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Interest Rate Caps “Smile” Too! But Can the LIBOR Market Models Capture It?

ABSTRACT

Using three years of interest rate caps price data, we provide one of the first comprehensive

documentations of volatility smiles in the caps market. Using a multifactor term structure model

with stochastic volatility and jumps, we develop a closed-form solution for cap prices and test the

performance of our new models in capturing the volatility smile. We show that although a three-

factor stochastic volatility model can price at-the-money caps well, significant negative jumps in

interest rates are needed to capture the smile. The volatility smile contains information that is

not available using only at-the-money caps, and this information is important for understanding

term structure models.

JEL Classification: C4, C5, G1



The extensive literature on multifactor dynamic term structure models (hereafter DTSMs)

of the last decade has mainly focused on explaining bond yields and swap rates.1 Pricing and

hedging over-the-counter interest rate derivatives, such as caps and swaptions, has attracted

attention only in recent years. World wide, caps and swaptions are among the most widely traded

interest rate derivatives. According to the Bank for International Settlements, in recent years,

their combined notional value has been more than 10 trillion dollars, which is many times bigger

than that of exchange-traded options. As a result, accurate and efficient pricing and hedging

of caps and swaptions has enormous practical importance. Cap and swaption prices may also

contain additional information on term structure dynamics not contained in bond yields or swap

rates. Therefore, Dai and Singleton (2003) argue that there is an “enormous potential for new

insights from using (interest rate) derivatives data in model estimations.”2

The current literature on interest rate derivatives has here-to-fore primarily focused on two

issues.3 The first issue is the so-called “unspanned stochastic volatility” (hereafter USV) puzzle.

Although caps and swaptions are derivatives written on LIBOR and swap rates, Collin-Dufresne

and Goldstein (2002) and Heidari and Wu (2003) show that there appear to be risk factors that

drive cap and swaption prices not spanned by the factors explaining LIBOR or swap rates. While

Fan, Gupta, and Ritchken (2003) argue that swaptions might be spanned by bonds, Li and Zhao

(2004) show that multifactor DTSMs have serious difficulties in hedging caps and cap straddles.

The second issue is the relative pricing between caps and swaptions. A number of recent papers,

including Hull and White (2000), Longstaff, Santa-Clara and Schwartz (2001) (hereafter LSS), and

Jagannathan, Kaplin and Sun (2003) show that there is a significant and systematic mispricing

between caps and swaptions using various multi-factor term structure models. As pointed out by

Dai and Singleton (2003), these two issues are closely related and the “ultimate resolution of this

‘swaptions/caps puzzle’ may require time-varying correlations and possibly factors affecting the

volatility of yields that do not affect bond prices.”

The evidence of USV shows that, contrary to a fundamental assumption of most existing

DTSMs, interest rate derivatives are not redundant securities and therefore they contain unique

information about term structure dynamics that is not available in bond yields and swap rates.

USV also suggests that existing DTSMs need to be substantially extended to explicitly incor-

porate USV for pricing interest rate derivatives. As shown by Collin-Dufresne and Goldstein

(2002), however, it is rather difficult to introduce USV in traditional DTSMs: highly restrictive

assumptions need to be imposed on model parameters to guarantee that certain factors that affect

1Dai and Singleton (2003) and Piazzesi (2003) provide excellent surveys of the literature.
2Jagannathan, Kaplin and Sun (2003) also show that it is important to use both the underlying Libor and swap

rates, and prices of caps and swaptions for estimating DTSMs.
3For a review of the current empirical literature on interest rate derivatives, see Section 5 of Dai and Singleton

(2003).
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derivative prices do not affect bond prices. In contrast, it is much easier to introduce USV in

the Heath, Jarrow, and Morton (1992) (hereafter HJM) class of models.4 Any HJM model in

which the forward rate curve has a stochastic volatility exhibits USV. Therefore, in addition to

the commonly known advantages of HJM models (such as perfectly fitting the initial yield curve),

they have the additional advantage of easily accommodating USV.5

Recently, several HJM models with USV have been developed and applied to price caps and

swaptions. Collin-Dufresne and Goldstein (2003) develop a random field model with stochastic

volatility and correlation in forward rates. Applying the transform analysis of Duffie, Pan, and

Singleton (2000), they obtain closed-form formulae for a wide variety of interest rate derivatives.

However, they do not calibrate their models to market prices of caps and swaptions. Han (2002)

extends the model of LSS (2001) by introducing stochastic volatility and correlation in forward

rates. Han (2002) shows that stochastic volatility and correlation are important for reconciling

the mispricing between caps and swaptions.

Our paper makes both theoretical and empirical contributions to the fast growing literature

on interest rate derivatives. Theoretically, we develop a multifactor HJM model with stochastic

volatility and jumps in LIBOR forward rates. We allow LIBOR rates to follow the affine jump-

diffusions (hereafter AJDs) of Duffie, Pan and Singleton (2000) and obtain closed-form solutions

for cap prices. Given that a small number of factors can explain most of the variations of bond

yields, we consider low dimensional model specifications based on the first few (up to three)

principal components of historical forward rates. While similar to Han (2002) in this respect, our

models have several advantages. The first advantage is that while Han’s formulae, based on the

approximation technique of Hull and White (1987), work well only for ATM options, our formulae,

based on the affine technique, work well for all options. The second advantage is that we also

explicitly incorporate jumps in LIBOR rates, making it possible to differentiate the importance

of stochastic volatility versus jumps for pricing interest rate derivatives.

Our empirical investigation also substantially extends the existing literature by studying the

relative pricing of caps with different strikes. Using a new dataset consisting of three years of cap

prices, we provide one of the first comprehensive documentations of volatility smiles in the caps

market. To our knowledge, we also conduct the first empirical analysis of term structure models

with USV and jumps in capturing the smile. Caps and swaptions are traded over-the-counter and

the common data sources, such as DataStream, only supply ATM option prices. As a result, the

majority of the existing literature uses only at-the-money (ATM) caps and swaptions and there

4We refer to models that take the yield curve as given, such as the LIBOR models of Brace, Gatarek and Musiela

(1997), and Miltersen, Sandmann and Sondermann (1997), the random field models Goldstein (2000), and the string

models of Santa-Clara and Sornette (2001), broadly as HJM models.
5Of course, the trade-off here is that in HJM models the yield curve becomes an input to, not a prediction of,

the model.
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are almost no studies documenting the relative pricing of caps with different strike prices. In

contrast, the attempt to capture the volatility smile in equity option markets is voluminous and

it has been the driving force behind the development of the equity option pricing literature for

the past quarter of a century (see Bakshi, Cao, and Chen and references therein).6 Analogously,

studying caps and swaptions with different strike prices could provide new insights about existing

term structure models that are not available from using only ATM options.

Our analysis shows that a low dimensional LIBOR rate model with three principal components,

stochastic volatility for each component, and strong negative jumps are necessary to capture the

volatility smile in the cap market reasonably well. The three yield factors capture the variations

of the levels of LIBOR rates, while the stochastic volatility factors are essential to capture the

time varying volatilities of LIBOR rates. Even though a three-factor stochastic volatility model

can price ATM caps reasonably well, it fails to capture the volatility smile in the cap market.

Significant negative jumps in LIBOR rates are needed to do this. These results highlight the

statement that additional information is contained in the volatility smile - the importance of

negative jumps is revealed only through the pricing of caps across moneyness.

The rest of this paper is organized as follows. In Section I, we introduce the data and document

the volatility smile in cap markets. In Section II, we introduce our new market models with

stochastic volatility and jumps, and the statistical methods for parameter estimation and model

comparison. Section III reports the empirical findings and Section IV concludes.

I. A Volatility Smile in the Interest Rate Cap Markets

In this section, using three years of cap price data, we provide one of the first comprehensive

documentations of volatility smiles in the cap market. The data are obtained from SwapPX and

includes daily information on LIBOR forward rates (up to ten years), and prices of caps with

different strikes and maturities from August 1, 2000 to September 23, 2003.7 The data were

collected every day when the market was open between 3:30 and 4:00 pm. To reduce noises in the

data and computational burdens, we use weekly data (every Tuesday) in our empirical analysis.8

After excluding missing data, in total we have 164 weeks in our sample.

6For reviews of the equity option literature, see Duffie (2002) and Campbell, Lo and MacKinlay (1997).
7Jointly developed by GovPX and Garban-ICAP, SwapPX is the first widely distributed service delivering 24-

hour real-time rates, data and analytics for the world-wide interest rate swaps market. GovPX was established in

early 1990s by the major U.S. fixed-income dealers as a response to regulators’ demands to increase the transparency

of the fixed-income markets. It aggregates quotes from most of the largest fixed-income dealers in the world.

Garban-ICAP is the world’s leading swap broker specializing in trades between dealers and between dealers and

large customers. According to Harris (2003), “Its securities, derivatives, and money brokerage businesses have daily

transaction volumes in excess of 200 billion dollars”.
8If Tuesday is not available, we first use Wednesday followed by Monday.
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Interest rate caps are portfolios of call options on LIBOR rates. Specifically, a cap gives its

holder a series of European call options, called caplets, on LIBOR forward rates. Each caplet has

the same strike price as the others, but with different expiration dates. Suppose L (t, T ) is the

3-month LIBOR forward rate at t ≤ T, for the interval from T to T + 1
4 . A caplet for the period£

T, T + 1
4

¤
struck at K pays 1

4 (L (T, T )−K)+ at T + 1
4 .
9 Note that while the cash flow of this

caplet is received at time T + 1
4 , the LIBOR rate is determined at time T . Hence, there is no

uncertainty about the caplet’s cash flow after the LIBOR rate is set at time T . In summary, a cap

is just a portfolio of caplets whose maturities are three months apart. For example, a five-year cap

on three-month LIBOR struck at six percent represents a portfolio of 19 separately exercisable

caplets with quarterly maturities ranging from 6 months to 5 years, where each caplet has a strike

price of 6%.

