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Abstract

Many investments create both fixed assets and options for future
investments, or “growth options”. It is natural to expect these future
growth options to affect the timing of the initial decision to invest.
This paper examines the impact of growth options on this initial deci-
sion in a capacity expansion context. We show that the impact of the
growth options depends on whether the initial investment opportunity
is short- or long-lived. When the investment opportunity has no time
limit, the growth options have no effect on the investment decision—
optimal behavior is to act as if there were no growth options. On the
other hand, when the investment opportunity is finite, consideration
of growth options leads to earlier action.

Keywords: Growth Options; Investment Under Uncertainty
JEL classification: D81, D92, G31
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1 INTRODUCTION

Many investments result not only in assets in place, but also create options
for future investments. For example, consider a firm that has an opportunity
to invest to create a critical mass of production and distribution capabili-
ties in a new market. If the firm makes this initial investment, it will then
have the ability to expand its network of production and distribution if such
expansion is justified by changes in the market. Hence, there are two sequen-
tial options inherent in the firm’s investment opportunity: (1) the option to
initiate operations through an initial capital investment—to put “assets in
place”—and (2) the option to expand capacity only after the initial invest-
ment has been made. This second option, the “growth option”, is relevant
to the initial investment decision even though it may not generate any cash
flows for sometime after the initial investment. This paper is concerned with
how growth options change the timing of the initial decision to invest.

The notion that growth options have the potential to influence investment
decision-making is not new. For example, Myers (1977, 1987), Kester (1984),
Trigeorgis and Mason (1987), and Amran and Kulatilaka (1999), among oth-
ers, have noted that the value of an investment should include not only the
assets in place from the investment, but also the growth options it creates.
Taking into account the growth options may significantly increase the value
of the investment. A change in the value of the investment, however, does not
necessarily translate into a change in initial investment behavior. This leaves
open the question of whether growth options can change the timing of the
initial decision to invest. To date, most researchers exploring the impacts of
growth options on initial investment decisions have made direct assumptions
about the cash flows arising from growth options rather than explicitly mod-
eling their optimal exercise over time. 1 For example, Willner (1995) assumes
a jump process for start-up venture growth options, and Hevert, McLaughlin
and Taggart (1998) define the value of the growth options as the discounted
cash flows evolving according to a binomial process. Under this approach,
the impact of growth options on investment decisions is directly presumed.

At the same time, a number of researchers have explicitly explored one
type of growth options: capacity expansion options. These researches have
examined the value of capacity expansion options and associated optimal
capacity expansion strategy after firms have established themselves in mar-

1It is understood that without further investments, there should be no growth options.
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kets. Pindyck (1988) and Dixit and Pindyck (1994) considered the value of
capacity expansion options and the optimal expansion threshold for a mo-
nopolist assuming stochastically varying product demand. Grenadier (2002)
extended and modified this approach to consider capacity expansion option
value and optimal expansion threshold in a strategic setting. An important
contribution of Pindyck (1988) has been to explicitly break out and calcu-
late the value of assets in place, on the one hand, and growth options, on
the other. However, the focus of these researchers has been on the optimal
exercise of the capacity growth options and not the impact of the growth
options on the initial investment decision.

The presence of capacity expansion options is an important feature of
many initial investments. In this paper, we extend the work of Dixit and
Pindyck (1994) and Grenadier (2002) to consider the impact of capacity
expansion options on the initial decision to invest (e.g., to enter the market).
We first follow their work to derive the value of assets in place and the value of
growth options, assuming stochastically varying product demand, and then
extend their work to trace the growth options back to the initial investment
decision. Throughout, the focus of this paper is on the impact of the growth
options on the initial investment rather than on their value. While a range
of factors ultimately influence any decision to invest, and growth options in
different contexts will have different fundamental characteristics, our goal
has been to isolate the capacity expansion options to better understand its
impact on initial investment decision-making by abstracting away from other
factors.2 We undertake this exercise considering both a case when the initial
investment opportunity is infinite (i.e., it will never expire) and a case when
it is finite.

This paper shows that the presence of growth options alone does not al-
ways imply a change in initial investment decision-making. When capacity
expansions are the only growth options available and when the initial invest-
ment option will never expire, firms are equally well off making the initial
decision assuming an absence of growth options. In contrast, when the ini-
tial opportunity to invest has a finite life, the presence of growth options will
always call for a more aggressive initial investment policy. We provide an
analytical proof to show that this is true regardless of model parameters.3

2Other factors may be critical in weighing the role of the growth options. For example,
some factors may affect the firm’s ability to learn about its environment.

