π

 

(21)

where 0
xλ  is the intercept and 1η , 2η ,and 3η  are correspondent multipliers. 

Therefore, the original null hypothesis of 0 2: 0H γ =  can be restated as 0 : 0jH κ = , 

for 1,...,6j = . Hence, the LM-type test statistic for no duration effect can be formed 

as follows: 
 
Theorem 3 The LM-type test for no duration effects on the conditional duration model 
can be expressed as: 

1 2(18)D D DLM S H S χ−′= ⇒  

 
where Ξ is the parameter set and DS  and DH  are the followings: 

 

0

ln
D H

LS ∂= ∂Ξ  

0

2 ln
D H

LH ∂= ′∂Ξ∂Ξ  

 
Remark 2: If the MACD model is extended to incorporate p lags of iε  and q lags of 

iψ , then the degree of freedom is 6(p+q+1) 
 

Like pcLM test above, the first and second derivatives in DLM  may not be 

applicable when data expose some irregular behaviors. Hence, if we keep the 

parameter r of the Weibull distribution is fixed, the first derivative of the log 



 13

likelihood function for each observation i under the null hypothesis of no duration 

effect can be obtained as follows: 

 

     
0 1

1

Di
H i i

l Yζ −
∂ =∂Φ                                  (22) 

0 1
1

Di
H i i

l Yζ −
∂ =∂Φ                                  (23) 

0 1 1 1 1 1
2

( ; , )Di
H i i i

l Y G cζ δ γ− −
∂ =∂Φ                       (24) 

0 1 1, 1, 2,3D ji
H i i i

j

l Y x jζκ − −
∂ = =∂                        (25) 

0

3
1 1 1 1 1 1( ; , ) , 4,5,6D ji

H i i i i
j

l Y G c x jζ δ γκ
−

− − −
∂ = =∂             (26) 

0

1 1 1 1
2 1

1 1

( ; , )Di i
H i i

l G cY δ γζγ γ
−

−
∂ ∂′= Φ∂ ∂                     (27) 

0

1 1 1 1
2 1

1 1

( ; , )Di i
H i i

l G cYc c
δ γζ −

−
∂ ∂′= Φ∂ ∂                     (28) 

r
D i

i
i

xr rζ ⎛ ⎞= − + ⎜ ⎟Θ⎝ ⎠
                     (29) 

1

1
1 1 1 1 1

1
[1 ]( )i

i i
G G G G cγ δγ −
∂ = = − −∂

)                     (30) 

1

1
1 1 1 1

1
[1 ]i

i c
G G G Gc γ∂ = = −∂

)                           (31) 

Consequently, the LM-type test statistic to test null hypothesis of no duration effect 
can be performed in the following steps: 
 
Theorem 4 The following procedure can be taken to form the DLM ′ : 
 

0 1

1

( ) /(18) (18, ( 24))
/( 24)

D D

D D
SSR SSRLM F T

SSR T
−′ = ⇒ −

−
 

where 0
DSSR  and 1

DSSR  are computed from the following steps: 

1. The momentum ACD model is estimated using equation (5) as the conditional 

expectation model and the associated ˆ D

iζ  in equation (29) are calculated. Then, we 

calculate the 
2

0 1
ˆN D

ii
SSR ζ

=
= ∑  

2. Regress ˆ D

iζ  on 1iY
−

, 1 1i iY G
−

, 
12 1 1i iY G γ−

Φ , 
12 1 1i i cY G

−
Φ , 1 1( 1, 2, 3)j

i iY x j
− −

= , and 
3

1 1 1 ( 4, 5, 6)j

i i iY G x j−

− −
=  to obtain residuals D

iζ% and calculate the 
2

1 1

ND D

ii
SSR ζ

=
= ∑ %  
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4 Empirical Estimation of IBM Stock 
 
In this section, we apply the MACD model to trade durations of the IBM stock in 
order to illustrate empirical implementation of the MACD model. The data 
description is shown first and then results of estimation and specification tests are 
presented. Next, the data are grouped into four different regimes according to price 
and duration changes. Finally, the moments, impulse responses and conditional 
trading intensity of four regimes are discussed. 
 