As the caps in our data are written on three-month LIBOR rates, our model and analysis focus

on modeling the LIBOR forward rate curve. The dataset provides three-month LIBOR spot and

forward rates at 9 different maturities (3 and 6 month, 1, 2, 3, 4, 5, 7, and 10 year). As shown

in Figure 1, the forward rate curve is relatively flat at the beginning of the sample period and it

declines over time, with the short end declining more than the long end. As a result, the forward

rate curve becomes upward sloping in the later part of the sample.

The existing literature on interest rate derivatives has mainly focused on ATM contracts.

One advantage of our data is that we observe prices of caps over a wide range of strikes and

maturities.10 For example, every day for each maturity, there are ten different strike prices, which

are 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 8.0, 9.0, and 10.0 percent between August 1, 2000 and October

17, 2001, and 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, and 7.0 percent between November 2,

2001 and September 23, 2003.11 Throughout the whole sample period, caps have fifteen different

maturities, which are 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0 years.

This cross-sectional information on cap prices allows us to study the performance of existing term

structure models in pricing and hedging caps for different maturity and moneyness.

Ideally, we would like to study caplet prices, because they provide clear predictions of model

performance across maturity. Unfortunately, we only observe cap prices. To simplify the empirical

analysis, we consider the difference between the prices of caps with the same strike and adjacent

9It can be shown that a caplet behaves like a put option on a zero-coupon bond.
10To our knowledge, the only other studies that consider caps with different strikes are Gupta and Subrahmanyam

(2003) and Deuskar, Gupta and Subrahmanyam (2003). The data used in the former is obtained from Tullett and

Tokoyo Liberty, and it covers a shorter time period (March 1 to December 31, 1998), it has a narrower spectrum

of strikes and maturities (four choices for each), and it has a maximum maturity that is only five years. The data

used in the latter paper covers prices of Euro caps and floors from January 1999 to May 2001. To our knowledge,

our dataset is the most comprehensive available for caps written on dollar Libor rates.
11The strike prices are lowered to 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 and 5.5 percent between October 18 and

November 1, 2001.
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maturities, which we refer to as difference caps. Thus, our analysis deals with only the sum of

the few caplets between two neighboring maturities with the same strike. For example, for the

rest of the paper, 1.5 year difference caps with a specific strike represent the sum of the 1.25 and

1.5 year caplet with the same strike.

Due to daily changes in LIBOR rates, difference caps have a different set of moneyness (defined

as the ratio between the strike price and the average LIBOR forward rates underlying the few

caplets that form the difference cap) on each day. Therefore, throughout our analysis, we focus on

the prices of difference caps at given fixed moneyness. That is, each day we interpolate difference

cap prices with respect to the strike price to obtain prices at fixed moneyness. Specifically, we use

local cubic polynomials to preserve the shape of the original curves and to attain smoothing over

the grid points. We refrain from extrapolation and interpolation over grid points without nearby

observations, and we eliminate all observations that violate various arbitrage restrictions.12

Figure 2.a plots the average Black implied volatilities of difference caps across moneyness and

maturity, while Figure 2.b plots the average implied volatilities of ATM difference caps, over the

whole sample period. Consistent with the existing literature, the implied volatilities of difference

caps with a moneyness between 0.8 to 1.2 have a humped shape with a peak at around two year

maturity. However, the implied volatilities of all other difference caps decline with maturity. There

is also a pronounced volatility skew for difference caps with all maturities, with the skew being

stronger for short-term difference caps. The pattern is similar to that of equity options: ITM

difference caps have higher implied volatilities than OTM difference caps. The implied volatilities

of the very short-term difference caps are more like a symmetric smile than a skew. Figure 3.a,

b, and c plot the time series of Black implied volatilities for 2, 5, and 8 year difference caps

across moneyness, respectively, while Figure 3.d plots the time series of ATM implied volatilities

of the three contracts. It is clear that the implied volatilities are time varying and have increased

dramatically (especially for 2 year difference caps) over our sample period. As a result of changing

interest rates and strike prices, there are more ITM caps in the later part of our sample.

II. Market Models with Stochastic Volatility and Jumps: Theory and Estimation

In this section, we develop a multifactor HJM model with stochastic volatility and jumps

in LIBOR forward rates to capture volatility smiles in the cap market. We estimate model

parameters using the implied-state generalized method of moments (IS-GMM) of Pan (2002) and

compare model performance using a statistic developed by Diebold and Mariano (1995) in the

time series forecast literature.

A. Market Models with Stochastic Volatility and Jumps

12We eliminate observations with zero prices, and violate monotonicity and convexity with respect to strikes.
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The volatility smile observed in the cap market suggests that the lognormal assumption of the

standard LIBOR market models of Brace, Gatarek and Musiela (1997), and Miltersen, Sandmann

and Sondermann (1997) is violated. Given the overwhelming evidence of stochastic volatility and

jumps in interest rates,13 we develop a multifactor HJM model of LIBOR rates with stochastic

volatility and jumps to capture the smile. Instead of modeling the unobservable instantaneous

spot rate or forward rate, we focus on the LIBOR forward rates which are observable and widely

used in the market.

Throughout our analysis, we restrict the cap maturity T to a finite set of dates 0 = T0 < T1 <

... < TK < TK+1, and assume that the intervals Tk+1 − Tk are equally spaced by δ, a quarter of

a year. Let Lk (t) = L (t, Tk) be the LIBOR forward rate for the actual period [Tk, Tk+1] , and

similarly let Dk (t) = D (t, Tk) be the price of a zero-coupon bond maturing on Tk. Thus, we have

L (t, Tk) =
1

δ

µ
D (t, Tk)

D (t, Tk+1)
− 1
¶
, for k = 1, 2, ...K. (1)

For LIBOR-based instruments, such as caps, floors and swaptions, it is convenient to consider

pricing under the forward measure. Thus, we will focus on the dynamics of the LIBOR forward

rates Lk (t) under the forward measure Qk+1, which is essential for pricing caplets maturing at

Tk+1. Under this measure, the discounted price of any security using Dk+1 (t) as the numeraire is

a martingale. Therefore, the time t price of a caplet maturing at Tk+1 with a strike price of X is

Caplet (t, Tk+1,X) = δDk+1 (t)E
Qk+1
t

£
(Lk (Tk)−X)+

¤
, (2)

where EQ
k+1

t is taken with respect to Qk+1 given the information set at t. The key to valuation is

modeling the evolution of Lk (t) under Qk+1 realistically and yet parsimoniously to yield closed-

form pricing formula. To achieve this goal, we rely on the flexible AJDs of Duffie, Pan, and

Singleton (2000) to model the evolution of LIBOR rates.

We assume that under the physical measure P, the dynamics of LIBOR rates are given by the
following system of SDEs, for t ∈ [0, Tk) and k = 1, ...,K,

dLk (t)

Lk (t)
= αk (t) dt+ σk (t) dZk (t) + dJk (t) , (3)

where αk (t) is an unspecified drift term, Zk (t) is the k-th element of a Kdimensional correlated

Brownian motion with a covariance matrix Ψ (t) , and Jk (t) is the k-th element of a Kdimensional

independent pure jump process assumed independent of Zk (t) for all k.To introduce stochastic

volatility and correlation, we could allow the volatility of each LIBOR rate σk (t) and each individ-

ual element of Ψ (t) to follow a stochastic process. But, such a model is unnecessarily complicated

13Andersen and Lund (1997) and Brenner, Harjes and Kroner (1996) show that stochastic volatility or GARCH

significantly improve the performance of pure diffusion models for spot interest rates. Das (2003), Johannes (2004)

and Piazzesi (2004) show that jumps are important for capturing interest rate dynamics.
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and difficult to implement. Instead, we consider a low dimensional model based on the first few

principal components of historical LIBOR forward rates. We assume that the entire LIBOR for-

ward curve is driven by a small number of factors N < K (N ≤ 3 in our empirical analysis).
By focusing on the first N principal components of historical LIBOR rates, we can reduce the

dimension of the model from K to N.

Following LSS (2001) and Han (2002), we assume that the instantaneous covariance matrix of

changes in LIBOR rates share the same eigenvectors as the historical covariance matrix. Suppose

that the historical covariance matrix can be approximated as H = UΛ0U
0, where Λ0 is a diagonal

matrix whose diagonal elements are the first N largest eigenvalues in descending order, and the N

columns of U are the corresponding eigenvectors.14 Our assumption means that the instantaneous

covariance matrix of changes in LIBOR rates with fixed time-to-maturity, Ωt, share the same

eigenvectors as H. That is

Ωt = UΛtU
0, (4)

where Λt is a diagonal matrix whose i-th diagonal element, denoted by Vi (t) , can be interpreted

as the instantaneous variance of the i-th common factor driving the yield curve evolution at t.

We assume that V (t) follows the square-root process that has been widely used in the literature

for modeling stochastic volatility (see, e.g., Heston 1993):

dVi (t) = κi (v̄i − Vi (t)) dt+ ξi
p
Vi (t)dW̃i (t) (5)

where W̃i (t) is the i-th element of an N -dimensional independent Brownian motion assumed

independent of Zk (t) and Jk (t) for all k.