3A numerical example can be used to show that this result can be true, and intuition
suggests that it is always true. The analytical proof confirms this intuition.
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The remainder of this paper is organized as follows. Section 2 presents
the model of production and capacity expansion under stochastically varying
product demand. Section 3 specifies the optimal expansion strategy, decom-
poses project value into the value of the assets in place and the value of the
growth options, and discusses the dynamic characteristics of the two sources
of value. Section 4 then studies investment decisions in an infinite-time
horizon, and section 5 studies investment decision in a finite-time horizon.
Section 6 concludes the paper.

2 Model and Assumptions

We begin by considering a firm that has an option to invest in a production
facility that will allow it to produce a homogeneous good. The initial invest-
ment is indivisible: a fixed investment I is required to initiate operations.
Based on this initial investment, the firms will be capable of producing q0

units of product.4

At any point in time after the firm has established its position in the
new market, it can invest in additional capacity to increase its output in
response to changing market conditions. This expansion potential represents
the growth options. We assume that output can be increased by an infin-
itesimal increment at any time after the initial investment.5 The cost of
increasing output is constant, at a cost of k per unit of output.6

At any time t, the profit flow is the function of firm’s output, qt and an
exogenous demand shock parameter Yt:

7

4The initial investment could include the cost of market research, licenses and permits,
or capital facilities. It could also represent the cost of research and development activities
to prepare the product for the new market (e.g., the cost of drug development).

5Note that this incremental expansion possibility contrasts with the indivisible char-
acter of the initial investment. The fixed initial investment could not be optimal if it
were feasible to initiate production in infinitesimal units. Where the initial investment
might capture a set of one-time costs of “critical mass” investments, the capacity invest-
ments might represent such smaller scale investments as increased numbers of workers or
incremental increases in production equipment.

6In general k is less than I/q due to some additional costs for initial investment, see
footnote (4). Our later assumptions on profit function ensure that optimal expansion
policy exists. See Grenadier (2002).

7A similar assumption on the function form of profit flow can be found in Dixit and
Pindyck (1994) for a monopoly and in Grenadier (2002) for an oligopoly.
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Π(qt, Yt) = Ytπ(qt) (1)

We assume that the continuous function π(qt) is an increasing function
of firm’s output qt and that the condition ∂2π/∂q2 < 0 holds. The demand
shock parameter varies stochastically with time, t. Specifically, following
Dixit and Pindyck (1994), Baldursson (1998), Grenadier (2002), and many
other authors, we assume that Yt follows the geometric Brownian motion

dYt = µYtdt + σYtdwt (2)

where µ and σ are constants, and µ < r is the risk-free rate of interest. We
assume that the risk-free rate of interest is constant and cash flows are valued
in a risk-neutral framework.

3 The Two Components of Project Value

To provide a basis for exploring the initial investment decision in the com-
ing sections, we proceed by decomposing the value of the investment into
two components: the value of the assets in place (the production capacity
from the initial investment) and the value of the growth options (the op-
portunity to expand production).8 Our decomposition, in essence, follows
Pindyck (1988) and Dixit and Pindyck (1994), but with a view of the initial
investment as a going concern—its value reflects an expectation of future
discretionary investments made possible by the current investment project.9

Our formulation states that the value of the initial investment hinges on the
value of the future growth opportunities it creates.10

The value of the growth options are based on optimal capacity expansion
strategy. Because the value depends on this future behavior, solving for
the value of an investment is formulated as a stochastic control problem. For
convenience, assume that at time t = 0 the firm exercises the option to invest
in initial production capacity and begins producing an amount of output q
in the market. The increase in capacity can only occur for t > 0. At any
time t > 0, the value of the firm in the new market can be written as

8Since the focus of this paper is on the growth options, other options resulted from the
initial investment, such as, disinvestment options, will not be considered here.

