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The Term Structure of Credit Spreads:
Theory and Evidence on Credit Default Swaps

ABSTRACT

Using a large data set on credit default swaps, we perform a joint analysis of the term structure of

interest rates, credit spreads, and liquidity premia. We select reference companies that fall into two broad

industry sectors and two broad credit rating classes. Within each sector and credit rating class, we divide

the companies into two liquidity groups based on the quote updating frequency. We then study how

the term structures of credit default risk premia differ across industry sectors, credit rating classes, and

liquidity groups.

We develop a class of dynamic term structure models that include two benchmark interest-rate fac-

tors, two credit risk factors for the high-liquidity groups, and an additional default risk factor and a

liquidity risk factor that capture the difference between the two liquidity groups. We link these factors to

the instantaneous benchmark interest rate and credit spread via both an affine function and a quadratic

function, and compare their relative performance.

We estimate the models using a three-step procedure. First,we estimate the interest-rate factor

dynamics and the instantaneous interest rate function using the libor and swap rates. Second, we take the

interest-rate factors and estimate the default-risk dynamics and the instantaneous credit spread function

using the average credit default spreads of the high-liquidity group for each industry sector and credit

rating class. Third, we identify an additional credit risk factor and a liquidity risk factor using the credit

default swap spreads in the low-liquidity group. At each step, we cast the models into a state-space form

and estimate the model parameters using quasi-maximum likelihood method.

Estimation shows that the quadratic specifications generate better and more uniform performance

across the term structure of interest rates and credit spreads. Furthermore, firms in different industry and

credit rating classes have different default risk dynamics. Nevertheless, in all cases, default risks exhibit

intricate dynamic interactions with the interest-rate factors. Interest-rate factors both predict the default

risk and have a contemporaneous impact on it.

Within each industry and credit rating class, the average credit default swap spreads for the high-

liquidity group are significantly higher than for the low-liquidity group. Estimation shows that the dif-

ference is driven by both default risk and liquidity difference. The low-liquidity group has a lower default

arrival rate, and also a much heavier discounting due to low liquidity.

JEL CLASSIFICATION CODES: E43, G12, G13, C51.

KEY WORDS: credit default swap; credit risk; credit premium; term structure; liquidityrisk; liquidity

premium; quasi-maximum likelihood estimation.



The Term Structure of Credit Spreads:

Theory and Evidence on Credit Default Swaps

How to quantify, forecast, and price default risk, and how the default risk interacts with the interest-rate risk

in determining the term structure of credit spreads are vitally important for decisions in corporate finance,

asset pricing, investment, and risk management. However, data availability has severely hindered the study

of default risk. Since defaults are rare events that often lead to terminationof the underlying reference entity

such as a corporation, researchers need to rely heavily on cross-sectional averages of different entities over a

long history to obtain any reasonable estimates of statistical default probabilities. Although corporate bond

prices contain useful information on the default probability and the price ofdefault risk, the information is

often mingled with the pricing of the underlying interest rate risk and other factors such as liquidity and

tax.1

The recent development in credit derivative securities provides us withan excellent opportunity to better

understand the pricing of default risk and the term structure of credit spreads. The most common credit

derivative is in the form of a credit default swap (CDS) contract, writtenon a reference entity such as a

sovereign country or a corporate company. According to surveys by the International Swaps and Derivatives

Association, Inc., the outstanding notional amount of CDS contracts has reached $3.58 trillion by the end of

2003, surpassing the size of the total equity derivatives market, which stands at $3.44 trillion for the same

time period.

A credit default swap is an over-the-counter contract that provides insurance against credit risk. The

protection buyer pays a fixed fee or premium, often termed as the “spread,” to the seller for a period of time.

If a certain pre-specified credit event occurs, the protection seller pays compensation to the protection buyer.

A credit event can be a bankruptcy of the reference entity, or a default of a bond or other debt issued by the

reference entity. If no credit event occurs during the term of the swap, the protection buyer continues to pay

1Many researchers strive to identify and distinguish the different components of corporate bond yields. Prominent examples

include Jones, Mason, and Rosenfeld (1984), Longstaff and Schwartz (1995), Duffie and Singleton (1997), Duffee (1999), Elton,

Gruber, Agrawal, and Mann (2001), Collin-Dufresne, Goldstein, andMartin (2001), Delianedis and Geske (2001), Liu, Longstaff,

and Mandell (2000), Eom, Helwege, and Huang (2003), Huang andHuang (2003), Collin-Dufresne, Goldstein, and Helwege

(2003), and Longstaff, Mithal, and Neis (2004).



the premium until maturity. Should a credit event occur at some point beforethe contract’s maturity, the

protection seller owes a payment to the buyer of protection, thus insulating thebuyer from a financial loss.