While (4) and (5) specify the instantaneous covariance matrix of LIBOR rates with fixed

time-to-maturity, in applications we need the instantaneous covariance matrix of LIBOR rates

with fixed maturities Σt. At t = 0, Σt coincides with Ωt; for t > 0, we obtain Σt from Ωt through

interpolation. Specifically, we assume that Us,j is piecewise constant,
15 i.e., for time to maturity

s ∈ (Tk, Tk+1) ,
U2s =

1

2

¡
U2k + U2k+1

¢
. (6)

We further assume that Us,j is constant for all caplets belonging to the same difference cap. For

the family of the LIBOR rates with maturities T = T1, T2, ...TK , we denote UT−t the time-t matrix

that consists of rows of UTk−t, and therefore we have the time-t covariance matrix of the LIBOR

14We acknowledge that with jumps in LIBOR rates, both the historical and instantaneous covariance matrix

of LIBOR rates contain a component that is due to jumps. Our approach implicitly assumes that the first three

principal components from the historical covariance matrix captures the variations in LIBOR rates due to continuous

shocks and that the impact of jumps is only contained in the residuals.
15Our interpolation scheme is slightly different from that of Han (2002) for the convenience of deriving closed-form

solution for cap prices.
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rates with fixed maturities,

Σt = UT−tΛtU
0
T−t. (7)

To stay within the family of AJDs, we assume that the random jump times arrive with a

constant intensity λJ , and conditional on the arrival of a jump, the jump size follows a normal

distribution N
¡
µJ , σ

2
J

¢
. Intuitively, the conditional probability at time t of another jump within

the next small time interval ∆t is λJ∆t and, conditional on a jump event, the mean relative jump

size is µ = exp
¡
µJ +

1
2σ
2
J

¢
− 1.16 We also assume that the shocks driving LIBOR rates, volatility,

and jumps (both jump time and size) are mutually independent from each other.

Given the above assumptions, we have the following dynamics of LIBOR rates under the

physical measure P,

dLk (t)

Lk (t)
= αk (t) dt+

NX
j=1

UTk−t,j

q
Vj (t)dWj (t) + dJk (t) , k = 1, 2, ...,K. (8)

To price caps, we need the dynamics of LIBOR rates under the appropriate forward measure.

The existence of stochastic volatility and jumps results in an incomplete market and hence the non-

uniqueness of forward martingale measures. Our approach for eliminating this nonuniqueness is to

specify the market prices of both the volatility and jump risks to change from the physical measure

P to the forward measure Qk+1.17 Following the existing literature, we model the volatility risk

premium as ηk+1j

p
Vj (t), for j = 1, ..., N. For the jump risk premium, we assume that under the

forward measure Qk+1, the jump process has the same distribution as that under P , except that

the jump size follows a normal distribution with mean µk+1J and variance σ2J . Thus, the mean

relative jump size under Qk+1 is µk+1 = exp
³
µk+1J + 1

2σ
2
J

´
− 1. Our specification of the market

prices of jump risks allows the mean relative jump size under Qk+1 to be different from that under

P, accommodating a premium for jump size uncertainty. This approach, which is also adopted by
Pan (2002), artificially absorbs the risk premium associated with the timing of the jump by the

jump size risk premium. In our empirical analysis, we make the simplifying assumption that the

volatility and jump risk premiums are linear functions of time-to-maturity, i.e., ηk+1j = cjv (Tk − 1)
and µk+1J = µJ + cJ (Tk − 1) .18

16For simplicity, we assume that different forward rates follow the same jump process with constant jump intensity.

It is not difficult to allow different jump processes for individual LIBOR rates and the jump intensity to depend on

the state of the economy within the AJD framework.
17The market prices of interest rate risks are defined in such a way that the LIBOR rate is a martingale under

the forward measure.
18In order to estimate the volatility and jump risk premiums, we need a joint analysis of the dynamics of LIBOR

rates under both the physical and forward measure, as in Chernov and Ghysels (2000), Pan (2002), and Eraker

(2004). In our empirical analysis, we only focus on the dynamics under the forward measure. Therefore, we can only

identify the differences in the risk premiums between forward measures with different maturities. Our specifications

of both risk premiums implicitly use the one year LIBOR rate as a reference point.
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Given the above market prices of risks, we can write down the dynamics of log(Lk (t)) under

forward measure Qk+1,

d log(Lk (t)) = −

λJµ
k+1 +

1

2

NX
j=1

U2Tk−t,jVj (t)

 dt+
NX
j=1

UTk−t,j

q
Vj (t)dW

Qk+1
j (t)+dJQ

k+1

k (t) .

For pricing purpose, the above process can be further simplified to the following one which has

the same distribution,

d log(Lk (t)) = −

λJµ
k+1 +

1

2

NX
j=1

U2Tk−t,jVj (t)

 dt+

vuut NX
j=1

U2Tk−t,jVj (t)dZ
Qk+1
k (t) + dJQ

k+1

k (t) ,

(9)

where ZQ
k+1

k (t) is a standard Brownian motion under Qk+1. Now the dynamics of Vi (t) under

Qk+1 becomes

dVi (t) = κk+1i

³
v̄k+1i − Vi (t)

´
dt+ ξi

p
Vi (t)dW̃

Qk+1
i (t) (10)

where W̃Qk+1 is independent of ZQ
k+1

, κk+1j = κj − ξjη
k+1
j , and v̄k+1j =

κj v̄j

κj−ξjηk+1j

, j = 1, .., N. The

dynamics of Lk (t) under the forward measure Qk+1 are completely captured by (9) and (10).

Given that LIBOR rates follow AJDs under both the physical and forward measure, we can

directly apply the transform analysis of Duffie, Pan and Singleton (2000) to derive closed-form

formula for cap prices. Denote the state variables at t as Yt = (log (Lk (t)) , Vt)
0 and the time-t

expectation of eu·YTk under the forward measure Qk+1 as ψ (u, Yt, t, Tk) , EQ
k+1

t

h
eu·YTk

i
. Let

u = (u0, 01×N )0, then the time-t expectation of LIBOR rate at Tk equals,

EQ
k+1

t {exp [u0 log (Lk (Tk))]} = ψ (u0, Yt, t, Tk)

= exp
£
a(s) + u0 log(Lk (t)) +B(s)0Vt

¤
,

where s = Tk − t and closed-form solutions of a(s) and B(s) (an N -by-1 vector) are obtained by

solving a system of Ricatti equations in the appendix.

Following Duffie, Pan and Singleton (2000), we define

Ga,b(y;Yt, Tk,Qk+1) = EQ
k+1

t

h
ea·log(Lk(Tk))1{b·log(Lk(Tk))≤y}

i
,

and its Fourier transform,

Ga,b(v;Yt, Tk,Qk+1) =

Z
R
eivydGa,b(y)

= EQ
k+1

t

h
e(a+ivb)·log(Lk(Tk))

i
= ψ (a+ ivb, Yt, t, Tk) .
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Levy’s inversion formula gives

Ga,b(y;Yt, Tk,Qk+1) =
ψ (a+ ivb, Yt, t, Tk)

2
− 1

π

Z ∞

0

Im
£
ψ (a+ ivb, Yt, t, Tk) e

−ivy¤
v

dv.

The time-0 price of a caplet that matures at Tk+1 with a strike price of X equals

Caplet(0, Tk+1,X) = δDk+1 (0)E
Qk+1
0

£
(Lk (Tk)−X)+

¤
, (11)

where the expectation is given by the inversion formula,

EQ
k+1

0 [Lk(Tk)−X]+ = G1,−1(− lnX;Y0, Tk,Qk+1)

−XG0,−1(− lnX;Y0, Tk,Qk+1).

The new models developed in this section nest some of the most important models in the

literature, such as LSS (2001) (with constant volatility and no jumps) and Han (2002) (with

stochastic volatility and no jumps). The closed-form formula for cap prices makes an empirical

implementation of our model very convenient and provides some advantages over existing meth-

ods. For example, Han (2002) develops approximations of ATM cap and swaption prices using

the techniques of Hull and White (1987). However, such an approach might not work well for

away-from-the-money options. In contrast, our method would work well for all options, which is

important for explaining the volatility smile.

In addition to introducing stochastic volatility and jumps, our multifactor HJM models also

has advantages over the standard LIBOR market models of Brace, Gatarek and Musiela (1997),

Miltersen, Sandmann and Sondermann (1997), and their extensions often applied to caps in

practice.19 While our models provide a unified multifactor framework to characterize the evolution

of the whole yield curve, the LIBOR market models typically make separate specifications of the

dynamics of LIBOR rates with different maturities. As suggested by LSS (2001), the standard

LIBORmodels are “more appropriately viewed as a collection of different univariate models, where

the relationship between the underlying factors is left unspecified.” In contrast, the dynamics

of LIBOR rates with different maturities under their related forward measures are internally

consistent with each other given their dynamics under the physical measure and the market

prices of risks. Once our models are estimated using one set of prices, they can be used to price

and hedge other fixed-income securities.

B. Parameter Estimation and Model Comparison

In this section, we discuss the estimation of our new market model using prices form a wide

cross section of difference caps with different strikes and maturities. One challenge we face is that

in addition to the model parameters, we also need to deal with the latent stochastic volatility

19Andersen and Brotherton-Radcliff (2001) and Glasserman and Kou (2003) develop LIBOR models with stochas-

tic volatility and jumps, respectively.

10



variables. We adopt the IS-GMM approach of Pan (2002), which is more suitable to our appli-

cations than other existing methods.20 The IS-GMM approach is an important extension of the

standard GMM to dynamic models with unobservable latent state variables. Using IS-GMM, Pan

(2002) conducts a joint analysis of stochastic volatility and jump models using stock and option

prices. She first backs out the volatility variables from short-term ATM options, then estimates

model parameters based on the moment conditions implied by AJDs of spot price and stochastic

volatility. Specializing to our models, this approach allows us to back out the latent volatility

variables from observed difference cap prices given a parametric pricing formula. Model parame-

ters can then be estimated by minimizing appropriately chosen moment conditions based on both

observed and latent variables.