9See Myers (1977) for the discussion of such view.
10Our formulation results in an almost identical derivation to Dixit and Pindyck (1994),

we therefore skip most of it.
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W (qt, Yt) = max
{qτ : τ>t}


E

∞∫

t

e−r(τ− t){Π(qτ , Yτ )dτ − kdqτ}

 (3)

Equation 3 says that the value of the firm, having invested in the market,
is equal to the discounted sum of all future profits, assuming an optimal
expansion path going forward.11

Assuming that W (qt, Yt) is continuous on <+×<+ and is C1,2(<+×<+)
(continuous differentiability, once with respect to q and twice with respect
to Y on <+ ×<+), one can show that the value function W satisfies12

max{1/2σ2Y 2WY Y + µY WY − rW + Π, Wq − k} = 0 (4)

This dynamic programming equation says that at every point in the state
space, one of the terms on the left must be equal to zero. Hence, the state
space splits into two regions, “no expansion” region corresponding to the
first term on the left side, and an “expansion region” corresponding to the
second term on the left side. In other words, there will be combinations of
demand and capacity for which expansion is optimal and combinations for
which it is not. We assume that the initial investment places the firm in the
no expansion regime. Only through increased demand will it be optimal to
expand capacity. It follows that the solution to (4) can be obtained as13

W (q, Y ) =
π(q)

r − µ
Y + B(q)Y β (5)

where β > 1 is the positive root of the fundamental quadratic equation
1/2σ2β(β − 1) + µβ − r = 0, and B(q) is14

11Note that since the profit is an increasing function of the output, the firm always
wants to operate at full capacity.

12For convenience we suppress t. See Fleming and Soner (1993) for the discussion.
13It needs one more optimality condition that is the ”super contact” condition derived

in Dumas (1991). The value of the initial investment found here is technically the same
as the firm’s value in Dixit and Pindyck (1994) due to the fact that the value of the
investment is the value of the “new” firm once the initial investment is made.

14As shown in Dixit and Pindyck (1994), B(q) is solved together with the optimal
capacity expansion strategy, which is defined by the investment threshold curve for the
capacity expansion: Y ∗

exp(q) = β
β−1

k(r−µ)
π′(q) . The capacity expansion strategy is to invest

whenever Y is equal to or larger than Y ∗
exp. Since the function π(q) is concave in q and

upward-sloping, the optimal capacity expansion threshold curve is upward-sloping: Y ∗
exp

increases as q increases
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B(q) =

(
β − 1

k

)β−1 ∞∫

q

(
π′(x)

β(r − µ)

)β

dx (6)

We assume the convergence of the integral in Equation 6.
Equation 5 shows that the value of the project can be broken into two

terms characterized by different stochastic processes. The first term repre-
sents the value of the assets in place, V , and the second term represents the
value of the growth options, G.15 It follows that we can write

W = V + G = aY + bY β (7)

where a = π(q)
(r−µ)

and b = B(q).
The dynamics of the assets in place and of the growth options are not a

concern in Pindyck (1988) and Dixit and Pindyck (1994) since these dynamics
are irrelevant for determining optimal capacity expansion strategy. However,
it is a concern for the initial investment decision, which is the focus of this
paper. As is well known, the dynamics of the value of an investment can affect
the investment decision when the decision is not a now or never proposition.
For example, to invest early, the firm requires that the expected rate of
capital gain on the project is less than the expected rate of return from
owning a completed project. Otherwise, the firm would always be better off
keeping the option to invest alive. Hence, the final task in this section is to
characterize the stochastic processes underlying the two components of the
project value. Applying Ito’s Lemma, the dynamics of the value of the assets
in place, V , can be obtained as

dVt = µVtdt + σVtdwt (8)

Equation 8 shows that the expected growth rate of the value of the assets
in place is less than r (because µ < r). The difference r − µ represents an
opportunity cost of delaying the establishment in the market. Therefore, the
optimal investment policy has to be trade off between the cost and the risk
of uncertainty in the future.

Similarly, the dynamics of the value of the growth options, G, can be
found as

15To see that the first term is the value of the assets in place, we could obtain it by
directly computing the expected present value of the assets in place, which is straightfor-
ward.
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dGt = rGtdt + βσGtdwt (9)

Equation 9 indicates that, unlike the value of the assets in place, the
growth options would yield their appropriate risk-adjusted returns from their
expected value gains alone.16 There is no cost to keeping the options alive:
delaying investment in the project incurs no opportunity cost in terms of the
growth options.17 Because β > 1, Equation 9 also shows that the growth
options have a higher risk than the assets in place. In other words, βσ > σ.

That the entire return on the growth options is captured in its value
movements is consistent with our observation that the growth options yield
no cash flows. However, the converse is not always true. In other cases,
the growth options could yield no cash flows, but there could be an oppor-
tunity cost of delaying acquisition of the growth options. The opportunity
cost associated with delay could reflect entry and expansion by competitors,
learning curve effects, and so forth.

