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1 Introduction

Structural-form approach on the pricing of credit risk can provide important economic in-

tuitions on what fundamental variables may help to explain the credit default spread. The

seminal work of Merton (1974) points to the importance of leverage ratio, asset volatil-

ity, and risk-free rate in explaining the cross-section of default risk premia. Subsequent

extensions in literature include the stochastic interest rate process proposed by Longstaff

and Schwartz (1995); endogenously determined default boundaries by Leland (1994) and

Leland and Toft (1996); strategic defaults by Anderson et al. (1996) and Mella-Barral and

Perraudin (1997); and the mean-reverting leverage ratio process by Collin-Dufresne and

Goldstein (2001). These generalizations call for time-varing macro-financial variables and

firm-specific accounting informations as key determinants of the credit risk spreads. Further

development of the jump–diffusion default model along the lines of Zhou (2001) indicates

that jump intensity and volatility risks of firm value should have a strong impact on the

credit spreads.

Despite their theoretical insights in understanding default risk, the empirical performance

of structural-form models is far from satisfactory. There has been recently a burgeoning lit-

erature that documents the large discrepancy between the predictions of structural models

and the observed credit spreads, which is also known as the credit premium puzzle (Amato

and Remolona, 2003). For instance, Huang and Huang (2003) calibrate a wide range of

structural models to be consistent with the data on historical default and loss experience.

They show that in all models credit risk only explains a small fraction of the historically

observed corporate-treasury yield spreads. In particular, for investment grade bonds, struc-

tural models typically explain only 20-30% of observed spreads. Similarly, Collin-Dufresne

et al. (2001) suggest that default risk factors have rather limited explanatory power on vari-

ation in credit spreads, even after the liquidity consideration is taken into account. A recent

study by Eom et al. (2004) finds that structural models do not always under-predict the

credit spreads, rather, those models produce large pricing errors for corporate bonds. More-

over, incorporating jumps in theory should explain better the level of credit spreads even for

investment-grade entities with short maturities (Zhou, 2001), however, empirically how to

measure the jump risks and their impacts on the default premia is still an open question.

In this paper, we argue that the unsatisfactory performance of structural models may be

in part attributed to the fact that the impacts of volatility and jump risks are not treated
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seriously. A prevalent practice is to use the average equity volatility within each rating

category in calibration, which is subject to the “Jensen inequality” problem if the true impact

of volatility on credit spreads is nonlinear. Even when firm-level equity volatility is used,

historical volatility based on daily equity returns is often used, which tends to smooth out

the short term impact of volatility on credit spreads, especially the jump risk impacts. More

importantly, when jump effect is measured as historical skewness, it may over-detect a model

with asymmetric distribution but no jumps while under-detect a model with symmetric jump

distributions. The idea of emphasizing the link between equity volatility and jump risks on

the one hand, and credit spreads on the other, is not new. Campbell and Taksler (2003)

and Kassam (2003) observe that recent increases in corporate yields can be explained by the

upward trend in idiosyncratic equity volatility. Collin-Dufresne et al. (2003) suggest that

the jump risk alone does not explain a significant proportion of the observed credit spreads

of aggregate portfolios. Instead, its impact on the contagion risk turns out to be associated

with a much larger risk premium. Cremers et al. (2004a,b) measure volatility and jump risk

from prices of equity index put options. They find that adding jumps and jump risk premia

significantly improve the fit between predicted credit spreads and the observed ones.1

Our contribution is to use high frequency return data of individual firms to decompose

the realized volatility into a continuous part and a jump part, following the theoretical

work by Barndorff-Nielsen and Shephard (2003a). With stronger assumptions, we are able

to filter out the realized jumps and isolate the impacts associated with jump intensity,

jump volatility, and negative jumps. Therefore we can examine the credit spreads more

thoroughly with short term volatility and various jump risk measures, in addition to the

long-run historical volatility. Recent literature suggests that realized volatility measures from

high frequency data provide a more accurate measure of the short term volatility (Andersen

et al., 2001; Barndorff-Nielsen and Shephard, 2002b; Meddahi, 2002). Within the realized

volatility framework, the continuous and jump contributions can be separated by comparing

the difference between bi-power variation and quadratic variation (see, Barndorff-Nielsen

and Shephard, 2004; Andersen et al., 2004; Huang and Tauchen, 2004, for the discussion

of this methodology). Considering that jumps on financial markets are usually rare and of

large sizes, we further assume that (1) there is at most one jump per day, and (2) jump size

1In this paper, we refrain from using option-implied volatility and jump risk measures, because they are
already embedded with risk premia, which may have similar time-variation as credit spreads and need to be
explained by the same underlying risk measures as well. We shall rely on historical or realized measures of
volatility and jump risks.
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dominates daily return when it occurs. With filtered daily jumps, we can estimate the jump

intensity, jump mean (further decomposed into means of positive and negative jumps), and

jump volatility. We apply these new volatility and jump risk measures to explain the credit

default swap spreads.

Our empirical results suggest that long-run historical volatility, short-run realized volatil-

ity, and various jump risk measures all have statistically significant and economically mean-

ingful impacts on the credit spreads. The realized jump measures explain 23% of total

variations in credit spreads, while historical skewness and kurtosis measures for jump risk

only explain 3%. It is worth noting that volatility and jump risks alone can predict 53%

of the spreads variations. After controlling for ratings, macro-financial variables, and firms’

accounting information, the signs and significances of jump and volatility impacts remain

solid, and the R-square increases to 75%. These results are robust to whether the fixed effect

or the random effect is taken into account. More importantly, both volatility and jump risk

measures show strong nonlinear effects, which suggests that the practice of using aggregate

volatility across board or within rating groups could either overestimated or underestimate

the true impact from individual firms. Finally, but not least, jump and volatility risks in-

teract prominently with rating groups and firm-specific accounting variables. This evidence

indicates that the strong predictability of jump and volatility risks is not merely a statisti-

cal phenomenon, rather, it reflects the financial market assessment of firms’ economic value

and financial health. In particular, the interaction between volatility & jump risks and the

quoted recovery rate suggests that credit default spreads have priced in the time-varying

recovery risk. These findings are consistent with a limited simulation exercise from stylized

structural models, and may help to resolve the so-called credit premium puzzle.

The remainder of the paper is organized as follows. Section 2 introduces the methodology

for disentangling volatility and jump risks with high frequency data. Section 3 gives a brief

discussion about the credit default swap data and the structural explanatory variables. Sec-

tion 4 presents the main empirical findings regarding jump and volatility risks in explaining

the credit spreads. Some further discussion in supporting the empirical results is included

in Section 5, along with a limited simulation exercise illustrating the relationship between

credit spreads and equity volatility. Section 6 concludes.
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2 Disentangling jump and volatility risks

Equity volatility is central to asset pricing and risk management. Traditionally, researchers

have used the historical volatility measure, which are constructed from daily returns. A

daily return rt is defined as the first difference between the log closing prices on consecutive

trading days, that is

rt ≡ log Pt − log Pt−1 (1)

Historical volatility, defined as the standard deviation of the daily return series over a given

time horizon, is considered as a proxy for the volatility risk of the underlying asset value

process (see, e.g., Campbell and Taksler, 2003).

In recent years, given the increased availability of high-frequency financial data, a num-

ber of scholars, including Andersen and Bollerslev (1998), Andersen et al. (2001, 2005),

Barndorff-Nielsen and Shephard (2002a,b), and Meddahi (2002), have advocated the use

of so-called realized volatility measures by utilizing the information in the intra-day data

for measuring and forecasting volatilities. More recent work on bi-power variation measures,

which are developed in a series of papers by Barndorff-Nielsen and Shephard (2003a,b, 2004),

allows the use of high-frequency data to disentangle realized volatility into continuous and

jump components, as in Andersen et al. (2004) and Huang and Tauchen (2004). In this

paper, we rely on the stylized fact that jumps on financial markets are rare and of large

size, to explicitly estimate the jump intensity, jump variance, and jump mean (positive and

negative), and to assess more explicitly the impacts of volatility and jump risks on credit

spreads.