4.1 Data Description 
 
The empirical data are comprised of trades and quotes of the IBM stock traded on the 
New York Stock Exchange (NYSE). The data are collected from the Trades and 
Quotes (TAQ) database which is complied and made available by the NYSE. The 
transaction data are retrieved from the consolidated trade file while the quote data are 
retrieved from the consolidated quote file. In the meantime, the sample period covers 
the whole month of May 2001. The reason why we choose the month of May is that 
financial quarterly reports of companies are mostly announced and made public in 
April. This may impact the regular trading behavior of investors. Following Engle and 
Russell (1998) and Zhang et al. (2001), we discard the data during opening hours 
from 9:30 to 10:00 AM for reasons of opening delay and extreme short durations 
around the open. 
 
Table 1 shows the summary statistics of trade durations in the sample. There are 
68,801 transactions with distinct trading time. As in Engle and Russell (1998), 
Bauwens and Giot (2003), and Zhang et al. (2001), it is important to deseasonalize 
raw trade durations before estimating the model due to the trading structure of the 
exchange and the trading behavior of traders and market makers. The seasonally 
adjusted trade durations are constructed as a multiplicative form: )(/*

iii txx φ= , where 

ix  is the raw trade duration, )( itφ  is the seasonal component, and *
ix  is the 

seasonally adjusted trade duration. As in Zhang et al. (2001), the seasonal component, 
)( itφ , are obtained using super smoother method proposed by Friedman (1984) in 

which the local cross-validation is used to find the span. The mean and standard 
deviation of seasonally adjusted trade durations are smaller than of raw trade 
durations while the skewness and kurtosis of seasonally adjusted trade durations are 
similar to those of raw trade durations. Moreover, the autocorrelation in seasonally 
adjusted trade durations is still present as in raw trade durations. 
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4.2 The Estimation Results of the MACD model 
 
Table 2 reports the estimation results for three different MACD models. Model 1 
presents estimation results of the MACD model without price and trade duration 
changes. As expected, the parameters for the lagged unexpected trade duration, 2α , 
and the lagged expected trade duration, 2β , are all significant. The positive 2α  
coefficient associated with the lagged unexpected trade duration indicates that the 
current expected trade duration becomes elongated when there exists an unexpected 
longer lagged duration. The 2β  coefficient is significantly less than one, which 
ensures that the estimated model is stationary. This also means that the current 
expected duration is positively affected by the accumulated information of past 
expected trade durations since the lagged expected trade durations represent the 
persistence of past trade durations. Meanwhile, the Weibull parameter is significantly 
different from one, which shows that the constant conditional trading intensity is not 
suitable for the model. The specification test shows that there still exists nonlinearity 
in Model 1. Ljung-Box tests point out the autocorrelation of standardized residuals. 
 
The estimation results of the MACD model with price changes but without trade 
duration changes are presented in Model 2. From equation (6), we know that the 
transition probability will be larger than 0.5 if the price change tends to be greater 
than the threshold value, 1c , of the price change. Therefore, we call this regime as the 
upward price change regime with 2α  and 2β  coefficients once the lagged price 
change is greater than the threshold value while the downward price change regime 
with 2α  and 2β  coefficients is for the lagged price change to be less than the 
threshold value. It is found that the parameter, 2α , regarding the unexpected lagged 
trade duration in the upward price change regime is insignificant while the 
parameters, 1α , in the downward price change regime is significantly positive. On the 
other hand, the impact of the persistent trade duration on the conditional trade 
duration is smaller in the downward price change regime ( 1β =0.8915) than in the 
upward price change regime ( 2β =0.9982). Thus, this finding indicates that the 
upward and downward trends have distinct impacts on the trade duration behavior. 
This means that, following the upward price change, information of most recent past 
trades has been impounded in the asset price and then expected trade duration of the 
next trade becomes affected by the persistence of past trades. 
 