4 The Infinite-Horizon Case

Now we turn to our primary concern: the impact of growth options on the
initial investment. In this section we consider the impact assuming that the
initial opportunity to invest will be long-lived, which we characterize in the
limit as an infinite-horizon setting.

4.1 Ignoring the Growth Options

To begin, assume that the firm ignores the growth options, so, for the pur-
poses of decision-making W = V . We will then compare decision-making
under this scenarios with decision-making when the growth options are ex-
plicitly considered.

Irrespective of the growth options, the initial decision to invest is a stan-
dard option problem, and therefore not amenable to NPV analysis. The
decision to invest must take into account the option of delaying the invest-
ment, and therefore must be addressed by consideration of the investment’s

16Note, in a risk-neutral framework, the total expected rate of return equals the risk-free
rate of interest, r.

17Note that such dynamic characteristics are a necessary condition for the growth options
to be irrelevant to the initial decision-making, but not a sufficient condition.
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option value. Let Y ∗ be the firm’s investment threshold: the firm will invest
in the facility if Y ≥ Y ∗. Let f(Y ) denote the value of the option to make the
initial investment. Recall that the current value of the assets in place, were
the option to be exercised, is V = aY . The option pricing approach yields
a valuation equation relating f(Y ) to Y when Y is less than the optimal
investment threshold, Y ∗. That is, f(Y ) must satisfy the following familiar
differential equation

1

2
σ2Y 2f ′′(Y ) + µY f ′(Y )− rf = 0; Y < Y ∗ (10)

subject to the boundary conditions

f = aY − I; Y = Y ∗ (11)

f ′(Y ) = a; Y = Y ∗ (12)

f(Y ) = 0; Y = 0 (13)

Equations 11 and 12 are standard value-matching and smooth-pasting
conditions for real options. Equation 13 comes from the assumption that
the asset in place would be worth nothing if there is no demand. As shown
by Equation 8, the value of the asset in place follows a geometric Brownian
motion. Thus, if the value of the asset in place goes to zero, it will stay at
zero and the investment option will be of no value.

It is straightforward to show that the solution to the above differential
equation is given by

f = (
a

β
)β(

β − 1

I
)β−1Y β (14)

where β is the positive root of the quadratic equation 1
2
σ2x(x−1)+µx−r = 0.

The optimal investment threshold Y ∗ can be found as

Y ∗ =
β

a(β − 1)
I (15)

Expressing the decision rule in terms of the stochastic demand parameter,
Y , eliminates potential comparisons with decisions based on the NPV rule.
Therefore, we would like to express the investment threshold in terms of the
value of the assets in place. Since a > 0, V is a strictly increasing function of
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Y . The optimal investment threshold Y ∗ in (15) corresponds to a unique V ∗,
that is, V ∗ = aY ∗. Substituting it into Equation 15, we obtain a standard
result in real options literature,

V ∗ = I +
1

β − 1
I (16)

Equation (16) shows that the firm will invest whenever the value of the
asset in place is larger than or equal to the cost of the investment I, plus the
opportunity cost of exercising the investment option, 1

(β−1)
I.

4.2 Considering Growth Options

Now assume that the firm considers the value of the growth options—assumed
to be exercised optimally—in making the initial decision on whether or not
to invest. Hence, W = V + G.

Let F (Y ) denote the value of the initial investment option when we con-
sider the growth options (to be contrasted with f in the last subsection where
we did not consider the growth options). F (Y ) must satisfy the following
differential equation

1/2σ2Y 2F ′′(Y ) + µY F ′(Y )− rF = 0; Y < Y ∗ (17)

subject to the boundary conditions

F (Y ) = aY + bY β − I; Y = Y ∗ (18)

F ′(Y ) = a + bβY β−1; Y = Y ∗ (19)

F (Y ) = 0; Y = 0 (20)

Note that the dynamics of F are similar to that of f except their boundary
conditions.

The solution to the above differential equation is given by

F (Y ) = bY β + (
a

β
)β(

β − 1

I
)β−1Y β (21)

Comparison with Equation (14) shows that the value of the option to invest
in the production facility is simply the sum of the value of the option to
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invest in the assets in place (the second term on the right side of Equation
21) and the value of the growth options (G = bY β).