Let pt denote the time t logarithmic price of the asset, and it evolves in continuous time

as a jump diffusion process:

dpt = µtdt + σtdWt + κtdqt (2)

where µt and σt are the instantaneous drift and volatility, Wt is the standard Brownian

motion, dqt is a Poisson jump process with intensity λJ , and κt refers to the size of the

corresponding (log) jump, which is assumed to be normally distributed with mean µJ and

variance σ2
J . Note that all these jump parameters are allowed to be time-varying. Time is
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measured in daily units and the intra-day returns are defined as follows:

rt,j ≡ pt,j·∆ − pt,(j−1)·∆ (3)

where rt,j refers to the jth within-day return on day t, and ∆ is the sampling frequency.2

Barndorff-Nielsen and Shephard (2003a,b, 2004) propose two general measures to the

quadratic variation process, realized volatility and realized bipower variation, which converge

uniformly (as ∆ → 0) to different quantities of the jump-diffusion process,

RVt ≡
1/∆∑
j=1

r2
t,j →

∫ t

t−1

σ2
sds +

1/∆∑
j=1

κ2
t,j (4)

BVt ≡ π

2

1/∆∑
j=2

|rt,j| · |rt,j−1| →
∫ t

t−1

σ2
sds (5)

Therefore the asymptotic difference between realized volatility and bipower variation is zero

when there is no jump and strictly positive when there is a jump. A variety of jump detection

techniques have been proposed and studied by Barndorff-Nielsen and Shephard (2004), An-

dersen et al. (2004), and Huang and Tauchen (2004). Here we adopt the ratio test statistics

used by Huang and Tauchen (2004),

RJt ≡ RVt − BVt

RVt
(6)

When appropriately scaled by its asymptotic variance, z = RJtq
Avar(RJt)

converges to a

standard normal distribution.3 This test has excellent size and power (Huang and Tauchen,

2004), and tells us whether there is a jump occurred during a particular day, and how much

the jump component contributes to the total realized volatility, i.e., the ratio of
∑1/∆

j=1 κ2
t,j

over RVt.

To gain further insight, we assume that (1) there is at most one jump per day and (2)

jump size dominates return on jump days. Following the concept of “significant jumps” by

2That is, there are 1/∆ observations on every trading day. Typically the 5-minute frequency is used
because more frequent observations might be subject to distortion from market microstructure (Aı̈t-Sahalia
et al., 2005; Bandi and Russell, 2005).

3See Appendix A for implementation details and Huang and Tauchen (2004) for the finite sample perfor-
mance of competing jump detection statistics. We also find that using the test level of 0.999 produces the
most consistent result. We also use staggered returns in constructing the test statistics, to control for the
potential measurement error problem (see Appendix A).
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Andersen et al. (2004), we use the following methodology to filter out the daily realized

jumps,

Jt = sign(rt) ×
√

RVt − BVt × I(z > Φ−1
α ) (7)

where Φ is the probability of a standard Normal distribution and α is the level of significance

chosen as 0.999. This method is consistent with the intuition that jumps on financial markets

are rare and large. It enables us to estimate various jump parameters for a given horizon:

λJ as the ratio of the number of jump days over the number of trading days, µJ as the

sample mean of Jt, and σJ as the sample standard deviation of Jt. Further, µ+
J and µ−

J can

be estimated as the sample means of positive Jt and negative Jt, respectively. Tauchen and

Zhou (2005) shows that under empirically realistic settings, such a method of identifying

realized jumps and estimating jump parameters is accurate and efficient in finite samples,

as both the sample size increases and the sampling interval shrinks. Equipped with such a

new technique, we are ready to reexamine the impact of jumps on credit spreads.

3 CDS spreads and structural explanatory variables

Throughout this paper we choose to use the CDS premium as a direct measure of credit

spreads. Credit default swaps are the most popular instrument in the rapidly-growing credit

derivative markets. A CDS provides insurance against the default risk of a reference entity

(usually a third party). The protection seller promises to buy the reference bond at its par

value when a credit event (including bankruptcy, obligation acceleration, obligation default,

failure of payment, repudiation or moratorium, or restructuring) occurs. In return, the

protection buyer makes periodic payments to the seller until the maturity date of the CDS

contract or until a credit event occurs. This periodic payment, which is usually expressed

as a percentage (in basis points) of its notional value, is called CDS spread. Ideally, credit

spread is a pure measure of the default risk of the reference entity.4

Compared with corporate bond spreads, which were widely used in previous studies in this

area, CDS spreads have several advantages. First, CDS spread is a relatively pure pricing

of default risk of the underlying entity. The contract is typically traded on standardized

terms. By contrast, bond spreads are more likely to be affected by differences in contractual

4There has been a growing interest in examining the pricing determinants of credit derivative and bond
markets (Cossin and Hricko, 2001; Houweling and Vorst, 2005) and the role of the CDS spreads in forecasting
future rating events (Hull et al., 2003; Norden and Weber, 2004).
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arrangements, such as the seniority, coupon rates, embedded options and guarantees. Second,

Longstaff et al. (2005) find that a large proportion of bond spreads are determined by liquidity

factors, which do not necessary reflect the default risk of the underlying asset. Third, Blanco

et al. (2005) and Zhu (2004) show that, while in the long run CDS spreads and bond spreads

are quite in line with each other, in the short run the CDS spreads tend to respond more

quickly to changes in credit conditions. This could be partly attributed to the fact that CDS

is unfunded and does not face the short-sale restriction. Finally, using CDS spread can avoid

the confusion on which proxy to be used as risk-free rates, since they are already quoted as

the differences above swap rates.5

3.1 CDS spreads

The CDS data are provided by Markit, a comprehensive data source that assembles a net-

work of industry-leading partners who contribute information across several thousand credits.

Based on the contributed quotes on each day, Markit creates the daily composite quote for

each contract.6 Together with the pricing information, the dataset also reports the informa-

tion on the reference entity (name, ratings, industry classification and geographic location),

the terms of the contract (maturity, seniority, currency denomination and restructuring

clauses)7, and average recovery rates used by data contributors in pricing each contract.

In this paper we include all CDS quotes written on US entities (sovereign entities ex-

cluded) and denominated in US dollars. We eliminate the subordinated class of contracts

because of their small relevance in the database and unappealing implication in credit risk

pricing. We focus on 5-year CDS contracts with modified restructuring (MR) clause as they

are the most popularly traded in the market. After matching the CDS data with other

information such as equity prices and balance sheet information (discussed below), we are

left with 307 entities in our study. The much larger pool of constituent entities relative to

previous studies makes us more comfortable in interpreting our empirical results.

5Researchers have used Treasury rates, swap rates and repo rates as proxies for risk-free rates in calculating
bond spreads.

6Three major filtering criteria are adopted to remove potential measurement errors: (i) an outlier criteria
that removes quotes that are far above or below the average prices reported by other contributors; (ii) a
staleness criteria that removes contributed quotes that do not change for a very long period; and (iii) a term
structure criteria that removes flat curves from the dataset.

7There are four major types of restructuring clauses: full restructuring, modified restructuring, modified-
modified restructuring and no-restructuring. They differ mainly on the definition of credit events and the
pool of deliverable assets if a credit event occurs. See Packer and Zhu (2005) for discussion on the pricing
implication of restructuring clauses.
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Our sample coverage starts from January 2001 and ends on December 2003. For each

of the 307 reference entities, we create the monthly CDS spread by calculating the average

composite quote in each month, and similarly, the monthly recovery rates linked to CDS

spreads.8 To avoid measurement errors we remove those observations for which there exist

huge discrepancies (above 20%) between CDS spreads with modified-restructuring clauses

and those with full-restructuring clauses. In addition, we also remove those CDS spreads

that are higher than 20%, because those very high CDS spreads can be spurious for two

reasons. First, liquidity tends to dry up when entities are very close to default, therefore the

data are less reliable. Second, under this situation trading is more likely to be involved with

an upfront payment that is not included in the spreads, so CDS premium is not an accurate

reflection of the embedded default risk.