Our implementation of IS-GMM to the cross section of difference caps differs from Pan (2002)

in several respects. First, instead of backing out volatility variables from short-term ATM options,

we use all difference caps in estimating the volatility variables at each point in time. Specifically,

every week, for a given set of model parameters, we minimize the RMSE of all difference caps

to obtain the estimates of the volatility variables. This approach allows us to fully utilize the

information in the prices of all difference caps to estimate the volatility variables. Second, instead

of using the time series properties of state variables as moment conditions, we use the absolute

percentage pricing errors (the absolute value of the difference between observed and theoretical

prices of difference caps divided by observed prices of difference caps) of all difference caps as

the moment conditions. This is motivated by our objective to explain the cap market smile.

Unlike exchange-traded options studied in Pan (2002), the difference caps in our paper have fixed

time-to-maturity and moneyness. This removes the time dependency in the contract variables

and makes IS-GMM especially suitable for our situation.

Every week we observe prices of difference caps with ten moneyness and thirteen matu-

rity. Theoretically, in total we have 130 moment conditions. However, due to changing inter-

est rates, we do not have enough observations in all moneyness/maturity categories throughout

the sample. Thus, we focus on the 53 moneyness/maturity categories that have less than ten

percent of missing values over the whole sample period used in our estimation. The money-

ness and maturity of all difference caps belong to the following sets {0.7, 0.8, 0.9, 1.0, 1.1} and
{1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0} (unit in years), respectively. The difference
caps with time-to-maturity less than or equal to five years represent portfolios of two caplets, while

those longer than five years represent portfolios of four caplets. So in total, we use 53 moment

conditions in the empirical estimation.

20In studies of stochastic volatility models using stock and option prices, Chernov and Ghysels (2000) use the

efficient method of moments (EMM) of Gallant and Tauchen (1998), and Eraker (2003) uses the Bayesian Markov

Chain Monte Carlo (MCMC) method. Both methods are based on simulations and can be challenging to apply to

a wide cross section of options.
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Suppose we have time series observations over t = 1, ..., T , of the prices of 53 difference
caps with moneyness mi and time-to-maturity τi, i = 1, ...,M = 53. Let θ represent the model

parameters which remain constant over the whole sample period. Let C (t,mi, τi) be the observed

price of a difference cap with moneyness mi and time-to-maturity τi and Ĉ (t, τi,mi, Vt (θ) , θ)

be the corresponding theoretical price under a given model, where Vt (θ) is the model implied

instantaneous volatility at t given model parameters θ. For each i and t, denote the absolute

relative pricing error as

ui,t (θ) =

¯̄̄̄
¯C (t,mi, τi)− Ĉ (t,mi, τi, Vt (θ) , θ)

C (t,mi, τi)

¯̄̄̄
¯ . (12)

To estimate the unobserved volatility variables Vt, for a specific parameter θ, we choose Vt to

minimize the RMSE of all difference caps at t, εt (θ) =
q

1
M

PM
i=1 [ui,t (θ)]

2. That is,

Vt (θ) = argmin
{Vt}

εt (θ) .

Similar to Pan (2002), we make the assumption that under correct model specification and true

model parameters, θ0, Vt
¡
θ0
¢
= V 0t , the true instantaneous stochastic volatility.

For given model parameters, θ, denote ut (θ) as the 53-by-1 vector of absolute percentage

pricing errors on date t of the difference caps in the 53 moneyness/maturity groups. Then the

sample mean of ut in a sample of size T equals

gT (θ) =
1

T

TX
t=1

ut (θ) .

We obtain parameter estimates by minimizing the moment conditions as in the traditional GMM

framework. That is,

θ̂ = argmin
{θ}

gT (θ)
0WT gT (θ) ,

where WT is a weighting matrix. As shown by Hansen (1982), the optimal weighting matrix is

the inverse of the covariance matrix of pricing errors. We follow the standard GMM two-step

estimation approach. In the first approach, we use the identity weighting matrix to obtain the

first stage GMM estimators via the following minimization

θ̂1 = argmin
{θ}

gT (θ)
0WT gT (θ) ,

where WT = I. Using θ̂1, we form an estimate of the covariance matrix of pricing errors Ŝ of

S =
∞X

j=−∞
E

·
ut

³
θ̂1

´
ut−j

³
θ̂1

´0¸
.
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We obtain a second-stage estimate θ̂2 using the inverse of matrix Ŝ as the weighting matrix in

the quadratic form

θ̂2 = argmin
{θ}

gT (θ)
0 Ŝ−1gT (θ) .

As shown by Hansen (1982), θ̂2 is a consistent, asymptotically normal, and asymptotically efficient

estimate of the parameter vector θ.

One important feature of our moment condition is that gT (θ) is always positive.21 This

violates the standard GMM assumption of Hansen (1982) that sample moments under the null

hypothesis have a normal distribution with zero mean. Instead, our sample moments always have

positive mean. While this issue does not affect parameter estimates, it renders the standard GMM

χ2 specification tests not directly applicable to our situation.

To compare model performance, especially to test whether one model has statistically smaller

pricing errors than another, we adopt an approach developed by Diebold and Mariano (1995) in the

time-series forecast literature. Consider two models whose associated weekly RMSEs {ε1 (t)}Tt=1
and {ε2 (t)}Tt=1 , respectively . The null hypothesis that the two models have the same pricing

errors is E [ε1 (t)] = E [ε2 (t)] , or E [d (t)] = 0, where d (t) = ε1 (t)− ε2 (t) . Diebold and Mariano

(1995) show that if {d (t)}Tt=1 is covariance stationary and short memory, then
√
T
¡
d− µd

¢
∼ N (0, 2πfd (0)) , (13)

where d = 1
T
PT

t=1 [ε1 (t)− ε2 (t)], fd (0) =
1
2π

P∞
q=−∞ γd (q) and γd (q) = E [(dt − µd) (dt−q − µd)] .

In large samples, d is approximately normally distributed with mean µd and variance 2πfd (0) /T .
Thus under the null hypothesis of equal pricing errors, the following statistic

S =
dq

2π bfd (0) /T (14)

is distributed asymptotically as N (0, 1) , where bfd (0) is a consistent estimator of fd (0) .22 To
compare the overall performance of the two models, we use the above statistic to measure whether

one model has significantly smaller RMSEs than another. We can also use the above statistic

to measure whether one model has smaller absolute percentage pricing errors than another for

difference caps in a specific moneyness/maturity group.

21While moment conditions based on percentage pricing errors satisfy the standard GMM assumption, they yield

parameter estimates that give large variability in pricing errors. For example, the estimated models can significantly

underprice short-term caps and overprice long-term caps while still having an average pricing error that is close to

zero. Moment conditions based on absolute percentage pricing errors eliminate such problems.
22We estimate the variance of the test statistic using the Bartlett estimate of Newey and West (1987). As

the nonparametric estimator of the variance has a slower convergance rate than that of the parameter estimates,

asymptotically parameter estimation uncertainty has no impact on the test statistic.
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III. Empirical Results

In this section, we provide empirical evidence on the performance of six different models in

capturing the cap volatility smile. The first three models, denoted as SV1, SV2 and SV3, allow

one, two, and three principal components to drive the forward rate curve, respectively, each with

its own stochastic volatility. The next three models, denoted as SVJ1, SVJ2 and SVJ3, introduce

jumps in LIBOR rates in each of the previous SV models. SVJ3 is the most comprehensive model

and nests all the others as special cases. We first examine the separate performance of each of

the SV and SVJ models, then we compare performance across the two classes of models.

The estimation of all models is based on the principal components extracted from historical

LIBOR forward rates between June 1997 and July 2000.23 Figure 4 shows that the three principal

components can be interpreted as in Litterman and Scheinkman (1991). The first or the “level”

factor represents a parallel shift of the forward rate curve. The second or the “slope” factor twists

the forward rate curve by moving the short and long end of the curve in opposite directions. The

third or the “curvature” factor increases the curvature of the curve by moving the short and long

end of the curve in one direction and the middle range of the curve in the other direction. The

three factors explain 77.78%, 14.35%, and 7.85% of the variations of LIBOR rates up to ten years,

respectively.

A. Performance of Stochastic Volatility Models

The SV models contribute to cap pricing in four important ways. First, the three principal

components capture variations in the levels of LIBOR rates caused by innovations in the “level”,

“slope”, and “curvature” factors. Second, the stochastic volatility factors capture the fluctuations

in the volatilities of LIBOR rates reflected in the Black implied volatilities of ATM caps.24 Third,

the stochastic volatility factors also introduce fatter tails in LIBOR rate distributions than implied

by the log-normal model, which helps capture the volatility smile. Finally, given our model

structure, innovations of stochastic volatility factors also affect the covariances between LIBOR

rates with different maturities. The first three factors, however, are more important for our

applications, because difference caps are much less sensitive to time varying correlations than

swaptions.25 Our discussion of the performance of the SV models focuses on the estimates of

the model parameters and the latent volatility variables, and the time series and cross-sectional

pricing errors of difference caps.

A comparison of the parameter estimates of the three SV models in Table 1 shows that the

“level” factor has the most volatile stochastic volatility, followed, in decreasing order, by the

23The LIBOR forward curve is constructed from weekly LIBOR and swap rates from Datastream following the

bootstrapping procedure of LSS (2001).
24Throughout our discussion, volatilities of LIBOR rates refer to market implied volatilities from cap prices and

are different from volatilities estimated from historical data.
25See Han (2002) for more detailed discussions on the impact of time varying correlations for pricing swaptions.

14



“curvature” and “slope” factor.26 The long-run mean (v̄1) and volatility of volatility (ξ1) of the

first volatility factor are much bigger than that of the other two factors. This suggests that the

fluctuations in the volatilities of LIBOR rates are mainly due to the time varying volatility of the

“level” factor. The estimates of the volatility risk premium of the three models are significantly

negative, suggesting that the stochastic volatility factors of longer maturity LIBOR rates under

the forward measure are less volatile with lower long-run mean and faster speed of mean reversion.