The optimal investment threshold Y ∗ is

Y ∗ =
βI

a(β − 1)
(22)

This is exactly the result as for the case without growth options, which leads
to the following proposition:

Proposition 1 The investment decision-making in an infinite-time horizon
is independent of the firm’s capacity growth options. Investment timing is
completely determined by the dynamics of the value of the assets in place.

Proposition 1 says that, under the circumstances in this theoretical study,
it is feasible to make investment decisions involving growth options as if
there were no growth options, simplifying decision-making. As shown by the
dynamics of the growth options in equation (9), there is no opportunity cost
to keep the growth options alive. It seems to suggest that the value of growth
options with such characteristics would be irrelevant to investment decision-
making. However, it is worth pointing out that it is not always true even
when an initial investment opportunity is infinite. Although such dynamic
characteristics of growth options are a necessary condition for its irrelevance
to initial investment decision-making, it is not a sufficient condition.18 As
we will discuss later, this also does not prove to be the case when the initial
investment is finite. It is therefore useful to explore what it is about the
infinite case that leads to this result.

Growth options can affect initial investment decision-making only if there
is a link between the timing of the initial investment and the potential prof-
its available from the growth options. By construction, the infinite case
essentially eliminates any such link. Assume, as we have, that the initial
investment will place the firm in a “no-expansion” zone: after the initial in-
vestment, the firm will not be inclined to immediately exercise any growth
options unless market conditions improve. Investing earlier (i.e., at a lower
Y ) would certainly allow the firm to exercise the growth options earlier, but
why? If the firm has no reason to exercise growth options at Y ∗, it certainly
will not have reason to exercise them at Y < Y ∗. Exercising earlier will not

18One such example would be abandonment option. See Dixit (1989).
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in any way enhance the potential profits from the growth options. This point
will be made more clear when we consider the finite case: the finite case will
differ because there will come a point at which a failure to invest will forestall
any ability to exercise the growth options.19

As a final point, it is important to note that decision-making and a value
are two different matters. Growth options may not change the initial invest-
ment timing, but they do increase the value of the firm because the payoff
from the investment comes from both the assets in place and the growth
options.

5 The Finite-Horizon Case

Now let us turn to a situation in which the initial opportunity to invest is
short-lived. Note that once the investment is made, the option to expand is
infinite; it is only the initial opportunity to invest that is short-lived. This
section provides a proof (rather than simply showing counter-examples) to
confirm that growth options will always cause the firm to invest earlier in the
finite horizon case, in contrast to the infinite horizon case. We discuss this
intuitive result at the end of this section.

Assume that the investment opportunity expires at time T and the firm
explicitly considers the growth options in its investment decision-making.
Let J be the value of the investment option. Given our assumptions, this
value must satisfy the following partial differential equation:

∂J

∂t
+ µY

∂J

∂Y
+

1

2
σ2Y 2 ∂2J

∂Y 2
− rJ = 0; Y < Y ∗ & t < T (23)

subject to the boundary conditions

J = max(aY + bY β − I, 0); t = T (24)

J = aY + bY β − I; Y = Y ∗ & t < T (25)

∂J/∂Y = a + bβY β−1; Y = Y ∗ & t < T (26)

J = 0; Y = 0 (27)

19Note that the assumption of starting in the “no-expansion” zone is essentially irrele-
vant. If we begin the problem in the expansion zone, then the firm invests immediately
growth options or not. This is a trivial case.
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Condition (24) says that, at expiration, the investment option will be ex-
ercised if the value of the investment is larger than the cost I. Conditions
(25), (26) and (27) follow those for the infinite horizon case with the growth
options.

To understand the impact of growth options on decision-making in this
finite-horizon context, is necessary to determine J(t, Y ) and the correspond-
ing decision rule. Unfortunately, it is not feasible to solve analytically the
partial differential Equation 23 subject to the boundary conditions in Equa-
tions 24 - 27. The difficulty is due to the fact that the equation has to be
solved differently for the two regions which are divided by the optimal invest-
ment threshold Y ∗, and this time-dependent optimal investment threshold
must be found as part of the solution.