The asymmetric findings during the upward and downward markets are consistent 
with a stylized fact in the finance literature. In general, the negative returns generate 
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higher unexpected volatility than positive returns. (For example, French et al. (1987), 
Schwert (1989)) Engle and Ng (1993) demonstrate an asymmetric pattern of a news 
impact curve in which negative return shocks increase predictable volatility than 
positive return shocks. The reason for this asymmetric pattern during the upward and 
downward trends could be that investors are highly risk averse during the downward 
market. This leads to faster information assimilation to the asset price during the 
downward trend, which makes significant 1α  and smaller 1β  coefficient. 
Ljung-Box tests show no autocorrelation in the standardized residuals but the 
specification test still indicates existence of nonlinearity.  
 
The MACD model considering both price and duration changes are presented in 
Model 3 of Table 2. Estimation results show a similar pattern to that in Model 2. It is 
found that coefficients, 1α  and 3α , associated with the lagged unexpected trade 
duration in the downward price change regime are significantly positive while 
coefficients, 2α  and 4α , associated with the lagged unexpected trade duration in the 
upward price change regime are insignificant. In the meantime, coefficients, 1β  and 

3β , associated with lagged expected trade duration in the downward price change 
regime are smaller than coefficients, 2β  and 4β , associated with the expected trade 
duration in the upward price change regime. Ljung-Box tests show no autocorrelation 
in the standardized residuals. 
 
4.3 Moments and Characteristics of four Regimes 
 
In order to explore implications of the MACD model more, the data are grouped into 
four different regimes according to lagged price changes and lagged trade duration 
changes: (1) the PGDG regime in which the lagged price change is larger than or 
equal to zero and the lagged trade duration change is larger than or equal to the mean 
of trade durations, (2) the PLDG regime in which the lagged price change is less than 
zero and the lagged trade duration change is greater than or equal to the mean of trade 
durations, (3) the PGDL regime in which the lagged price change is larger than or 
equal to zero and the lagged trade duration change is less than the mean of trade 
durations, and (4) the PLDL regime in which the lagged price change is less than zero 
and the lagged trade duration change is less than the mean of trade durations. The 
PGDG and PGDL regimes stand for the upward price change regimes while the 
PLDG and PLDL regimes stand for the downward price change regimes. On the other 
hand, the PGDG and PLDG regimes represent the longer trade duration regime while 
the PGDL and PLDL represent the shorter trade duration regime. Panel A in Table 3 
summarizes the market microstructure characteristics of 4 regimes. Information 
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asymmetry theory in the market microstructure predicts that wider spreads, higher 
trading volume, and larger volatility are indicators of informed trading. It is found that 
the spread and trading volume per second in the PGDG regime are significantly larger 
than in the whole data set. Shown in Panel B of Table 3, the estimation results of a 
Logit Model with the PGDG regime as the choice regime also confirm that wider 
spreads and larger trading volume per second significantly and positively increase 
occurrence probability of the PGDG regime. We also notice that significantly higher 
volatility per second is present in the PLDG and PLDL regimes. This supports the 
asymmetric effect of higher volatility in the downward trend. 
 
We also simulate 100 samples with a sample size of 50,000 for each regime to 
compute related moments. The simulated moments of four regimes are shown in 
Table 4. It is found that the means of trade durations under the upward price change 
regime are generally larger than under the downward price change regime. Meanwhile, 
the skewness, variance, and leptokurtosis are relatively larger in the PGDG regime 
than rests of regimes. This shows that the expected trade durations become larger 
when the lagged price change is in the upward price change regime. In addition, when 
the asset price is in the downward market, the expected trade duration will be shorter 
(longer) under the longer (shorter) previous expected trade duration. This is in 
contrast to the case of the upward market in which the longer expected trade duration 
follows the longer lagged expected trade duration. These findings may show that the 
investors trade more actively during the downward market than during the upward 
market. This is not surprising since investors react more aggressively in the 
downward market as stated in the literature.  
 