This is consistent with the fact that the Black implied volatilities of longer maturity difference

caps are less volatile than that of short-term difference caps. The contributions from additional

volatility factors in capturing the volatility of LIBOR rates tend to increase the speed of mean

reversion and to reduce the long-run mean and volatility of the existing volatility factors.

Our parameter estimates are consistent with the volatility variables inferred from the prices

of difference caps in Figure 5. The volatility of the “level” factor is the highest among the three

(although lower in the more sophisticated models). It starts at a low level and steadily increases

and stabilizes at a high level in the later part of the sample period. The volatility of the “slope”

factor is much lower and relatively stable during the whole sample period. The volatility of the

“curvature” factor is generally between that of the first and second factors. The steady increase

of the volatility of the “level” factor is consistent with the increase of Black implied volatilities of

ATM difference caps throughout our sample period. In fact, the correlation between the Black

implied volatilities of most difference caps and the implied volatility of the “level” factor are

higher than 0.8. The correlation between Black implied volatilities and the other two volatility

factors is much weaker. The importance of stochastic volatility is obvious: the fluctuations in

Black implied volatilities show that a model with constant volatility simply would not be able to

capture even the general level of cap prices.

The other aspects of model performance are the time series and cross-sectional pricing errors

of difference caps. Figure 7 plots the time series of RMSEs of the three SV models over our

sample period. The Diebold-Mariano statistics in Panel A of Table 2 show that SV2 and SV3

have significantly smaller RMSEs than SV1 and SV2, respectively, suggesting that the more

sophisticated SV models improve the pricing of all caps. Except for two special periods where

all models have extremely large pricing errors, the RMSEs of all models are rather uniform over

the whole sample period, with the best model (SV3) having RMSEs slightly above 5%. The two

special periods with high pricing errors cover the period between the second half of December

of 2000 and the first half of January of 2001, and the first half of October 2001, and coincide

26The estimates are the first stage GMM estimates, which are very similar to the second stage GMM estimates.

The objective function reported in Table 1 are the rescaled objective functions of the first GMM estimation and are

essentially the RMSEs of each model. It is difficult to compare the objective functions of the second stage GMM

because of the different weighting matrices used in the different models. While we do not use the second stage

GMM estimates explicitly, they serve as a robustness check of the first stage estimates.
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with high prepayments in mortgage-backed securities (MBS). Indeed, the MBAA refinancing

index and prepayment speed (see Figure 3 of Duarte 2004) show that after a long period of low

prepayments between the middle of 1999 and late 2000, prepayments dramatically increased at

the end of 2000 and the beginning of 2001. There is also a dramatic increase of prepayments

at the beginning of October 2001. As widely recognized in the fixed-income market,27 excessive

hedging demands for prepayment risk using interest rate derivatives may push derivative prices

away from their equilibrium values, which could explain the failure of our models during these

two special periods.28

In addition to overall model performance as measured by RMSEs, we also examine the cross-

sectional pricing errors of difference caps with different moneyness and maturity. We first look

at the absolute percentage pricing errors, which measure both the biasedness and variability of

the pricing errors. Then we look at the average percentage pricing errors (the difference between

market and model prices divided by the model price) to see whether SV models can on average

capture the volatility smile in the cap market.

The Diebold-Mariano statistics of absolute percentage pricing errors between SV2 and SV1 in

Panel B of Table 2 show that SV2 reduces the pricing errors of SV1 for most difference caps (bold

means the difference is significant at 5% level). SV2 has the most significant reductions in pricing

errors of SV1 for long and short term ATM and OTM difference caps, and mid-term slightly ITM

(m = 0.9) difference caps. The improvements for most ITM caps are not significant. For some

deep ITM (m = 0.7) caps, SV2 actually has larger, although not significant, pricing errors over

SV1. The Diebold-Mariano statistics between SV3 and SV2 in Panel C of Table 2 show that SV3

significantly reduces the pricing errors of many short-term ATM, slightly ITM (m = 0.9) and

OTM, and long-term ITM difference caps. For medium maturity range, while SV3 significantly

reduces the pricing errors of ATM and OTM difference caps, it significantly increases the pricing

errors of ITM caps.

Table 3 reports the average percentage pricing errors of all difference caps under the three SV

models. Panel A of Table 3 shows that, on average, SV1 underprices short-term and overprices

long-term ATM difference caps, and underprices ITM and overprices OTM difference caps. This

suggests that SV1 cannot generate enough skewness in the implied volatilities to be consistent

with the data. Panel B shows that SV2 has some improvements over SV1, mainly for some short

term (less than 3.5 yr) ATM difference caps and most long-term (7-8 yr) slightly ITM (m = 0.9)

difference caps. But SV2 has worse performance for most deep ITM (m = 0.7 and 0.8) and OTM

difference caps: it worsens the underpricing of ITM and the overpricing of OTM caps. Panel C of

27We would like to thank Pierre Grellet Aumont from Deutsche Bank for his helpful discussions on the influence

of MBS markets on OTC interest rate derivatives.
28While the prepayments rates were also high in later part of 2002 and for most of 2003, they might not have

come as surprises to participants in the MBS markets given the two previous special periods.
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Table 3 shows that relative to SV1 and SV2, SV3 has smaller average percentage pricing errors

for most long-term (7-10 yr) ITM, mid-term (3.5-5yr) OTM, and short-term (2 and 2.5 yr) ATM

difference caps, and bigger average percentage pricing errors for mid-term (3.5 to 6 year) ITM

difference caps. There is still significant underpricing of ITM and overpricing of OTM difference

caps under SV3.

Overall, the results show that stochastic volatility factors are essential for capturing the time

varying volatilities of LIBOR rates. The Diebold-Mariano statistics in Table 2 show that in

general more sophisticated SV models have smaller absolute percentage pricing errors than simpler

models, although the improvements are more important for close-to-the-money difference caps.

The average percentage pricing errors in Table 3 show that, however, even the most sophisticated

SV model cannot generate enough volatility skew to be consistent with the data. While previous

studies, such as Han (2002), have shown that a three-factor stochastic volatility model similar to

ours performs well in pricing ATM caps and swaptions, our analysis shows that the model fails to

completely capture the volatility smile in the cap markets. Our findings highlight the importance

of studying the relative pricing of caps with different moneyness to reveal the inadequacies of

existing term structure models, the same inadequacies cannot be obtained from studying only

ATM options.

B. Performance of Stochastic Volatility and Jump Models

One important reason for the failure of SV models is that the stochastic volatility factors are

independent of LIBOR rates. As a result, the SV models can only generate a symmetric volatility

smile, but not the asymmetric smile or skew observed in the data. The pattern of the smile in the

cap market is rather similar to that of index options: ITM calls (and OTM puts) are overpriced,

and OTM calls (and ITM puts) are underpriced relative to the Black model. Similarly, the smile

in the cap market could be due to a market expectation of dramatically declining LIBOR rates.

In this section, we examine the contribution of jumps in LIBOR rates in capturing the volatility

smile. Our discussion of the performance of the SVJ models parallels that of the SV models.

Parameter estimates in Table 4 show that the three stochastic volatility factors of the SVJ

models resemble that of the SV models closely. The “level” factor still has the most volatile

stochastic volatility, followed by the “curvature” and the “slope” factor. With the inclusion of

jumps, the stochastic volatility factors in the SVJ models tend to be less volatile than that of the

SV models (faster speed of mean reversion and lower long run mean and volatility of volatility).

Negative estimates of the volatility risk premium show that the volatility of the longer maturity

LIBOR rates under the forward measure have lower long-run mean and faster speed of mean-

reversion. Figure 7 shows that the volatility of the “level” factor experiences a steady increase

over the whole sample period, while the volatility of the other two factors are relatively stable

over time.
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Most importantly, we find overwhelming evidence of strong negative jumps in LIBOR rates

under the forward measure. To the extend that cap prices reflect market expectations of future

evolutions of LIBOR rates, the evidence suggests that the market expects a dramatic declining

in LIBOR rates over our sample period. Such an expectation might be justifiable given that the

economy has been in recession during a major part of our sample period. This is similar to the

volatility skew in the index equity option market, which reflects investors fear of the stock market

crash such as that of 1987. Compared to the estimates from index options (see, e.g., Pan 2002),

we see lower estimates of jump intensity (between 2 to 6% per annual), but much higher estimates

of jump size. The positive estimates of a jump risk premium suggest that the jump magnitude

of longer maturity forward rates tend to be smaller. Under SVJ3, the mean relative jump size,

exp
¡
µJ + cJ (Tk − 1) + σ2J/2

¢
− 1, for one, five, and ten year LIBOR rates are -90%, -80%, and

-56%, respectively. However, we do not find any incidents of negative moves in LIBOR rates under

the physical measure with a size close to that under the forward measure. This big discrepancy

between jump sizes under the physical and forward measures resembles that between the physical

and risk-neutral measure for index options (see, e.g., Pan 2002). This could be a result of a huge

jump risk premium.

Figure 8 plots the time series of RMSEs of the three SVJ models over our sample period. The

Diebold-Mariano statistics in Panel A of Table 5 show that SVJ2 and SVJ3 have significantly

smaller RMSEs than SVJ1 and SVJ2 respectively, suggesting that the more sophisticated SVJ

models significantly improve the pricing of all difference caps. In addition to the two special

periods in which the SVJ models have large pricing errors, the SVJ models have larger RMSEs

than SV models during the first 20 weeks of the sample. This should not be surprising given the

relatively stable forward rate curve and a less pronounced volatility smile. The RMSEs of all the

SVJ models are rather uniform over the rest of the sample period.