It would certainly be possible to solve the problem numerically using a
specific set of parameters. While this approach might prove informative, it
would not be a general result. Hence, if a general result is desired a different
approach is required. Here, we provide such an approach. We first follow
Carr, Jarrow and Myneni (1992) to develop an alternative characterization
for the value of investment option, and then use this characterization to
derive a general result. Proposition 2 provides this characterization.20

Proposition 2 At any time t ∈ [0, T ], if the value of the option to invest
in the production facility is not equal to max(0, Vt + Gt − I), then it must
satisfy the following stochastic representation:

J = Et[e
−r(T−t)(VT + GT − I)+] +

T∫

t

e−r(τ−t)Et

[
((r − µ)Vτ − rI)1{Vτ≥V ∗τ }

]
dτ

(28)
where Et is the conditional expectation at time t, and V ∗

τ is the optimal
investment threshold at time τ in terms of V .

Proposition 2 states that the value of the option to invest can be ex-
pressed as the value of the option to invest at the expiration date T plus an
expectation of a stochastic integral that may be considered as a gain from a
feasible early investment. Equation 28 shows that this early investment pre-
mium does not include the growth options. It might appear that the growth

20For brevity here, a proof is provided in the appendix.
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options have no impact on the optimal investment timing rule, except at
the expiration date T . However, that is not the case here. The following
proposition states the impact of the capacity growth options on the optimal
investment timing when the investment opportunity is not infinitely lived.

Proposition 3 When an investment opportunity is not infinitely lived, the
capacity growth options not only affect the investment decision at the expira-
tion date, but also encourage firm to invest early.

To find out if the V ∗ in Equation 28 would be the same as the one without
the growth options, we can similarly express the value of the option to invest
in the assets in place as

f(t, V ) = Et[e
−r(T−t)(VT − I)+] +

T∫

t

e−r(τ−t)Et

[
((r − µ)Vτ − rI)1{Vτ≥V ∗τ }

]
dτ

(29)
Our proposition 1 implies that if V ∗ in Equations 28 and 29 are the

same, then J = G + f . Now substituting the optimal investment threshold
determined by Equation 28 into Equation 29, the second term in both equa-
tions, early investment premium, should be the same. And then, combining
Equations 28 and 29, we obtain

J = Et[e
−r(T−t)(VT + GT − I)+] + f − Et[e

−r(T−t)(VT − I)+]

= f + e−r(T−t)Et[(VT + GT − I)+ − (VT − I)+]

< f + G (30)

Since J < f + G, the early investment thresholds, V ∗, in Equations 28
and 29 are different. Furthermore, Equation 30 indicates that the investment
threshold is lower when the firm considers the growth options. To see this, let
V ∗

G and V ∗
O be the investment thresholds at time t with and without growth

options. From Equations 25 and 3021, we obtain J = V ∗
G + G∗− I < f + G∗.

That is, at V = V ∗
G, we would have f > V ∗

G− I. At the investment threshold
for the firm with growth options, it would not be appropriate to invest without
growth options. The investment threshold with growth options is lower than
without growth options (i.e., V ∗

G < V ∗
O).

21Note f in Equation 30 is calculated by using the optimal investment threshold implic-
itly defined in Equation 28.
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Figure 1: Investment Threshold as a Function of Time to Expiration

Figure 1 illustrates the dependence of the optimal investment threshold
on the time to expiration and the impact of growth options on investment
timing. The optimal investment thresholds are nondecreasing functions of
time to expiration—the closer we get, the more pressing the need to take ad-
vantage of the investment. With the growth options, the optimal investment
threshold is lower than if the firm were only considering the value from the
assets in place. Hence, the firm is more likely to invest in the project if it
takes the growth options into consideration.

Now let us turn to the intuition behind the finite horizon case and, by
extension, the infinite horizon case. Again, growth options will impact ini-
tial investment decision-making only if the approach to the initial investment
has an impact on the ability to exercise the growth options. The finite case
provides this opportunity. If the firm does not exercise the initial investment
option at the expiration date (assuming it has not already done so), the op-
portunity to exercise the growth options and therefore obtain their attendant
profits will be lost. This obligates the firm to invest at a lower Y than would
otherwise be the case at expiration; the firm is more aggressive because it
doesn’t want to miss the opportunity to gain growth option profits. Working
backwards from the expiration date, the firm must consider that, if it is going
to invest at a lower Y anyway, perhaps it would be useful to do so earlier as
well to take advantage of any potential profits in the interim. This calculus
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operates all the way back to the present, with the impact of the early exercise
attenuating as we work backwards in time. The growth options help offset
the volatility effect. The infinite case differs simply in that there exists no
such finality; there is no point at which the firm must consider that if it does
not act quickly it might forego profits from the growth options.