4.4 Impulse Responses and Conditional Trading Intensity 
 
The generalized impulse response functions (GIRF) by Koop et al. (1996) are 
calculated for four different regimes. The merit of GIRF over the traditional impulse 
response function is that the GIRF considers three factors in computing the impulse 
response function of a shock iε  on the future duration nix + : (1) the history of the 
data generating process up to transaction i, (2) the size of shock at transaction i, and (3) 
the shocks between transaction i and transaction i+n. ( Koop et al. (1996) and Dijk 
and Franses (1999)). Consequently, the GIRF for the current shock ii ηε =  and 
history 1−Ω i = },{ 11 −− ii xδ = 1−iw  can be defined as follows: 
 

( ) ( )11111 |,|),,( −−+−−+− =Ω−=Ω== iiniiiiiniii wxEwxEnwGIRF ηεη  (32)
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for n=1, 2, …., 40. That is, the GIRF is difference between expectation of nix +  
conditional on the current shock and history and expectation of nix +  conditional only 
on the history. The simulation procedure by Koop et al. (1996) is performed by 
constructing 100 samples with a sample size of 1,000 for each shock size. 
 
Of four regimes, Figures 1 to 4 illustrate generalized impulse responses for next 40 
transactions of shock sizes of σ1± , σ2± , σ3± , and σ4± , where σ  is the 
standard deviation of estimated residuals. The GIRF patterns of four regimes are very 
similar to each other. Negative shocks generally intrigue a larger impact of trade 
durations than positive shocks. In addition, the decrease of a negative shock is almost 
twice the increase of a corresponding positive shock. Consequently, the asymmetric 
impact patterns of negative shocks are present. 
 
The conditional trading intensity, or hazard function, means the transaction arrival 
intensity given past price and duration changes. We find that the conditional trading 
intensity is higher for middle trade durations around 1.5 to 2.5 seconds but lower for 
smaller trade durations for four regimes. This indicates that transactions most likely 
occur when past transactions did not take too long or too short to be matched. This is 
consistent with findings in Zhang et al. (2001). Therefore, investors who are eager to 
have their orders matched are able to submit orders by observing past trade durations. 
 
5 Conclusions 
 
This paper proposes a momentum autoregressive conditional duration (MACD) model 
in which price changes and duration changes are taken into consideration. The MACD 
model expresses a nonlinear type of the autoregressive conditional duration (ACD) 
model with a regime-switching feature. The regime switches following a smooth 
transition function where the price changes and duration changes are state variables. 
Hence, the MACD model is able to capture a relationship between trade durations and 
momenta of price and trade duration. In the meantime, the specification tests of the 
MACD model are also constructed to test linearity against the smooth transition 
nonlinearity. 
 
We apply the MACD model to intraday transaction data of IBM stock. Empirical 
results show that the nonlinearity exits in the conditional expected trade durations. It 
is found that the conditional expected trade duration is significantly and positively 
affected by the unexpected trade duration in the downward market. In addition, the 
impact of the persistence of trade durations on the conditional expected trade duration 
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is larger during the upward market. Moreover, there exist asymmetric effects of 
negative shocks on trade durations. Negative shocks generate a larger impact on the 
trade durations than positive shocks. Consequently, the MACD model is able to 
provide more insights on the trade duration behavior. 
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Table 1. Descriptive Statistics of IBM Trade Durations 
 
 Mean Standard 

Deviation 
Skewness Kurtosis LB(15) 