3.2 Structural variables that determine credit spreads

Structural models provide an intuitive framework for identifying the determinants of credit

risk changes. A firm defaults whenever the firm value hits below an exogenously or en-

dogenously determined default boundary. Therefore the default probability of the firm is

determined by all factors that affect the firm value process, the risk-free interest rate, firm

leverage, default boundary and recovery rates. Accordingly, our explanatory variables can be

grouped into three major groups: (i) firm-level equity volatility and jump; (ii) firm’s balance

sheet information; and (iii) macro-financial variables. Theoretic predictions of the impact of

these variables on credit spreads based on standard structural models are listed in Table 1.

(i) Individual volatility and jump

We use two sets of measures for equity volatility of individual firms: historical volatility

calculated from daily equity price and realized volatility calculated from intra-day equity

prices. Data sources are CRSP and TAQ (Trade and Quote), respectively. CRSP provides

daily equity prices that are listed in the US stock market, and TAQ includes intra-day

(tick-by-tick) transactions data for securities listed on the NYSE, AMES and NASDAQ.

8Although composite quotes are available on a daily basis, we choose the data frequency as monthly for
two major reasons. First, balance sheet information is available only on a quarterly basis. Using daily data
is very likely to miss the impact of firms’ balance sheets on CDS pricing. Second, as most CDS contracts
are not frequently traded, the CDS dataset suffers a lot from the sparseness problem if we choose daily
frequency, particularly in the early sample period. A consequence of the choice of monthly frequency is that
there is no obvious autocorrelation in the data set, so the standard OLS regression is a suitable tool in our
empirical analysis.
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Based on the daily equity prices we calculate historical volatility, historical skewness and

historical kurtosis for the 307 reference entities over the 1-month, 3-month and 1-year time

horizon, respectively. Similarly, realized volatility (RV) over the same time horizons are

calculated following the definition in equation (4). Realized volatility is then further decom-

posed into the continuous and jump components on a daily basis using the ratio statistics

based on equation (6) with the test level of 99.9% (see Appendix A for implementation de-

tail). Finally, using the daily actual jumps identified by equation (7), we are able to calculate

the average jump intensity, jump mean and jump standard deviation in a month, a quarter

and a year.

(ii) Firms’ balance sheet information

The firm-level accounting information is obtained from Compustat. Since it is reported

on a quarterly basis, the last available quarterly observations are used to estimate monthly

figures. We include the firm leverage ratio, return on equity (ROE), coverage ratio and

dividend payout ratio. They are defined as following (in percentages):

Leverage =
Current debt + Long term debt

Total equity + Current debt + Long term debt

ROE =
Pre tax income

Total equity

Coverage ratio =
Operating income before depreciation − Depreciation

Interest expense + Current Debt

Dividend payout ratio =
Dividend payout per share

Equity price

(iii) Macro-financial variables

Following the prevalent practice in existing literature, we also include the following macro-

financial variables as explanatory variables of credit spreads: (i) The S&P 500 average daily

return, and its volatility (in standard deviation term) in the past twelve months, which proxy

for the overall state of the economy; (ii) 3-Month Treasury rate; (iii) The slope of the yield

curve, which is defined as the difference between the 10-year and 3-month US Treasury rates.

The data are collected from Bloomberg.

3.3 Summary statistics

The upper part of Table 2 summarizes the industry and rating distributions of our sample

companies. Overall they are evenly distributed across different sectors, but the ratings
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are highly concentrated in the single-A and triple-B categories (combined 73% of total).

High-yield names represent only 20% of total observations, reflecting the fact that CDS on

investment-grade names is still dominating the market.

Table 2 also reports summary statistics of firm-specific accounting and macro-financial

variables. The average credit spread is 172 basis points for the 5-year CDS contracts, which

also exhibit substantial time variations and cross-section differences. Typically CDS spreads

increased substantially in mid-2002, and then declined gradually throughout the remaining

sample period, as shown in Figures 1 and 2. By rating categories the average CDS spread

for single-A to triple-A entities is 45 basis point, whereas the average spreads for triple-B

and high-yield names are 116 and 450 basis points, respectively.

The summary statistics of firm-level volatilities are reported in Table 3.9 The average

daily return volatility (annualized) is between 40 − 50%, which is quite consistent by both

historical and realized measures. The two volatility measures are also highly correlated

(the correlation coefficient is about 0.9). Moreover, based on daily observations, the jump

component explains about 8.46% of the total realized variance on average, and contributes

about 52.3% on those days with significant jumps (the range is around 40-80% across the

307 entities). In Figure 1 we plot the 1-year historical volatility HV, the 1-month continuous

component of realized volatility RV(C) and 1-month jump volatility RV(J) for an individual

firm, the General Motors. The credit spread movements seem to be largely affected by

the 1-month RV(C). Significant jumps do not occur often but appear to cluster together.

Interestingly, jumps appear to be clustered during relative tranquil periods, suggesting that

the detected “jumps” are linked to “unexpected” events. Figure 2 plots the same statistics

by three rating groups. Obviously, high-yield entities are much more volatile, but there

is no obvious distinction within the investment-grade category. However, jump volatility

RV(J) does exhibit some differences between the BBB rating group and the AAA-to-A

rating groups.

Another interesting finding is the very low correlation between jump volatility RV(J)

and historical skewness or kurtosis. This looks surprising at first, as both skewness and

kurtosis have been proposed as proxies for detecting jumps in asset return processes.10 On

careful examination, this may reflect the inadequacy of both variables in measuring jumps.

9Throughout the remaining part of this paper, “volatility” refers to the standard deviation term to
distinguish from the “variance” representation.

10Skewness is often loosely associated with the existence of jumps in the financial industry, while kurtosis
can be formalized as an econometric test of the jump-diffusion process (Drost et al., 1998).
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Historical skewness is an indicator of the asymmetry in asset returns. A large and positive

skewness means that extreme upward movements are more likely to occur. Nevertheless,

skewness is not a sufficient statistics of jumps. For example, if upward and downward jumps

are equally likely to occur, then skewness is always zero. On the other hand, jump volatility

RV(J) and kurtosis are direct indicators of the existence of jumps in the continuous-time

framework, but the fact that both measures are non-negative suggests that they are unable to

reflect the direction of jumps, which is crucial in determining the pricing impact of jumps on

CDS spreads.11 Given the caveats of these measures, we further propose the jump intensity,

jump mean, and jump volatility measures based on the signed daily jumps in equation (7).

These measures can be used together to provide a full picture of the underlying jump risk

impact.

4 Empirical evidence

Our empirical work focuses on the influence of equity return volatility and jumps on credit

spreads. We first run regressions with only jump and volatility measures. Then we also

include other control variables, such as ratings, macro-financial variables and balance sheet

information, as predicted by the structural models and evidenced by empirical literature.

Further robustness check with fixed effect and random effect does not affect our results qual-

itatively. We also find strong interaction effect between jump and volatility measures on the

one side, and rating variables and firm’s accounting information on the other, suggesting that

the impact of financial market risk measures is related to the fundamental health of firms’

balance sheet. Finally, the apparent nonlinear effect of jump and volatility risks indicates

that using aggregate volatility or rating group measures may over- or under- estimate the

true impact of volatility and jump on credit spreads.12

4.1 Volatility and jump effects on credit spreads

Table 4 reports the main findings of ordinary least squares (OLS) regressions, which explain

credit spreads only by different measures of equity return volatility and/or jump measures.

11We have also calculated the skewness and kurtosis based on the five-minute returns. The results are
similar and therefore not reported in this paper. More importantly, high-frequency measures are not able to
get rid of the above shortcomings by definition.