6 Conclusion

Growth options are an important characteristic of a multitude of investments;
understanding their impacts, and the circumstance under which they might
or might not be largely ignored, is therefore valuable for firm decision-making.
This paper has used one type of growth options—capacity expansion growth
options—as a vehicle to better understand the implications of growth options
on decision making. In this case, an initial investment buys not only a set of
assets in place, but also the potential to expand capacity as appropriate in
the future. The initial investment decision in these capacity expansion cases
might therefore hinge not only on the expected cash flows generated from
the assets in place, but also on the capacity expansion options they create.
This paper has explored the impact of capacity expansion growth options on
the timing of the decision to put initial assets in place when product demand
varies stochastically over time. The fundamental question of the paper is:
do these growth options alter the initial decision to invest?

The results of the analysis indicate that growth options need not always
alter the initial decision to invest. When the option to invest is infinite, the
capacity expansion options are irrelevant to the initial investment decision,
although they do increase the potential benefits of investment. While this
result is specific to the capacity expansion case, it reinforces the notion that a
variety of factors influence the role of growth options; the lifetime of the initial
investment option is one of them. As a counterpoint to the infinite case, we
have also confirmed through proof (rather than through numerical example)
that capacity expansion growth options do always alter the initial decision
to invest when the initial opportunity is finite. In this case, consistent with
intuition, they call for an early investment trigger.

Taken in total, the analysis suggests that the lifetime of the initial op-
portunity to invest—for example, to enter a new market—has important im-
plications for the relevance of growth options to decision-making. All other
things being equal, the longer is this initial opportunity, the less important
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will be growth options. The infinite case represents the theoretical extreme
of this intuition. Large potential profits from growth options may not, by
themselves, be enough to justify early action.

A Appendix: Proof of Proposition 2

Proof. For simplicity, we assume the current time is t = 0. Notice that

V = aY
1

1−ν and G = bY β, and both are continuous and monotonic increasing
functions on [0, +∞). Therefore, there is a one-to-one relationship between V
and Y , and a one-to-one relationship between G and Y . J can be expressed
as J(t, Yt) on [0, T ] × [0, +∞). Let e−rtJ(t, Yt) be the discounted value of
the investment option, defined in the region D ≡ {(t, Y ) : t ∈ [0, T ], Y ∈
[0, +∞)} . An application of Ito’s rule to the process e−rtJ(t, Yt) yields:

e−rτJ(T, YT )− J(0, Y0)−
T∫

0

A(e−rtJ(t, Yt))dt = σ

T∫

0

e−rtYtJ
′
Y (t, Yt)dw(t)

(31)
where A is a linear operator, defined as

A =
∂

∂t
+ (r − δ)Y

∂

∂Y
+

1

2
σ2Y 2 ∂

∂Y 2

Since e−rtYtJ
′
Y (t, Yt) satisfies a polynomial growth condition on the region

D, the right hand side of (31) is a martingale. By taking expectations we
obtain

J(0, Y0) = E
[
e−rT J(T, YT )

]
− E




T∫

0

A(e−rtJ(t, Yt))dt




To find the value for the second term on the right side of the above
equation, we separate the value of the investment option into two regions,
J(t, Yt) = J(t, Yt)1{Yt<Y ∗t }+J(t, Yt)1{Yt≥Y ∗t } , and applying the operator A to
the process e−rtJ(t, Yt) , obtaining

A(e−rtJ(t, Yt)) = A(e−rtJ(t, Yt)1{Yt<Y ∗t }) + A(e−rtJ(t, Yt)1{Yt≥Y ∗t })

From (23), we know that when Yt < Y ∗
t
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A(e−rtJ(t, Yt)) = 0

and when Yt > Y ∗
t , from (25) we have

A(e−rtJ(t, Yt))

= e−rt

{
[
1

2
σ2β(β − 1) + (r − δ)β − r]bY β + [

1

2
σ2 ν

(1− ν)2
+

r − δ

1− ν
− r]aY

1
1−ν + rI

}

= e−rt
{
rI − ηaY

1
1−ν

}
(32)

Where the last line (32) uses the definition of η and the fact that β satisfies
the quadratic equation 7. Finally, the proof is completed by recognizing the

fact that V = aY
1

1−nu and V ∗ = a(Y ∗)
1

1−ν , in conjunction with condition 24.
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