The Diebold-Mariano statistics of the absolute percentage pricing errors in Panel B of Table

5 show that SVJ2 significantly improves the performance of SVJ1 for most difference caps. The

most significant improvements occur for long and medium term ATM and ITM difference caps,

and for some short-term ATM difference caps. The Diebold-Mariano statistics in Panel C of Table

5 show that the SVJ3 significantly reduces the pricing errors of SVJ2 for most difference caps,

especially long-term ITM caps, and for some short-term ITM and mid-term OTM caps. But, the

SVJ3 has bigger pricing errors than SVJ2 for some mid-term (3 and 3.5 yr) ITM caps.

The average percentage pricing errors in Table 6 show that the SVJ models capture the

volatility smile much better than the SV models. Panel A of Table 6 shows that, although SVJ1

on average underprices short-term and overprices long-term ATM difference caps, the degree

of mispricing is much smaller than that of SV1. While there is still an increasing degree of

underpricing of difference caps that are deeper in the money (especially for 5 to 10 year caps),
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the magnitude of mispricing is again smaller than that of SV1. This suggests that with the

introduction of negative jumps, SVJ1 can capture the volatility smile in the data much better

than SV1. Panel B shows that in contrast to the SV models, SVJ2 significantly reduces the

underpricing of deep ITM difference caps of SVJ1, especially with maturities between 5 and 10

years. Panel C of Table 3 shows that SVJ3 further improves SVJ2 in capturing the smile: for

most difference caps, the average percentage pricing errors under SVJ3 are less than 1%, showing

that the model can capture the smile well.

Table 7 compares the performance of the SVJ and SV models. As shown before, during the

first 20 weeks of our sample, the SVJ models have much higher RMSEs than the SV models. As

a result, the Diebold-Mariano statistics between the three pairs of SVJ and SV models are only

significant at the 10% level. Excluding the first 20 weeks, the Diebold-Mariano statistics become

overwhelmingly significant. The Diebold-Mariano statistics of individual difference caps in Panel

B, C, and D show that the SVJ models significantly improve the performance of the SV models

for most difference caps across moneyness and maturity. The most interesting results are in Panel

D, which show that SVJ3 significantly reduces the pricing errors of most ITM difference caps of

SV3, strongly suggesting that the negative jumps are essential for capturing the asymmetric smile

in the cap market.

Our analysis shows that a low dimensional model with three principal components driving the

forward rate curve, stochastic volatility of each component, and strong negative jumps captures the

volatility smile in the cap markets reasonably well. The three yield factors capture the variations

of the levels of LIBOR rates, while the stochastic volatility factors are essential to capture the time

varying volatilities of LIBOR rates. Even though the SV models can price ATM caps reasonably

well, they fail to capture the volatility smile in the cap market. Instead, significant negative

jumps in LIBOR rates are needed to capture the smile. These results highlight the importance

of studying the pricing of caps across moneyness: the importance of negative jumps is revealed

only through the pricing of alway-from-the-money caps. Excluding the first 20 weeks and the

two special periods, SVJ3 has a reasonably good pricing performance with an average RMSEs of

4.5%. Given that the bid-ask spread is about 2 to 5% in our sample for ATM caps, and because

ITM and OTM caps tend to have even higher percentage spreads,29 this cam be interpreted as a

good performance.

Despite its good performance, there are several aspects of SVJ3 that deserve further analysis.

First, the fact that the SVJ models have large pricing errors for the first 20 weeks shows that there

might be a structural change in the data generating process. The expectation of negative jumps

in LIBOR rates seem to be built into cap prices after this initial period. While this is similar

to what happened after the 1987 crash to index option prices, there was not any single dramatic

29See, for example, Deuskar, Gupta, and M. Subrahmanyam (2003).
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event that we can identify that caused such a change. Only additional research using independent

data can determine whether this change is permanent or specific to our sample period. Second,

while our model works reasonably well for most of the sample period, there are special segments

coinciding with high prepayment activities in the MBS markets where our models have large

pricing errors. A more careful analysis of the influence of MBS markets on cap prices would be

interesting. Finally, there is evidence of model misspecification. Even though we assume that the

stochastic volatility factors are independent of LIBOR rates and from each other, Table 8 shows

strong negative correlations between the first stochastic volatility factor and the LIBOR rates,

and a negative (positive) correlation between the first and second (third) stochastic volatility

factor. Extending our model to incorporate these correlations is another future research project.

IV. Conclusion

In this paper, we have made significant theoretical and empirical contributions to the fast

growing literature on LIBOR and swap-based interest rate derivatives. Theoretically, we develop

multifactor HJM models that explicitly take into account the new empirical features of term

structure data: unspanned stochastic volatility and jumps. Our models provide closed-form

formula for caps which greatly simplifies an empirical implementation of the models. Empirically,

we provide one of the first comprehensive analyses of the relative pricing of caps with different

moneyness. Using a comprehensive dataset of three years of cap prices with different strike and

maturity, we document a volatility smile in the cap market. Although previous studies show that

multifactor stochastic volatility models can price ATM caps and swaptions well, we show that

they fail to capture the volatility smile in the cap market. Instead, a three-factor model with

stochastic volatility and significant negative jumps is needed to capture the smile. Our results

show that the volatility smile indeed contains new information that is not available in ATM caps.

Our paper is only one of the first attempts to explain the volatility smile in OTC interest rate

derivatives markets. Even though our model exhibits reasonably good performance, there are

several aspects of the model that are not completely satisfactory. Given that volatility smile has

guided the development of equity option pricing literature since Black and Scholes (1973) and

Merton (1973), we hope that the volatility smile documented here will help the development of

term structure models in the years to come.

20



Mathematical Appendix

The solution to the characteristic function of log(Lk (Tk)) ,

ψ (u0, Yt, t, Tk) = exp
£
a(s) + u0 log(Lk (t)) +B(s)0Vt

¤
,

a(s) and B(s), 0 ≤ s ≤ Tk satisfy the following system of Ricatti equations:

dBj(s)

ds
= −κk+1j Bj(s) +

1

2
B2j (s)ξ

2
j +

1

2

£
u20 − u0

¤
U2s,j , 1 ≤ j ≤ N,

da(s)

ds
=

NX
j=1

κk+1j θk+1j Bj(s) + λJ [Γ (u0)− 1− u0 (Γ(1)− 1)] ,

where the function Γ is

Γ(x) = exp(µk+1J x+
1

2
σ2Jx

2).

The initial conditions are B(0) = 0N×1, a(0) = 0, and κk+1j and θk+1j are the parameters of Vj (t)

process under Qk+1.

For any l < k, Given that B (Tl) = B0 and a (Tl) = a0, we have the closed-form solutions for

B (Tl+1) and a (Tl+1) . Define constants p =
£
u20 − u0

¤
U2s,j , q =

r³
κk+1j

´2
+ pξ2j , c =

p

q−κk+1j

and

d = p

q+κk+1j

. Then we have

Bj(Tl+1) = c− (c+ d) (c−Bj0)

(d+Bj0) exp(−qδ) + (c−Bj0)
, 1 ≤ j ≤ N,

a(Tl+1) = a0 −
NX
j=1

"
κk+1j θk+1j

Ã
dδ +

2

ξ2j
ln

µ
(d+Bj0) exp(−qδ) + (c−Bj0)

c+ d

¶!#
+λJδ [Γ (u0)− 1− u0 (Γ(1)− 1)] ,

if p 6= 0 and Bj(Tl+1) = Bj0, a(Tl+1) = a0 otherwise. B (Tk) and a (Tk) can be computed via

iteration.
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Table 1. Parameter Estimates of Stochastic Volatility Models 
 
This table reports parameter estimates of the one, two, and three-factor stochastic volatility models. The estimates are based on the first stage 
GMM estimates with a identity weighting matrix and the standard errors are reported in the parentheses. The objective functions are the rescaled 
objective function of the first stage GMM and equal to the RMSE of each model. The volatility risk premium of the ith stochastic volatility factor 
is defined as ηi=civ(Tk-1).        
 
 

 SV1  SV2  SV3 
Parameter Estimate Std. err  Estimate Std. err  Estimate Std. err 

κ1 0.0151 0.0091  0.0165 0.0136  0.0185 0.0150 
κ2    1.3995 0.0033  0.0002 0.0664 
κ3       0.0031 0.0174 

1v  1.7297 0.9772  1.4310 0.0242  0.8447 0.8904 

2v     0.0003 0.0001  0.0605 0.0069 

3v        0.2106 2.5592 
ζ1 1.1012 0.0067  1.0356 0.0103  0.6948 0.0107 
ζ2    0.0451 0.0045  0.0282 0.0087 
ζ3       0.0565 0.0093 
c1v -0.0024 0.00001  -0.0024 0.00002  -0.0021 0.0000 
c2v    -0.5661 0.0839  -0.0248 0.0070 
c3v       -0.0463 0.0081 

Objective 
function 0.0638   0.0593   0.0543  

 



Table 2. Comparison of the Performance of Stochastic Volatility Models via Diebold-Mariano Statistics 
 
This table reports comparison of model performance using Diebold-Mariano statistics, which measure whether a more sophisticated model has smaller pricing 
errors. A negative statistic means that the more sophisticated model has smaller pricing errors. The statistics are calculated according to equation (14) with a lag 
order q of 40 and follow an asymptotic standard Normal distribution under the null hypothesis of equal pricing errors. 
 
Panel A. Diebold-Mariano statistics for overall model performance based on RMSEs. 
 