12We should emphasize that all the volatility and jump variables as well as firm accounting variables are
lagged at least one month. Therefore we are immune from the simultaneity bias that inflates the R-squares.
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Regression (1) using 1-year historical volatility alone yields a R-square of 45%, which is

higher than the main result of Campbell and Taksler (2003, regression 8 in Table II, R-

square 41%) with all volatility, ratings, accounting information, and macro-finance variables

combined together. Regression (2) and (3) show that short term realized volatility also

explains a significant portion of spread variations, and that combined long-run (1-year HV)

and short-run (1-month RV) volatilities gives the best result of R-square at 50%. The signs

of coefficients are all correct — high volatility raises credit spread, and the magnitudes are

all sensible — a one percentage volatility shock raises the credit spread by about 3 to 9 basis

points. The statistical significance will remain even if we put in all other control variables

(discussed in the following subsections).

The much higher explanatory power of equity volatility may be partly due to the gains

from using CDS spreads, since bond spreads (used in previous studies) have a larger non-

default-risk component. However, our study is distinct from previous studies by including

the short-term equity volatility. In combination with the long-run volatility, it gives a rough

indicator on the stochastic movement in equity volatility. The significant gains in the ex-

planatory power seem to support the view that the time variation in volatility, an issue

largely ignored in the existing literature on credit risk, is important in determining credit

spreads (see Section 5 for more discussion).

Our major contribution is to construct innovative jump measures and show that jump

risks are indeed priced in CDS spreads. Regression (4) suggests that historical skewness as

a measure of jump risk can have a correct sign (positive jumps reduce spreads), provided

that we also include the historical kurtosis which always has a correct sign (more jumps

increases spread). This is in contrast with the counter-intuitive finding that skewness has

a significantly positive impact on credit spreads (Cremers et al., 2004b). However, the

total predictability of traditional jump measure is still very dismal — only 3% in R-square.

Our new measures of jumps — regressions (5) to (7) — give significant estimates, and by

themselves explain 23% of credit spread variations. A few points are worth mentioning. First,

the jump volatility has the strongest impact — raising default spread by 3-5 basis points for

one percentage increase. Second, when jump mean effect (-0.2 basis point) is decomposed

into positive and negative parts, there is some asymmetry in that positive jumps only reduce

spreads by 0.5 basis point but negative jumps can increase spreads by 1.50 basis points.

Hence we will treat the two directions of jumps separately in the remaining part of this

paper. Third, average jump size only has a muted impact (-0.2) and jump intensity can
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switch sign (from 0.7 to -0.6), which may be explained by controlling for positive or negative

jumps.

Our new benchmark—regression (8) explains 53% of credit spreads with volatility and

jump variables alone. To summarize, both long-run and short-run volatilities have significant

positive impacts, so do jump intensity, jump volatility, and negative jump; while positive

jump reduces spreads.

4.2 Extended regression with traditional controlling variables

We then include more explanatory variables—credit ratings, macro-financial conditions and

firm’s balance sheet information—all of which are theoretic determinants of credit spreads

and have been widely used in previous empirical studies. The regressions are implemented

in pairs, one with and the other without measures of volatility and jump. Table 5 reports

the results.

In the first exercise, we examine the extra explanatory power of equity return volatility

and jump in addition to ratings. Cossin and Hricko (2001) suggest that rating information

is the single most important factor in determinant CDS spreads. Indeed, our results confirm

their findings that rating information alone explains about 57% of the variation in credit

spreads, about the same as the volatility and jump effects are able to explain (see Table

4). By comparing the rating dummy coefficients, apparently lower-rating entities are priced

significantly higher than high-rating ones, which is economically intuitive and consistent

with the existing literature. A remarkable result is that, volatility and jump risks can

explain another 16% of the variation (R2 increases to 73%).

The increase in R2 is also very large in the second pair of regressions. Regression (3) shows

that all other variables, including macro-financial factors (market return, market volatility,

the level and slope of the yield curve), firm’s balance sheet information (ROE, firm leverage,

coverage and dividend payout ratio) and the recovery rate used by CDS price providers, com-

bined explain an additional 6% of credit spread movements on the top of rating information

(regression (3) versus (1)). The combined impact increase is smaller than the volatility and

jump effect (16%). Moreover, regression (4) suggests that the inclusion of volatility and jump

effect provides another 12% explanatory power compared to regression (3). R2 increases to

a very high level of 0.75. The results suggest that the volatility effect is independent of the

impact of other structural or macro factors.

The jump and volatility effects are very robust, with the same signs and little change in
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magnitudes. To gauge the economic significance more systemically, it is useful to go back to

the summary statistics presented earlier (Table 3). The cross-firm averages of the standard-

deviation of the 1-year historical volatility and the 1-month realized volatility (continuous

component) are 18.57% and 25.85%, respectively. Such shocks lead to a widening of the credit

spreads by almost 46-55 and 42-51 basis points, respectively. For the jump component, a

one standard-deviation shock in JI, JV, JP and JN (49.11%, 19.63%, 113.98% and 110.97%)

changes the credit spread by about 50, 25, 70 and 35 basis points, respectively. Adding them

up, these factors could be able to explain a large component of the cross-sectional difference

and temporal variation in credit spreads observed in the data.

Judging from the full model of regression (4), a majority of macro-financial factors and

firm variables have the expected signs. The market return has a significant negative impact

on the spreads, consistent with the business cycle effect. High leverage ratio and high

dividend payout ratio tend to increase credit spread significantly, which is consistent with

structural model insight. Other control variables seem to have either marginal t-statistics

or economically counter-intuitive signs, and their signs & magnitudes seem to be unstable

depending on model specification.

Another observation, which needs to be emphasized, is that the high explanatory power

of rating dummies quickly diminished when the macro-financial and firm specific variables

are included. The t-ratios of ratings precipitate dramatically from regressions (1) and (2) to

regressions (3) and (4), while the t-ratios for jump and volatility measures remain very high.

This result is consistent with the practice of rating agencies that rate entities according to

their accounting information and macroeconomic condition.

4.3 Robustness Check

We also implement a robustness check by using panel data technique with fixed and random

effects (see Table 6). Although Hausman test favors fixed effects over random effects, the

regression results do not differ much between these two approaches. In particular, the slope

coefficients of the individual volatility and jump variables are remarkably stable and qualita-

tively unchanged. On the other hand, only some of the macro-financial and firm accountings

variables have consistent and significant impacts on credit spreads, including market return

(negative), term spread (positive), leverage ratio (positive), and dividend payout (positive).

Also of interest is that the R-square can be as high as 87% in the fixed effect panel regression,
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if we allow firm specific dummies.13

4.4 Interaction with rating group and accounting information

We have demonstrated that equity volatility and jump help to determine CDS spreads.

There remain questions of whether the effect is merely a statistical phenomenon or intimately

related to firm’s credit standing and accounting fundamental, and whether the effect is non-

linear in nature. The next two sub-sections aim to address these two issues respectively.

We first examine whether the volatility effect varies across different rating groups. Re-

gression (1) in Table 7 examines the interactive effects between volatility and jump measures

and three rating groups: triple-A to single-A names, triple-B names and high-yield entities.

The results are remarkable in that the volatility/jump impact coefficients from high yield

entities are typically several times larger than for the top investment grade names. To be

more precise, for long-run volatility the difference is 4.69 over 2.28, short-run volatility 2.53

over 0.37, jump intensity 2.70 over 1.19, jump volatility 3.92 over 0.58, and positive jump

-1.08 over -0.24. Similarly the t-ratios of high-yield interaction terms are also much larger

than those of the investment grade. If we take into account the fact that high-yield names

are associated with much higher volatility and jump risk (Figure 2), the economic implica-

tion of the differences in those interactive coefficients is even more remarkable. In addition,

these differences seem to be much larger for the realized volatility and jump risk measures,

than for the historical volatility measure, which further justifies our approach of identifying

volatility and jump risks separately from high frequency data.