CDS contracts can be used as a way to gain exposure to credit risk. Although the risk profile of a CDS

is similar to that of a corporate bond of the reference entity, there are several important differences. A CDS

does not require an initial funding, which allows leveraged positions. A CDS transaction can be entered

where a cash bond of the reference entity at a particular maturity is not available. Furthermore, by entering a

CDS contract as a protection seller, an investor can easily create a shortposition in the reference credit. With

all these attributes, CDS contracts can be a great tool for diversifying or hedging an investor’s portfolio.

We obtain a large data set on credit default swap spreads. The data setincludes daily CDS spread quotes

from May 21, 2003 to May 12, 2004 on hundreds of corporate companies and across seven fixed maturities

for each company from one to ten years. We select reference companies that fall into two broad industry

sectors (financial and non-financial) and two broad credit rating classes (A and BBB). Within each sector and

credit rating class, we divide the companies into two liquidity groups based onthe quote updating frequency

on credit default swap spreads.2 We also download from Bloomberg the eurodollar libor and swap rates of

matching maturities and sample periods.

Equipped with this large data set, we study the dynamics and pricing of defaultrisk and their impacts of

the term structure of credit default swap spreads across different industry sectors and credit rating classes.

Specifically, through model development and estimation, we address the following fundamental questions

regarding default risk and default risk premia:

• It is well known that the term structure of interest rates is governed by multiple factors. How many

factors govern the term structure of credit spreads? How these factors interact with the interest-rate

factors?

• Unlike the term structure of interest rates that is universal across the whole market, credit risk is indi-

vidually unique and firm-specific. Credit default swaps have been writtenon thousands of reference

2There are a few AA companies and a very limited number of AAA companies but none of those companies satisfies our

liquidity classification criterion.
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entities. How the default risk dynamics and pricing differ across different industry sectors and credit

rating classes?

• Even within the same industry sector and credit rating class, the activities andliquidities of the credit

default swap contracts vary dramatically across different referenceentities. What causes the liquidity

difference and how does the different liquidity affects the pricing of credit default swaps?

To address these questions, we develop a class of dynamic term structuremodels of interest rate risk,

credit risk, and liquidity risk. First, we model the term structure of the benchmark libor and swap rates

using two interest-rate factors. Second, we assume that the default arrival intensities at each industry sector

and credit rating class are governed by either one or two additional dynamic factors. Furthermore, we allow

the interest-rate factors to impact the default risk both dynamically and contemporaneously. We link these

factors to the instantaneous benchmark interest rate and credit spread via both an affine and a quadratic

specification, and compare their relative performances via estimation. Finally, we use an additional default

risk factor and a liquidity risk factor to capture the difference between the credit spreads of the two liquidity

groups with each industry sector and credit rating class.

We estimate the models using a three-step procedure. In the first step, we estimate the interest-rate

factor dynamics and the instantaneous interest rate function using the benchmark libor and swap rates. In

the second step, we take the interest-rate factors extracted from the firststep as given, and estimate the

default-risk dynamics and the instantaneous credit spread function for each industry sector and credit rating

class using the average credit default spreads of the high-liquidity group for that sector and rating class. In

the third step, we identify the additional credit risk factor and the liquidity risk factor using the average credit

default swap spreads in the low-liquidity group. At each step, we cast themodels into a state-space form,

obtain efficient forecasts on the conditional mean and variance of observed interest rates and credit default

swap spreads using an efficient filtering technique, and build the likelihoodfunction on the forecasting errors

of the observed series, assuming that the forecasting errors are normally distributed. We estimate the model

parameters by maximizing the likelihood functions.

Comparing the affine and quadratic specifications, we find that the quadratic specifications generate

better and more uniform performance across the term structure of interest rates and credit spreads. The
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interest-rate and credit-risk dynamics are also estimated with more precision under the quadratic specifica-

tion, an indication of less model mis-specification.