Original 
duration 

6.9276 6.6041 2.8397 16.5728 6142.0*** 

Deseasonalized 
duration  

1.0426 0.9627 2.7030 15.5992 3343.3*** 

a. The number of observations is 68,801 and the unit is seconds. 
b. The Ljung-Box statistics of 15 lags are reported in (15)LB . 
c. *, **, and *** represent significance levels at 10%, 5%, and 1%, respectively. 
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Table 2. Estimation Results of the MACD Models for IBM Trade Durations 
 
 Model 1 Model 2 Model 3 

1w  -0.0248 
(0.0007)** 

-0.0699 
(0.0333)** 

-0.0461 
(0.1158)** 

1α  0.0280 
(0.0009)** 

0.0507 
(0.0129)** 

0.0465 
(0.0082)** 

1β  0.9915 
(0.0006)**a 

0.8915 
(0.0097)** 

0.8654 
(0.0132)** 

2w   -0.0366 
(0.0232) 

-0.1530 
(0.2960) 

2α   0.0417 
(0.0260) 

0.1705 
(0.3298) 

2β   0.9982 
(0.0003)** 

0.9979 
(0.0003)**a 

3w    -0.0347 
(0.0142)** 

3α    0.0375 
(0.0074)** 

3β    0.8850 
(0.0192)**a 

4w    -0.0974 
(0.1889) 

4α    0.1082 
(0.2092) 

4β    0.9986 
(0.0002)** 

1γ   0.8146 
(0.4858)* 

1.5158 
(0.5020)** 

2γ    48.5954 
(107.0133) 

1c   1.1550 
(1.0998) 

1.5466 
(0.9904) 

2c    1.5466 
(0.0466)** 

Weibull r 1.2738 
(0.0035)** 

1.2763 
(0.0035)** 

1.2771 
(0.0035)** 

Specification Test 8.2271*** 3.0509***  
Variance Test 44.74677*** 44.48648*** 44.60633*** 

(15)LB  85.484*** 18.546 17.038 
2 (15)LB  37.862 10.698 12.584 

a. The number of observations is 68,801. The standard errors are in the parentheses. 
b. The Ljung-Box statistics of 15 lags for standardized residuals and squared standardized residuals 

are reported in (15)LB  and 2 (15)LB , respectively. 
c. *, **, and *** represent significance levels at 10%, 5%, and 1%, respectively. 
d. The F statistics are reported in the specification test. 
e. The duration model is specified as follows: 

1 1j j j i j iw α ε β ψ
− −

Ψ = + + ,  j =1,2,3,4 

1 1 1 1
1 1 1

1( ; , )
1 exp( ( ))i

i

G c
c

δ γ
γ δ−

−

=
+ − −

 

2 1 2 2
2 1 2

1( ; , )
1 exp( ( ))i

i

G x c
x c

γ
γ−

−

=
+ − −
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Table 3. The Characteristics of the Whole Period and Four Regimes and Estimation 
Results of the Logistic Regression 

 
Panel A: The Characteristics of the Whole Period and Four Regimes 

 Spread Volume/Sec Volatility/Sec 

 Mean SE Mean SE Mean SE 

Whole Period 0.0695 0.0538 1.4564 3.0875 0.0167 0.0358 
PGDG 0.0736‡ 0.0563 1.6760‡ 3.7794 0.0159 0.0374 
PLDG 0.0706 0.0548 1.6971‡ 3.8411 0.0185‡ 0.0362 
PGDL 0.0688 0.0527 1.3951 2.8092 0.0162 0.0345 
PLDL 0.0655 0.0527 1.2011 2.1427 0.0178† 0.0366 

Panel B: Estimation Results of the Logistic Regression with the PGDG as the Choice Regime

 Intercept Spread Volume/Sec Volatility/Sec 
 -1.3793 

(0.0155)*** 
1.8634 
(0.1679)*** 

0.0253 
(0.0029)*** 

-1.6879 
(0.2840)*** 

a. Spread represents the difference between prevailing bid and ask prices. Volume/Sec represents the 
ratio of the deseasonalized transaction volume divided by the deseasonalized trade duration. 
Volatility/Sec represents the ratio of the absolute change in the midpoint of prevailing quote 
divided by the deseasonalized trade duration. 