Models D-M Stats 

SV2 – SV1 -2.6779 

SV3 – SV2 -3.5298 

 
Panel B. Diebold-Mariano statistics between SV2 and SV1 for individual difference caps based on absolute percentage pricing errors. 
Moneyness 1.5yr 2yr 2.5yr 3yr 3.5yr 4yr 4.5yr 5yr 6yr 7yr 8yr 9yr 10yr 

0.7 - - - - 0.67 0.58 -0.36 0.18 0.68 1.13 0.72 -0.84 -1.30 

0.8 - - -0.03 -0.68 -1.04 -1.62 -2.51 -1.41 -0.41 0.38 -0.02 -1.30 -1.40 

0.9 - -1.49 -1.85 -1.96 -2.06 -1.81 -2.15 -1.67 -1.15 -0.77 -1.43 -2.13 -1.44 

1.0 0.31 -2.26 -1.80 -1.52 -1.47 -1.29 -1.43 -2.47 -3.58 -2.98 -2.76 -2.75 -1.85 

1.1 -2.36 -2.65 -1.32 -0.46 -0.45 -0.40 -0.90 -1.97 - - - - - 
  
Panel C. Diebold-Mariano statistics between SV3 and SV2 for individual difference caps based on absolute percentage pricing errors. 
Moneyness 1.5yr 2yr 2.5yr 3yr 3.5yr 4yr 4.5yr 5yr 6yr 7yr 8yr 9yr 10yr 

0.7 - - - - 3.23 3.73 3.44 4.23 2.71 -2.15 -2.25 -2.30 -3.44 

0.8 - - -1.02 1.87 4.49 4.12 2.72 4.62 1.99 -4.11 -3.07 -2.89 -3.24 

0.9 - -2.31 -2.51 -0.16 7.11 4.10 -0.86 1.43 1.13 -6.26 -2.07 -2.31 -2.15 

1.0 -0.64 -2.56 -2.65 0.36 1.99 -2.36 -2.76 -2.71 1.04 0.62 1.82 -0.20 1.37 

1.1 0.96 -2.88 1.89 2.37 -2.58 -3.55 -2.95 -2.36 - - - - - 

 



Table 3. Average Percentage Pricing Errors of Stochastic Volatility Models 
 
This table reports average percentage pricing errors of difference caps with different moneyness and maturity of three stochastic volatility models. Average 
percentage pricing errors are defined as the difference between market price and model price divided by market price.  
 
Panel A. Average percentage pricing errors of SV1. 
Moneyness 1.5yr 2yr 2.5yr 3yr 3.5yr 4yr 4.5yr 5yr 6yr 7yr 8yr 9yr 10yr 

0.7 - - - - 0.0341 0.0265 0.0134 0.0356 0.0384 0.0532 0.0379 0.0336 0.0444 
0.8 - - 0.0416 0.0401 0.0320 0.0184 0.0116 0.0348 0.0346 0.0500 0.0339 0.0290 0.0376 
0.9 - 0.1057 0.0503 0.0410 0.0301 0.0095 0.0007 0.0220 0.0208 0.0383 0.0146 0.0117 0.0221 
1.0 0.0254 0.1160 0.0523 0.0336 0.0198 -0.0097 -0.0263 -0.0065 -0.0055 0.0127 -0.0061 -0.0125 0.0015 
1.1 -0.1250 0.0530 -0.0097 -0.0281 -0.0376 -0.0730 -0.0816 -0.0549 - - - - - 

 
Panel B. Average percentage pricing errors of SV2.  
Moneyness 1.5yr 2yr 2.5yr 3yr 3.5yr 4yr 4.5yr 5yr 6yr 7yr 8yr 9yr 10yr 

0.7 - - - - 0.0403 0.0322 0.0185 0.0399 0.0423 0.0564 0.0403 0.0339 0.0399 
0.8 - - 0.046 0.0461 0.0367 0.0221 0.0147 0.0374 0.0371 0.0522 0.0349 0.0272 0.0286 
0.9 - 0.1109 0.0443 0.0418 0.0297 0.0086 -0.0005 0.0208 0.0206 0.038 0.0139 0.0073 0.0076 
1.0 0.0222 0.1084 0.0288 0.0285 0.014 -0.0152 -0.0311 -0.0105 -0.0076 0.0107 -0.008 -0.0186 -0.0175 
1.1 -0.0915 0.0623 -0.0266 -0.0274 -0.0391 -0.0753 -0.084 -0.0572 - - - - - 

 
Panel C. Average percentage pricing errors of SV3. 
Moneyness 1.5yr 2yr 2.5yr 3yr 3.5yr 4yr 4.5yr 5yr 6yr 7yr 8yr 9yr 10yr 

0.7 - - - - 0.0521 0.0454 0.0307 0.0485 0.0442 0.0524 0.0353 0.0303 0.0304 
0.8 - - 0.0464 0.0499 0.048 0.038 0.0305 0.0483 0.0379 0.0448 0.0271 0.0226 0.015 
0.9 - 0.0931 0.0363 0.0371 0.0386 0.0263 0.0186 0.0338 0.0195 0.0263 0.0023 0.0012 -0.0108 
1.0 -0.0076 0.0779 0.0163 0.0157 0.0215 0.0059 -0.0073 0.0055 -0.0105 -0.0062 -0.0245 -0.0282 -0.0446 
1.1 -0.1059 0.0339 -0.0347 -0.0365 -0.0245 -0.0447 -0.0513 -0.036 - - - - - 

 



Table 4. Parameter Estimates of Stochastic Volatility and Jumps Models 
 
This table reports parameter estimates of the one, two, and three-factor stochastic volatility and jumps models. The estimates are based on the first 
stage GMM estimates with a identity weighting matrix and the standard errors are reported in the parentheses. The objective functions are the 
rescaled objective function of the first stage GMM and equal to the RMSE of each model. The volatility risk premium of the ith stochastic 
volatility factor is defined as ηi=civ(Tk-1), and the jump risk premium is defined as ηi= cJ(Tk-1). 
        

 SVJ1 SVJ2 SVJ3 
Parameter Estimate Std. err Estimate Std. err Estimate Std. Err 

κ1 0.0270 0.0098 0.0170 0.0188 0.0081 0.0002 
κ2   0.7660 0.0650 0.0004 0.0049 
κ3     0.0080 0.0216 

1v  0.6112 0.3926 0.9336 0.1613 0.9272 2.1697 

2v    0.0011 0.0001 0.1271 0.0328 

3v      0.1989 0.8386 
ζ1 0.9719 0.0078 0.9552 0.0127 0.7713 0.0109 
ζ2   0.0129 0.0072 0.0292 0.0087 
ζ3     0.0577 0.0086 
c1v -0.0037 0.00004 -0.0036 0.0006 -0.0020 0.0003 
c2v   -0.2670 0.1103 -0.0258 0.0037 
c3v     -0.0444 0.0011 
λ 0.0597 0.0013 0.0208 0.0006 0.0218 0.0005 
µJ

 -0.6687 0.0074 -1.7004 0.0480 -2.1273 0.0391 
cJ 0.0277 0.0010 0.0631 0.0041 0.1298 0.0030 
σJ 0.4719 0.0058 0.3344 0.0817 -0.0100 0.1992 

Objective 
Function 0.0575  0.0529  0.0482  

 



Table 5. Comparison of the Performance of Stochastic Volatility and Jump Models via Diebold-Mariano Statistics 
 
This table reports comparison of model performance using Diebold-Mariano statistics, which measure whether a more sophisticated model has smaller pricing 
errors. A negative statistic means that the more sophisticated model has smaller pricing errors. The statistics are calculated according to equation (14) with a lag 
order q of 40 and follow an asymptotic standard Normal distribution under the null hypothesis of equal pricing errors. 
 
Panel A. Diebold-Mariano statistics for overall model performance based on RMSEs. 
 

Models D-M Stats 

SVJ2 – SVJ1 -4.4229 

SVJ3 – SVJ2 -3.6345 

 
Panel B. Diebold-Mariano statistics between SVJ2 and SVJ1 for individual difference caps based on absolute percentage pricing errors. 
Moneyness 1.5yr 2yr 2.5yr 3yr 3.5yr 4yr 4.5yr 5yr 6yr 7yr 8yr 9yr 10yr 

0.7 - - - - -1.73 -0.98 0.25 -2.19 -1.94 -2.76 -2.14 -1.86 -2.25 

0.8 - - -0.94 -1.71 -0.65 -0.76 -1.73 -2.13 -1.70 -2.63 -2.55 -3.25 -1.98 

0.9 - -0.03 -1.68 -1.80 -0.93 -1.38 -2.08 -2.10 -0.90 -1.47 -1.77 -3.28 -1.44 

1.0 0.37 -1.91 -3.39 -1.13 -1.33 -2.39 -2.65 -4.46 -1.58 -1.15 -2.08 -2.70 -1.98 

1.1 -0.65 -2.07 -0.81 -0.46 0.07 -0.77 -1.36 -1.93 - - - - - 

 
Panel C. Diebold-Mariano statistics between SVJ3 and SVJ2 for individual difference caps based on absolute percentage pricing errors. 
Moneyness 1.5yr 2yr 2.5yr 3yr 3.5yr 4yr 4.5yr 5yr 6yr 7yr 8yr 9yr 10yr 

0.7 - - - - 2.05 1.21 -0.85 -1.25 -1.81 -2.65 -2.55 -2.70 -1.26 

0.8 - - -0.04 2.04 2.10 0.82 -1.05 -1.41 -1.73 -2.45 -2.58 -3.10 -3.47 

0.9 - -2.06 -2.07 0.62 1.77 1.11 -1.44 -0.80 -1.31 -1.76 -1.14 -2.91 -2.97 

1.0 -1.67 -1.87 -1.16 0.86 1.74 -0.82 -1.82 -0.74 0.11 -0.66 0.58 -0.44 -0.21 

1.1 -1.63 -1.64 1.54 0.13 -1.93 -3.40 -2.57 -0.52 - - - - - 



Table 6. Average Percentage Pricing Errors of Stochastic Volatility and Jump Models 
 
This table reports average percentage pricing errors of difference caps with different moneyness and maturity of three stochastic volatility and jump models. 
Average percentage pricing errors are defined as the difference between market price and model price divided by market price.  
 