Our measures on jumps and volatilities also interact strongly with the firm specific ac-

counting information. The right panel of Table 7 reports all significant coefficients (for

regression 2). The combined explanatory power for credit spreads reaches a R-square of

80%. And overall, the results support the view that the pricing impact of volatility and

jump risk effect is smaller for those firms with better performance. For example, a higher

recovery rate is related to smaller impacts of the long-run volatility effect, the jump volatil-

ity effect and positive jump effect. Similarly, for highly-leverage firms, their credit spreads

13We have also experimented with the Newey and West (1987) heteroscedasticity and auto-correlation
(HAC) robust standard error, which only makes the t-ratios slightly smaller but makes no qualitative dif-
ferences. This is consistent with the fact that our empirical regressions do not involve overlapping horizons,
lagged dependent variables, or contemporaneous regressors that are related to individual firms’ return,
volatility, and jump measures. The remaining heteroscedasticity is very small given so many firm-specific
variables are included in the regressions.
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appear to be respond more dramatically to changes in long-run and short-run volatility and

negative jumps. Following the same line, the short-term volatility effect is significantly larger

for those firms with high payout ratio (the asset value declines and therefore indebtedness

increases) and low profitability. One exception is the interactive coefficient between short-

term volatility and recovery rates, which turns out to be surprisingly negative. This might

be partly due to the dynamic lead-lag relationship between the two variables. To summa-

rize, the above results reinforce the idea that volatility and jump risks are priced in the

CDS spreads, not only because there are statistical linkages, but also because equity market

trades on the firms’ fundamental information.

4.5 Nonlinear effect and credit premium puzzle

While the theory usually implies a complicated relationship between volatility and credit

spreads, in empirical exercise a simplified linear relationship is often used. This linear ap-

proximation could cause substantial bias in calibration exercise and partly contribute to

the under-performance of structural models, or the so-called credit premium puzzle. For

instance, in Huang and Huang (2003) paper, they used the average equity volatility within

a rating class in their calibration, and found that the predicted credit spread is much lower

than the observed value (average credit spreads in the rating class). However, the “averag-

ing” of individual equity volatility could be problematic if its true impact on credit spread

in non-linear.

Table 8 confirms the existence of the non-linearity effect of volatility and jump. By adding

the squared and cubic terms of the jump and volatility risk measures, we find that most of

the nonlinear terms are statistically significant. The sign of each order may not be quite

interpretable, since the entire nonlinear function is driving the impact. Figure 3 illustrates

the potential impact of this “Jensen inequality” problem, on assessing the performance of

structural models in pricing credit risk. The solid lines plot the aggregate pricing impacts of

1-year and 1-month volatility, jump intensity, jump volatility, positive and negative jumps,

respectively, with each variable of interest ranging from its 5’th and 95’th percentile distri-

butions.

The argument that the ignorance of the nonlinear effect causes the under-performance

of structural models can be clearly illustrated in an example. Consider two firms with 1-

year volatility of HV1 = 23.73% and HV2 = 79.63% respectively (corresponding to the

5’th and 95’th percentile value in the sample), with weights ω1 and ω2 so that ω1HV1 +
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ω2HV2 = 43.62% (43.62% is the sample mean). Suppose that the CDS pricing formula

can be represented by P (HV, · · · ). Whereas the average CDS spread should be calculated

as ω1P (HV1, · · · ) + ω2P (HV2, · · · ), the common practice in model calibration would use

P (ω1HV1 + ω2HV2, · · · ) instead. Figure 3 shows that the predicted credit spread is 37 basis

points lower than the true average credit spread due to this nonlinear effect. Similarly, by

using the average 1-month realized volatility rather than individual ones in calibration, the

credit spreads can be under-predicted by as much as 14 basis points. The non-linear effect

in jump intensity works in the opposite way: it can predict an average credit spread 33 basis

points higher than the true one. This is partially cancelled out by the nonlinearity in the

jump volatility effect (8 basis points). An interesting observation is the signed jumps —

in negative region averaging may under-predict credit spreads but in positive region over-

predict, yielding a small over-prediction in aggregate.

In short, averaging volatilities over individual firms produces significant underfitting of

credit yield curve, while averaging jumps produces small overfitting. The combined effect of

the nonlinearity is indicative to resolve the credit premium puzzle. Although quantitatively,

this consideration is still not able to fully reconcile the disparity yet, it can perhaps point us

to a promising direction for future research to address this issue.

5 Further discussion on supporting evidence

Our positive findings regarding the predictability of volatility and jump impact on credit

spreads may be due to two sources of improvement — better measurement of the jump and

volatility risks and more appropriate empirical specification to include them.

In this paper we use a combination of long-run and short-run volatility to measure the

volatility risk, and construct a few new measures for different dimensions of the jump risk

(jump intensity, jump mean, and jump volatility). The superiority of our jump measures

over traditional ones (skewness and kurtosis) has been discussed in Section 3.3 and will be

skipped here. In addition, there are two justifications for choosing those volatility variables.

First, in most structural models, asset volatility rather than equity volatility is the appro-

priate concept to use in pricing the credit derivatives. Since asset volatility is not directly

observable, empirical work (including ours) has to go for equity volatility. Existing litera-

ture usually adopts the long-term equity volatility, with an implicit assumption that equity

volatility is constant over time. However, this assumption is inconsistent with the prediction
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from structural models. Note for instance that within the Merton (1974) model, although

the asset value volatility is constant, the equity volatility is still time-varying, because the

time-varying asset value generates time-variation in the non-linear delta function. Within

the stochastic volatility model (as discussed below), equity volatility is time-varying because

both the asset volatility and the asset value are time-varying. Therefore, a combination of

both long-run and short-run volatility could be used to reflect the time-variation in equity

volatility, which has often been ignored in the past. Second, whereas structural models typ-

ically stipulate that expected volatility matters, in this paper we use lagged variables. This

is supported by the recent findings in Andersen et al. (2004). They show that including

lagged realized volatility of different time horizons, particularly when jump measures are

added as additional explanatory variables, one can significantly improve the volatility fore-

casting accuracy. Therefore, the use of lagged variables can be considered as a reduced-form

expectation of future volatility.

The inclusion of jumps measure in explaining credit spreads is also supported by the

simulation analysis by Zhou (2001). Following Merton (1976), Zhou (2001) introduces a

jump component into the standard credit pricing framework, and simulates the relationship

between credit spreads and jump characteristics. In particular, he shows that credit spreads

increase with jump intensity and jump volatility, which are consistent with our empirical

results. Zhou (2001) also suggests that because the presence of potential jumps, the credit

spreads for very short maturities can be significantly higher than zero, which is a confounding

challenge for standard structural models in explaining the investment grade names. We move

even further to explore the interactive effect between the jump component and firm value

fundamentals and to document explicitly the nonlinear impact of jump impact on credit

spreads, two issues that have not been well studied within a stylized structural framework.

Furthermore, our model specifications in Tables 7 and 8, in which interactive terms

and nonlinear terms are included, and their high explanatory power, are also qualitatively

consistent with the structural model implications. In Appendix B we describe a simulation

exercise that allows us to examine the capability of a standard model of Merton (1974) and a

stochastic volatility model, one of the specifications examined by Huang (2005), in replicating

the forecast-ability of historical equity volatility for credit premium. Based on the simulated

time series we perform regression analysis between current month credit spread and lagged

one year & one month volatility of equity, nonlinear volatility term, and an interaction term

of equity volatility and asset value change (i.e. firm leverage). The results are shown in
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Table 9.

It is clear that even with the Merton (1974) model, 1-year and 1-month equity volatility

and volatility squared show strong predictability for credit risk premia, with R-square be-

tween 0.53, 0.57 and 0.53, and positive signs largely consistent with our empirical findings.