b. Mean represents the average. SE represents the standard error. The standard errors of parameter 
estimates are in the parentheses. 

c. † and ‡ indicate that the number in the cell is significantly larger than of the whole period at 
significance levels of 10% and 5%, respectively, under the Mann-Whitney-Wilcoxon mean test. 

d. *, **, and *** represent significance levels at 10%, 5%, and 1%, respectively.  once the 
corresponding mean is larger than of the whole period. 

e. (1) PGDG regime in which the lagged price change is larger than or equal to zero and the lagged 
trade duration change is larger than or equal to the mean of trade durations, (2) the PLDG regime 
in which the lagged price change is less than zero and the lagged trade duration change is greater 
than or equal to the mean of trade durations, (3) the PGDL regime in which the lagged price 
change is larger than or equal to zero and the lagged trade duration change is less than the mean of 
trade durations, and (4) the PLDL regime in which the lagged price change is less than zero and 
the lagged trade duration change is less than the mean of trade durations. 

f. The numbers of observations are 68,801, 15,483, 8,129, 31,853, and 13,336 for the whole period, 
PGDG, PLDG, PGDL, and PLDL, respectively. 

g. The logistic regression is specified as follows: 

( )

1 2 3

w h e re

lo g / /
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Table 4. Simulated Moments for the Whole Period and Four Regimes 
 

 1st Moment 2nd Moment 3rd Moment 4th Moment
Whole Period 0.8845 

(0.0047) 
0.6293 
(0.0120) 

1.3136 
(0.0889) 

6.1309 
(1.2526) 

PGDG 0.9060 
(0.0053) 

0.6632 
(0.0161) 

1.4815 
(0.1951) 

9.2006 
(3.2699) 

PLDG 0.8443 
(0.0047) 

0.6109 
(0.0098) 

1.2292 
(0.0501) 

5.0018 
(0.3874) 

PGDL 0.8940 
(0.0042) 

0.6217 
(0.0102) 

1.2633 
(0.0592) 

5.5205 
(0.5174) 

PLDL 0.8617 
(0.0051) 

0.6201 
(0.0128) 

1.3869 
(0.0682) 

6.3675 
(0.5732) 

a. The simulated moments are based on 100 samples with a sample size of 50,000 for each regime 
using parameter estimates of the model 3 in Table 2. The standard errors are in the parentheses. 

b. (1) PGDG regime in which the lagged price change is larger than or equal to zero and the lagged 
trade duration change is larger than or equal to the mean of trade durations, (2) the PLDG regime 
in which the lagged price change is less than zero and the lagged trade duration change is greater 
than or equal to the mean of trade durations, (3) the PGDL regime in which the lagged price 
change is larger than or equal to zero and the lagged trade duration change is less than the mean of 
trade durations, and (4) the PLDL regime in which the lagged price change is less than zero and 
the lagged trade duration change is less than the mean of trade durations. 

c. The numbers of observations are 68,801, 15,483, 8,129, 31,853, and 13,336 for the whole period, 
PGDG, PLDG, PGDL, and PLDL, respectively. 
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Figure 1. Generalized Impulse Responses of the PGDG Regime 

 
Figure 2. Generalized Impulse Responses of the PLDG Regime 

 
Figure 3. Generalized Impulse Responses of the PGDL Regime 

 
Figure 4. Generalized Impulse Responses of the PLDL Regime 
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Figure 5. Conditional Intensity Function of the PGDG Regime 

 
Figure 6. Conditional Intensity Function of the PLDG Regime 

 
Figure 7. Conditional Intensity Function of the PGDL Regime 

 
Figure 8. Conditional Intensity Function of the PLDL Regime 

 