Panel A. Average percentage pricing errors of SVJ1. 
Moneyness 1.5yr 2yr 2.5yr 3yr 3.5yr 4yr 4.5yr 5yr 6yr 7yr 8yr 9yr 10yr 

0.7 - - - - 0.0181 0.0118 -0.0006 0.0218 0.0241 0.0374 0.0194 0.0124 0.021 
0.8 - - 0.0082 0.0105 0.0056 -0.0053 -0.01 0.0146 0.0146 0.0293 0.0104 0.0031 0.0092 
0.9 - 0.0579 0.0063 0.0044 -0.0002 -0.0154 -0.0202 0.0039 0.004 0.0211 -0.0054 -0.0108 -0.0036 
1.0 -0.0272 0.0769 0.0227 0.0154 0.0106 -0.0117 -0.0238 -0.0015 0.0004 0.0157 -0.0078 -0.0192 -0.011 
1.1 -0.119 0.0676 0.0166 0.0083 0.0081 -0.0208 -0.0263 -0.0006 - - - - - 

 
Panel B. Average percentage pricing errors of SVJ2. 
Moneyness 1.5yr 2yr 2.5yr 3yr 3.5yr 4yr 4.5yr 5yr 6yr 7yr 8yr 9yr 10yr 

0.7 - - - - 0.0168 0.0089 -0.0048 0.0164 0.0174 0.0296 0.0107 0.0026 0.0091 
0.8 - - 0.0143 0.0113 0.0094 -0.003 -0.009 0.0146 0.0135 0.0272 0.007 -0.002 -0.0002 
0.9 - 0.0706 0.013 0.002 0.0074 -0.0089 -0.0145 0.0091 0.0093 0.0258 -0.0008 -0.0088 -0.0085 
1.0 -0.0255 0.0774 0.0139 -0.006 0.0143 -0.007 2 -0.0178 0.0057 0.0102 0.0269 0.0053 -0.0077 -0.009 
1.1 -0.1062 0.0605 -0.009 -0.0358 0.0019 -0.0238 -0.0254 0.0039 - - - - - 

 
Panel C. Average percentage pricing errors of SVJ3. 
Moneyness 1.5yr 2yr 2.5yr 3yr 3.5yr 4yr 4.5yr 5yr 6yr 7yr 8yr 9yr 10yr 

0.7 - - - - 0.0173 0.008 -0.0083 0.0096 0.0055 0.0151 -0.0002 0.001 0.0145 
0.8 - - 0.0138 0.0144 0.0102 -0.0013 -0.0089 0.0105 0.0013 0.0102 -0.0055 -0.0027 0.0053 
0.9 - 0.0632 0.0041 0.0045 0.0064 -0.0039 -0.0087 0.0098 -0.0019 0.0075 -0.0136 -0.0059 -0.0022 
1.0 -0.0311 0.0558 -0.0034 -0.0002 0.0106 0.0017 -0.0045 0.0137 0.0016 0.0078 -0.006 0.0002 -0.0032 
1.1 -0.089 0.0434 -0.023 -0.0184 0.0033 -0.0052 -0.0004 0.0216 - - - - - 

 



Table 7. Comparison of the Performance of SV and SVJ Models via Diebold-Mariano Statistics 
 

This table reports comparison of model performance using Diebold-Mariano statistics, which measure whether a more sophisticated model has smaller pricing 
errors. A negative statistic means that the more sophisticated model has smaller pricing errors. The statistics are calculated according to equation (14) with a lag 
order q of 40 and follow an asymptotic standard Normal distribution under the null hypothesis of equal pricing errors.  
 
Panel A. Diebold-Mariano statistics for overall model performance based on RMSEs (with and without the first 20 weeks). 

Models D-M Stats (whole sample) D-M Stats (without first 20 weeks) 

SVJ1 - SV1 -1.7241 -4.8358 

SVJ2 – SV2 -1.757 -5.8541 

SVJ3 – SV3 -1.7054 -10.039 

 
Panel B. Diebold-Mariano statistics between SVJ1 and SV1 for individual difference caps based on absolute percentage pricing errors (without first 20 weeks).  
Moneyness 1.5yr 2yr 2.5yr 3yr 3.5yr 4yr 4.5yr 5yr 6yr 7yr 8yr 9yr 10yr 

0.7 - - - - -2.27 -1.73 -0.33 -1.72 -2.19 -2.72 -3.09 -2.99 -4.23 

0.8 - - -3.16 -5.21 -3.64 -1.51 -0.46 -1.40 -2.10 -2.14 -2.59 -2.02 -2.27 

0.9 - -6.06 -8.94 -4.30 -2.78 -0.79 -0.66 -0.98 -0.57 -0.79 -1.59 -1.35 -1.43 

1.0 0.92 -8.33 -5.42 -2.00 -0.99 -3.39 -4.83 -3.61 -1.98 -0.66 -1.49 -1.86 -1.93 

1.1 0.09 -1.50 0.00 0.18 -1.82 -3.75 -3.24 -1.65 - - - - - 

 
Panel C. Diebold-Mariano statistics between SVJ2 and SV2 for individual difference caps based on absolute percentage pricing errors (without first 20 weeks).  
Moneyness 1.5yr 2yr 2.5yr 3yr 3.5yr 4yr 4.5yr 5yr 6yr 7yr 8yr 9yr 10yr 

0.7 - - - - -2.58 -2.08 -0.49 -2.63 -3.43 -4.51 -4.63 -3.71 -5.82 

0.8 - - -3.74 -4.68 -2.83 -1.14 -0.26 -1.58 -2.63 -2.99 -3.57 -2.37 -2.55 

0.9 - -8.42 -7.32 -4.74 -1.91 0.00 -0.04 -0.70 -0.04 -0.73 -1.78 -1.88 -1.20 

1.0 0.38 -5.44 -4.28 -1.10 1.39 -3.31 -3.99 -3.24 -0.56 1.00 -0.73 -1.41 -1.23 

1.1 1.79 -1.35 0.33 3.14 -3.51 -7.19 -5.30 -2.86 - - - - - 



 
Panel D. Diebold-Mariano statistics between SVJ3 and SV3 for individual difference caps based on absolute percentage pricing errors (without first 20 weeks). 
Moneyness 1.5yr 2yr 2.5yr 3yr 3.5yr 4yr 4.5yr 5yr 6yr 7yr 8yr 9yr 10yr 

0.7 - - - - -4.54 -5.48 -4.32 -9.99 -8.02 -10.97 -7.10 -3.99 -5.35 

0.8 - - -3.59 -5.44 -6.09 -7.72 -3.66 -5.65 -9.07 -6.67 -5.05 -2.27 -2.01 

0.9 - -3.23 -4.03 -3.41 -6.03 -3.93 -0.90 -2.58 -3.11 -1.95 -1.38 -2.53 -2.23 

1.0 1.09 -2.40 -1.83 -1.42 -0.29 0.16 -3.11 -0.84 -1.83 -1.49 -2.82 -1.41 -2.94 

1.1 -1.85 2.26 -2.96 -2.06 -1.86 -3.60 -3.48 -1.27 - - - - - 

 
Table 8: Correlation Between LIBOR Rates and Implied Volatility Variables 

 
This table reports the correlations between LIBOR rates and implied volatility variables from SVJ3. Given the parameter estimates of 
SVJ model in Table 3, the implied volatility variables are estimated each week by minimizing the RMSEs of all difference caps.   
 

 L(t,1) L(t,3) L(t,5) L(t,7) L(t,9) V1(t) V2(t) V3(t) 

V1(t) -0.9415 -0.8969 -0.8416 -0.7948 -0.749 1 -0.3557 0.5942 
V2(t) 0.1687 0.2109 0.1671 0.1203 0.0564 -0.3557 1 -0.0509 
V3(t) -0.6654 -0.5543 -0.4879 -0.4293 -0.3987 0.5942 -0.0509 1 

 



Figure 1. Term structure of three-month LIBOR forward rates between 1/8/2000 and 
23/9/2003.



Figure 2.a. Average Black implied volatilities of difference caps between
1/8/2000 and 23/9/2003.

Figure 2.b. Average Black implied volatilities of ATM difference caps between 
1/8/2000 and 23/9/2003.



Figure 3.a. Black implied volatilities of 2.5-
year difference caps.

Figure 3.b. Black implied volatilities of 5-
year difference caps.

Figure 3.c. Black implied volatilities of 8-year 
difference caps.

Figure 3.d. Black implied volatilities of 2.5-, 5-
, and 8-year ATM difference caps.



Figure 4. The first three principal components of weekly percentage changes of three-
month LIBOR rates between 2/6/1997 and 31/7/2000.



Figure 5.a. The implied stochastic volatility variables of SV1 between 
1/8/2000 and 23/9/2003.

Figure 5.b. The implied stochastic volatility variables of SV2 between 
1/8/2000 and 23/9/2003.

Figure 5.c. The implied stochastic volatility variables of SV3 between 
1/8/2000 and 23/9/2003.



Figure 6.a. The RMSEs of SV1 between 1/8/2000 and 23/9/2003.

Figure 6.b. The RMSEs of SV2 between 1/8/2000 and 23/9/2003.

Figure 6.c. The RMSEs of SV3 between 1/8/2000 and 23/9/2003.



Figure 7.a. The implied stochastic volatility variables of SVJ1 
between 1/8/2000 and 23/9/2003.

Figure 7.b. The implied stochastic volatility variables of SVJ2 
between 1/8/2000 and 23/9/2003.

Figure 7.c. The implied stochastic volatility variables of SVJ3 
between 1/8/2000 and 23/9/2003.



Figure 8.a. The RMSEs of SVJ1 between 1/8/2000 and 23/9/2003.

Figure 8.b. The RMSEs of SVJ2 between 1/8/2000 and 23/9/2003.

Figure 8.c. The RMSEs of SVJ3 between 1/8/2000 and 23/9/2003.