Also note that the interaction term of long-run equity volatility and firm value change is

negatively impacting the credit spreads, which is also consistent with our empirical evidence

in Table 7 on historical volatility and recovery rate. It should be point out that within

the Merton (1974) model the asset volatility is constant. However the equity volatility is

time-varying due to the fact that the nonlinear delta function depends on the time-varying

firm value. Our justification of time-varying volatility effect on credit spread is completely

opposite to that of Campbell and Taksler (2003), who assume that debt is risk-free and that

delta function is constant.

As seen from Table 9, a stochastic volatility model produces similar predictability R-

squares and coefficient signs, for the default risk premium from long-run and short-run

equity volatility, nonlinear term, and interaction term. However, coefficient magnitudes are

2-10 times larger than the constant volatility model, and t-ratios of parameter estimates are

also higher than the Merton (1974) model. Both the nonlinear and the interaction terms

have similar sign as we discovered in the empirical exercise. Also, the R-square of 0.34-0.55

from volatility and R-square of 0.72 from jointly volatility and interaction combined, match

quite well with what we have found in the actual CDS prediction regressions.

The simulation results also demonstrate the flexibility of credit yield curves from the

time-varying volatility models. Figure 4 illustrates the difference between the credit yield

curves from a stochastic volatility model and the Merton (1974) model. In the benchmark

case (upper left), both models have the same unconditional volatility. The credit curve

from Merton (1974) model is very flat. In contrast, in the stochastic volatility model, the

levels of credit spreads are much higher and the yield curve much steeper up to the one year

maturity. By changing the underlying model parameters, the credit curve from time-varying

volatility model can assume a variety of shapes—flat, steep, hump, straight, etc.. Such a

flexibility may potentially overcome the under-fitting problem of standard structural models,

and may price the individual credit spread more accurately. This, nevertheless, remains a

very challenging task to be accomplished in future research.
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6 Conclusions

In this paper we use a large dataset to examine the impact of theoretic determinants, par-

ticularly firm-level equity return volatility and jumps, on the level of credit spreads in the

credit-default-swap market. Our results find strong volatility and jump effect, which predict

another 16% of the movements in credit spreads after controlling for rating information and

other structural factors. In particular, when all these control variables are included, eq-

uity volatility and jumps are still the most significant factors, even more so than the rating

dummy variables. This effect is economically significant and remains robust to a number

of variants of the estimation method. The volatility and jump effects are the strongest for

high-yield entities and those financially-stressed firms. Furthermore, the volatility and jump

effects exhibit strong non-linearity, which can partially explain the under-performance of

structural models in the existing literature.

We adopt an innovative approach to identify equity jumps of individual firms, which

enables us to assess the impact of various jump risks (intensity, variance, negative jumps)

on default risk premia. Our results on jumps are statistically and economically significant,

which contrasts the typical mixed finding in literature using historical or implied skewness

as jump proxy.

Our study is only a first step towards improving our understanding of the impact of

volatility and jumps on credit risk market. Calibration exercise that takes into account

the time variation of volatility & jump risks and the non-linear effect could be a promising

direction to explore for resolving the so-called credit premium puzzle. Related issues, such as

the connections between equity volatility and asset volatility, are also worth more attention

from both academic researchers and market practitioners.
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Appendix

A Test statistics of daily jumps

Barndorff-Nielsen and Shephard (2004) and Huang and Tauchen (2004) adopt a test statistics

of significant jumps based on the ratio statistics as defined in equation (7),

z =
RJt

[((π/2)2 + π − 5) · ∆ · max(1, TPt

BV2

t

)]1/2
(8)

where ∆ and BVt are defined as in Section 2 and

TPt ≡ 1

4∆[Γ(7/6) · Γ(1/2)−1]3
·

1/∆∑
j=3

|rt,j |4/3 · |rt,j−1|4/3 · |rt,j−2|4/3

When ∆ → 0, TPt →
∫ t

t−1
σ4

sds and z → N(0, 1). Hence daily “jumps” can be detected by

choosing different levels of significance.

In implementation, Huang and Tauchen (2004) suggest to use staggered returns to break

the correlation in adjacent returns, an unappealing phenomenon caused by the microstruc-

ture noise. In this paper we follow this suggestion and use the following generalized bipower

measures (i = 1):

BVt ≡ π

2

1/∆∑
j=2+i

|rt,j| · |rt,j−(1+i)|

TPt ≡ 1

4∆[Γ(7/6) · Γ(1/2)−1]3
·

1/∆∑
j=1+2(1+i)

|rt,j|4/3 · |rt,j−(1+i)|4/3 · |rt,j−2(1+i)|4/3

Following Andersen et al. (2004), the continuous and jump components of realized volatil-

ity on each day are defined as

RV(J)t =
√

RVt − BVt · I(z > Φ−1
α ) (9)

RV(C)t =
√

RVt · [1 − I(z > Φ−1
α )] +

√
BVt · I(z > Φ−1

α ) (10)

where RVt is defined by equation (4), I(·) is an indicator function and α is the chosen

significance level. Based on the Monte Carlo evidence in Huang and Tauchen (2004) and

Tauchen and Zhou (2005), we choose the significance level α as 0.999 with adjustment for

microstructure noise.
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B Simulations based on a structural model with time-

varying volatility

Given constant risk-free rate r and constant default boundary K, firm value process Vt with

stochastic volatility σt,

dVt

Vt
= (µt − δ)dt + σtdW1t (11)

dσ2
t = β(α − σ2

t )dt + γσtdW2t (12)

where the innovations in value and volatility processes are correlated as corr(dW1t, dW2t) =

ρdt. Existing model usually assumes stochastic interest rate and time varying leverage, but

keeps the volatility constant. Assuming that all assets are traded and no-arbitrage implies

the existence of an equivalent martingale measure,

dVt

Vt

= (r − δ)dt + σtdW ∗
1t (13)

dσ2
t = β∗(α∗ − σ2

t )dt + γσtdW ∗
2t (14)

with volatility risk premium ξ, such that β∗ = β + ξ and α∗ = βα/β∗. Equity price St of the

firm can be viewed as an European call option with matching maturity T for debt Dt with

face value K. The solution is given by Heston (1993),

St = VtP
∗
1 − Ke−r(T−t)P ∗

2 (15)

where P ∗
1 and P ∗

2 are risk-neutral probabilities. In the context of Merton (1974) model,

these probabilities are from normal distributions with a constant asset volatility parameter

σ2
t = α, i.e., St = VtN

∗
1 − Ke−r(T−t)N∗

2 . Therefore the debt value of both models can be

expressed as Dt = Vt − St, and its price is Pt = Dt/K. The credit default spread is given by

Rt − r = − 1

T − t
log(Pt) − r (16)

In simulations, we set the parameters as following: β = 0.10, α = 0.25, γ = 0.10,

ξ = −0.20, and ρ = −0.50. To focus on stochastic volatility, we set non-essential parameters

to zero, i.e., µt = δ = r = 0. In addition, the starting value of the asset is set at 100 and

the debt boundary is set at 60. For each random sample, we simulate 10 years of daily

realization, and then calculate the monthly variables similar to the empirical exercise. We

perform regression analysis between current month credit spread and lagged 1-year volatility,

1-month volatility, volatility squared, and interactions including volatility and asset value

change. The total Monte Carlo replications is 2000. The results are shown in Table 9.
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Table 1: Theoretic prediction of the impact of structural factors on credit spreads

Variables Impacts Economic intuitions

Equity return Negative A higher growth in firm value reduces the probability of default (PD).
Equity volatility Positive Higher equity volatility often implies higher asset volatility, therefore the

firm value is more likely to hit below the default boundary.
Equity skewness Negative Higher skewness means more positive returns than negative ones.
Equity kurtosis Positive Higher kurtosis means more extreme movements in equity returns.
Jump component Zhou (2001) suggests that credit spreads increase in jump intensity and

jump variance (more extreme movements in asset returns), and decrease in
the mean of jump size as it implies that more positive returns are likely to
occur.

Firm leverage Positive The Merton (1974)’s framework predicts that a firm defaults when its lever-
age ratio approaches one. Hence credit spreads increase with leverage.

ROE Negative PD is lower when the firm’s profitability improves.
Coverage ratio Negative It measures the firm’s ability to pay back its outstanding debt.
Dividend payout ratio Positive A higher dividend payout ratio means a decrease in asset value, therefore

a default is more likely to occur.
General market return Negative Higher market returns indicate an improved economic environment.
General market volatility Positive Economic conditions are improved when market volatility is low.
Short-term interest rate Ambiguous A higher spot rate increases the risk-neutral drift of the firm value process

and reduces PD (Longstaff et al., 2005). Alternatively, it may reflect a
tightened monetary policy stance and therefore PD increases.

Slope of yield curve Ambiguous A steeper slope of the term structure is an indicator of improving economic
activity in the future, but it can also forecast an economic environment
with rising inflation rate and monetary tightening of credit.

Recovery rates Negative Higher recovery rates reduces the present value of protection payments in
the CDS contract.
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Table 2: Summary Statistics: (upper left) sectoral distribution of sample entities; (upper right) distribution of credit
spread observations by ratings; (lower left) firm-specific information; (lower right) macro-financial variables.

By sector number percentage (%) By rating number percentage (%)

Communications 20 6.51 AAA 219 2.15
Consumer cyclical 63 20.52 AA 559 5.48
Consumer Stable 55 17.92 A 3052 29.92
Energy 27 8.79 BBB 4394 43.07
Financial 23 7.49 BB 1321 12.95
Industrial 48 15.64 B 544 5.33
Materials 35 11.40 CCC 112 1.10
Technology 14 4.56
Utilities 18 5.88
Not specified 4 1.30
Total 307 100 Total 10201 100
Firm-specific variables Mean Std. dev. Macro-financial variables Mean (%) Std. dev.
Recovery rates (%) 39.50 4.63 S&P 500 return -13.15 14.72
Return on equity (%) 4.50 6.80 S&P 500 vol 22.42 2.90
Leverage ratio (%) 48.81 18.64 3-M Treasury rate 2.04 1.24
Coverage ratio (%) 125.94 209.18 Term spread 2.51 0.96
Div. Payout ratio (%) 0.41 0.47
5-year CDS spread (bps) 172 230
1-year CDS spread (bps) 157 236
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Table 3: Summary statistics of equity returns

2.A Historical measures (%)
Variables 1-month 3-month 1-year

mean std dev mean std dev mean std dev

Hist ret 3.12 154.26 1.58 87.35 -3.22 42.70
Hist vol (HV) 38.35 23.91 40.29 22.16 43.62 18.57
Hist skew (HS) 0.042 0.75 -0.061 0.93 -0.335 1.22
Hist kurt (HK) 3.36 1.71 4.91 4.25 8.62 11.78

2.B Realized measures (%)
Variables 1-month 3-month 1-year

mean std dev mean std dev mean std dev

RV 45.83 25.98 47.51 24.60 50.76 22.49
RV(C) 44.20 25.85 45.96 24.44 49.37 22.25
RV(J) 7.85 9.59 8.60 8.88 9.03 8.27

2.C Correlations
Variables 1-month 3-month 1-year

(HV, RV) 0.87 0.90 0.91
(HV, RV(C)) 0.87 0.89 0.90
(HS, RV(J)) 0.006 0.014 0.009
(HK, RV(J)) 0.040 0.025 0.011

Notes: (1) Throughout all the tables, historical volatility HV, realized volatility RV and its continuous
RV(C) and jump RV(J) components are represented by their standard deviation terms; (2) The continuous
and jump components of realized volatility are defined at a significance level of 99.9% (see Appendix A).
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Table 4: Baseline regression: explaining 5-year CDS spreads using individual equity volatilities and jumps

Dependent variable: 5-year CDS spread (in basis point)

Explanatory variables 1 2 3 4 5 6 7 8

Constant -207.22 -91.10 -223.11 147.35 169.29 85.66 20.80 -273.46
(36.5) (18.4) (40.6) (39.6) (50.3) (20.8) (3.9) (42.8)

1-year HV 9.01 6.51 6.90
(72.33) (40.2) (38.8)

1-year HS -10.23
(3.2)

1-year HK 2.59
(7.5)

1-month RV 6.04 2.78
(60.5) (23.0)

1-month RV(C) 2.37
(20.2)

1-year JI 0.71 -0.65 1.46
(9.5) (5.0) (13.4)

1-year JM -0.21
(15.8)

1-year JV 5.21 3.44 1.20
(32.9) (14.4) (6.3)

1-year JP -0.45 -0.67 -0.62
(7.3) (9.8) (11.8)

1-year JN 1.47 1.56 0.45
(22.9) (23.6) (8.3)

Adjusted R2 0.45 0.37 0.50 0.03 0.19 0.14 0.23 0.53
Obs. 6342 6353 6337 6342 6064 6328 6064 6064

Notes: (1) t-statistics in the parenthesis; (2) JI, JM, JV, JP and JN refer to the jump intensity, jump mean, jump standard deviation, positive
jumps and negative jumps as defined in Section 2.
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Table 5: Regressions with ratings, individual equity volatilities & jumps, macro-
financial variables, firm-specific variables and recovery rates

Regression 1 2 3 4
coef t-stat coef t-stat coef t-stat coef t-stat

1-year Return -0.81 (17.5) -0.67 (13.6)
1-year HV 2.49 (15.9) 2.94 (17.3)
1-month RV(C) 1.97 (19.7) 1.65 (16.0)
1-year JI 0.94 (10.4) 1.10 (11.6)
1-year JV 1.22 (8.1) 1.57 (10.7)
1-year JP -0.67 (15.7) -0.62 (14.7)
1-year JN 0.37 (8.3) 0.26 (6.1)
Rating (AAA) 33.48 (2.1) -166.67 (11.6) -71.34 (1.3) -205.34 (4.4)
Rating (AA) 36.72 (4.7) -146.40 (18.4) -76.05 (1.4) -184.05 (4.1)
Rating (A) 56.15 (16.0) -132.42 (22.2) -61.11 (1.1) -177.01 (3.9)
Rating (BBB) 141.29 (50.4) -68.60 (10.4) 12.74 (0.2) -121.13 (2.7)
Rating (BB) 428.21 (73.7) 142.66 (16.1) 278.61 (5.1) 84.96 (1.9)
Rating (B) 745.31 (79.8) 349.20 (27.7) 544.38 (9.9) 239.69 (5.3)
Rating (CCC) 1019.60 (36.5) 552.25 (21.7) 503.92 (7.4) 98.61 (1.8)
S&P 500 return -1.86 (7.5) -1.23 (8.4)
S&P 500 vol 4.46 (3.9) -3.03 (3.1)
Short rate 17.36 (2.9) 2.70 (0.5)
Term spread 26.23 (3.5) 16.13 (2.7)
Recovery rate -2.59 (5.4) 0.12 (0.3)
ROE -3.89 (12.5) -0.91 (3.4)
Leverage ratio 0.53 (4.3) 0.70 (6.9)
Coverage ratio -0.023 (2.1) -0.002 (0.2)
Div. payout ratio 3.74 (0.9) 12.86 (3.6)
Adjusted R2 0.57 0.73 0.63 0.75
Obs. 6124 5784 4574 4366
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Table 6: Robustness check: panel data estimation

Fixed Effect Random Effect

Regression 1 2 1 2
coef t-stat coef t-stat coef t-stat coef t-stat

1-year Return -0.73 (16.2) -0.70 (15.7)
1-year HV 2.96 (16.4) 0.82 (4.4) 2.74 (19.2) 1.17 (6.5)
1-month RV(C) 2.61 (32.5) 1.67 (21.0) 2.56 (32.1) 1.69 (21.4)
1-year JI 0.10 (0.7) 0.10 (0.7) -0.07 (0.5) 0.37 (2.8)
1-year JV 0.96 (0.7) 1.17 (8.4) 0.74 (4.9) 1.17 (8.4)
1-year JP -0.71 (15.2) -0.52 (11.8) -0.68 (14.8) -0.50 (11.6)
1-year JN 0.52 (9.8) 0.38 (7.9) 0.59 (11.6) 0.42 (9.1)
Rating (AAA) -206.72 (4.4)
Rating (AA) 19.70 (0.5) -189.42 (4.4)
Rating (A) 52.77 (1.6) -149.84 (3.9)
Rating (BBB) 79.91 (2.4) -105.95 (2.7)
Rating (BB) 109.01 (3.1) -27.45 (0.7)
Rating (B) 148.79 (3.8) 52.08 (1.3)
Rating (CCC) 150.91 (1.5)
S&P 500 return -1.12 (10.1) -1.14 (10.4)
S&P 500 vol -2.43 (3.1) -1.98 (2.6)
Short rate 7.81 (2.0) 10.10 (2.6)
Term spread 18.34 (4.1) 19.80 (4.4)
Recovery rate 0.27 (0.7) 0.23 (0.6)
ROE 0.21 (0.8) 0.05 (0.2)
Leverage ratio 1.05 (3.7) 1.32 (5.4)
Coverage ratio -0.02 (1.9) -0.013 (1.2)
Div. payout ratio 36.52 (7.8) 33.84 (7.5)
Adjusted R2 0.81 0.87 – –
Obs. 6064 4366 6064 4366
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Table 7: Interactive effects of equity volatilities and jumps

Regression 1 2

coef t-stat coef t-stat

Constant -64.88 (1.5) 49.55 (0.8)
1-year Return -0.49 (10.3) -0.56 (11.9)
HV*Group 1 2.28 (8.1) 12.29 (9.0)
HV*Group 2 2.64 (12.0) 12.81 (9.6)
HV*Group 3 4.69 (22.4) 14.44 (10.7)
RV(C)*Group 1 0.37 (2.1) -11.86 (12.9)
RV(C)*Group 2 1.77 (12.2) -10.37 (11.4)
RV(C)*Group 3 2.53 (14.3) -9.60 (10.3)
JI*Group 1 1.19 (5.2) 2.31 (2.6)
JI*Group 3 2.70 (16.4) 4.26 (4.7)
JV*Group 1 0.58 (1.9) 2.92 (2.1)
JV*Group 3 3.92 (18.6) 5.90 (4.6)
JP*Group 1 -0.24 (2.3) -1.87 (4.6)
JP*Group 2 -0.29 (4.6) -1.84 (4.7)
JP*Group 3 -1.08 (16.1) -2.43 (6.2)
S&P 500 return -1.38 (9.7) -1.39 (10.3)
S&P 500 vol -2.91 (3.1) -3.17 (3.6)
3M Treasury rate 4.86 (1.0) -6.66 (1.4)
Term spread 8.43 (1.4) 8.59 (1.6)
Recovery rate 0.18 (0.5) 1.37 (1.3)
ROE -0.91 (3.6) -3.81 (5.5)
Leverage ratio 0.73 (7.4) -2.03 (6.9)
Coverage ratio -0.01 (0.5) 0.01 (0.5)
Div payout ratio 12.84 (3.7) 12.71 (1.1)
HV*Recovery -29.16 (9.5)
HV*ROE 7.41 (5.0)
HV*Leverage 2.88 (3.4)
RV(C)*Recovery 27.42 (13.0)
RV(C)*ROE -3.52 (2.6)
RV(C)*Leverage 2.31 (3.8)
RV(C)*DivPayout 36.01 (2.5)
JV*Recovery -5.96 (2.0)
JP*Recovery 4.16 (4.6)
JP*ROE 2.73 (3.6)
JN*Leverage 1.32 (4.9)
Adjusted R2 0.77 0.80
Obs. 4366 4366

Notes: “ Group 1” is a dummy variable that incudes ratings AAA, AA ad A; “Group 2” is a dummy variable
of rating BBB; and “Group 3” is a dummy variable that includes ratings BB, B and CCC. Interaction terms
only includes those with t-ratios larger than 2.0 in the second regression.
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Table 8: Nonlinear effects of equity volatilities and jumps

Regression 1 2

coef t-stat coef t-stat

Constant -28.35 (1.4)
1-year Return -0.25 (4.4) -0.68 (14.1)
HV -3.14 (2.4) -5.34 (4.2)
HV2 2.13 (6.6) 1.86 (5.4)
HV3 -0.11 (4.6) -0.11 (3.9)
RV(C) 0.25 (0.5) 0.18 (0.4)
RV(C)2 0.37 (3.6) 0.26 (2.6)
RV(C)3 -0.01 (2.8) -0.01 (1.3)
JI 3.57 (6.1) 2.76 (5.9)
JI2 -0.39 (3.9) -0.44 (5.2)
JI3 0.01 (2.6) 0.03 (5.1)
JV 2.18 (3.9) 0.36 (0.8)
JV2 -0.40 (3.5) 0.26 (3.0)
JV3 0.02 (4.3) -0.01 (2.9)
JP -0.67 (3.6) -0.46 (3.0)
JP2 -0.01 (0.7) -0.01 (1.0)
JP3 0.001 (1.8) 0.0003 (1.1)
JN -0.41 (2.1) -0.29 (2.0)
JN2 0.09 (6.2) 0.06 (5.2)
JN3 -0.002 (6.4) -0.001 (5.1)
Rating (AAA) -107.06 (2.3)
Rating (AA) -91.44 (2.0)
Rating (A) -79.11 (1.7)
Rating (BBB) -19.78 (0.4)
Rating (BB) 184.36 (4.0)
Rating (B) 301.08 (6.5)
Rating (CCC) 254.63 (4.5)
S&P 500 return -1.20 (8.4)
S&P 500 vol -0.09 (0.1)
3M Treasury rate 14.35 (3.0)
Term spread 26.64 (4.6)
Recovery rate -0.06 (0.2)
ROE -1.20 (4.7)
Leverage ratio 0.71 (7.3)
Coverage ratio -0.001 (0.1)
Div payout ratio 7.09 (2.1)
Adjusted R2 0.57 0.78
Obs. 6064 4366
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Table 9: Monte Carlo evidence on the predictability of CDS spreads

Variables Merton (1974) Model

1-year vol 1.14 0.59 1.18 1.10
(1.54) (1.15) (0.48) (1.60)

1-month vol 0.97 0.59
(1.56) (1.52)

1-year vol2 6.19 1.08
(2.04) (0.07)

1-year vol×value -0.41 -0.35
(1.19) (1.65)

R-Square 0.53 0.57 0.53 0.25 0.65 0.56 0.75
(2.37) (2.73) (2.39) (1.54) (3.45) (2.48) (4.55)

Variables Stochastic Volatility Model

1-year vol 5.78 4.77 4.74 5.71
(1.91) (1.69) (0.15) (2.06)

1-month vol 2.96 1.09
(1.65) (1.62)

1-year vol2 66.76 26.86
(2.31) (0.07)

1-year vol×value -1.02 -0.95
(1.51) (1.91)

R-Square 0.51 0.34 0.51 0.25 0.55 0.55 0.72
(2.19) (1.93) (2.16) (1.51) (2.52) (2.36) (4.24)

Notes: Monte Carlo t-ratios are reported in the parentheses.
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Figure 1: An example - General Motors
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Figure 2: CDS spreads and volatility risks by rating groups
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Figure 3: Nonlinear effect of individual volatility

Note: The illustration is based on regression 1 in Table 8. X-axis variables have the value
range of 5% and 95% percentiles, with the vertical line corresponding to their mean.
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Figure 4: Simulated term structure of credit spread

Note: The benchmark parameter setting is β = 0.10, α = 0.25, γ = 0.10, ξ = −0.20, and
ρ = −0.50.
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