Our estimation shows that one affine default-risk factor can price the moderate-maturity credit default

swap spread well, but the performance deteriorates on both ends of the credit spread curve. Two affine

default-risk factors can price the whole term structure of credit spreads well. In contrast, under the quadratic

specification, one default-risk factor is sufficient to explain over 90 percent of the variation on each of the

seven credit spread series for each industry sector and credit ratingclass. Adding an additional quadratic

credit risk factor does not dramatically improve the performance. Hence,with a nonlinear, richer dynamic

specification, one default-risk factor can explain the majority of the credit spread variation in the high liq-

uidity group.

Our estimation also shows that firms in different industry sectors and credit rating classes have different

default risk dynamics. Nevertheless, in all cases the default risks showintricate dynamic interactions with

the interest-rate factors. Interest-rate factors both predict the defaultrisk and have a contemporaneous impact

on it.

Within each industry sector and credit rating class, we find that the averagecredit default swap spreads

for the high-liquidity group are significantly higher than for the low-liquidity group. The mean term struc-

ture of credit spreads is also more upward sloping for the high-liquidity group. Estimation shows that the

different spreads between the two groups are driven by both credit risk differences and liquidity differences.

On average, the low-liquidity group has lower default arrival rates, and hence a lower instantaneous credit

spread. For each industry sector and credit rating class, we are able toidentify a significant default-risk

factor for the low-liquidity group. This risk factor shows strong risk-neutral persistence, indicating that it

affects the term structure of credit spreads across both short and long maturities. We also identify a highly

volatile but less persistent liquidity risk factor for the credit spreads on thelow-liquidity group. This liquidity

factor induces a strongly positive instantaneous spread on the discountfactor, showing that lower liquidity

induces a heavier discounting on the pricing as a compensation for liquidity premium. The lower credit risk

and heavier liquidity discounting jointly determine the lower spread on the creditdefault swap contracts for

the low-liquidity group in each industry sector and credit rating class.
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The remainder of this paper is organized as follows. The next section provides some background infor-

mation on the credit default swap contract and the related literature. Section2 develops the dynamic term

structure models of interest rates, credit risks, and liquidity premia. Section3 describes the data set and our

processing of the data. Section 4 elaborates on the estimation strategy. Section 5 discusses the estimation

results. Section 6 concludes.

1. Background Information on Credit Default Swap Spread

The International Swaps and Derivatives Association, Inc. estimates theoutstanding notional CDS amount

at $0.92 trillion dollars by the end of 2001. Since then, the notional amount has more tnan tripled to $3.58

trillion by the end of 2003. This explosive development can be attributed to fours sets of players. The largest

players in the CDS market are commercial banks. Traditionally, a bank’s business involves credit risk since

the bank originates loans to corporations. The CDS market offers a bankan attractive way to transfer the

credit risk without removing assets from its balance sheet and without involving borrowers. Furthermore, a

bank may use CDS contracts to diversify its portfolio, which often is concentrated in certain industries or

geographic areas. Banks are the net buyers of credit derivatives. According to Fitch’s 2003 survey, global

banks held net bought positions of $229 billion in credit derivatives, withgross sold positions of $1,324

billion.

On the other hand, insurance companies are increasingly becoming dominant participants in the CDS

market, primarily as sellers of protection, to enhance investment yields. Globally, insurance companies had

net sold positions of $137 billion in 2003. Other players include financial guarantors, who are also big

sellers of protection, with net sold positions of $166 billion. Global hedge funds are also rumored to be

active players in the CDS market, but their activities are notoriously opaqueand are not detected on any

survey’s radar screen.

Sovereign names were prevalent as reference entities in the early days of the CDS market, but the share

of sovereigns as reference entities had declined from over 50 percent in 1997 to less than 10 percent in 2003.

In contrast, corporate reference entities have become more common, accounting for over 70 percent of all
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reference entities in 2003. This shift in reference entities reflects the rapid growth of the corporate bond

market after the mid-1990s.

The premium paid by the protection buyer to the seller, often called the“spread,” is quoted in basis points

per annum of the contract’s notional value and is usually paid quarterly. These spreads are not the same type

of concept as “yield spread” of a corporate bond to a government bond. Rather, CDS spreads are the annual

price of protection quoted in basis points of the notional value, and not based on any risk-free bond or any

benchmark interest rates. Periodic premium payments allow the protection buyer to deliver the defaulted

bond at par or to receive the difference of par and the bond’s recovery value. For example, the five-year

credit default swap for Ford was quoted around 160 basis points on April 27, 2004. This quote means that

if someone wants to buy the five-year protection for a $10 million exposure to Ford credit, the buyer will

pay 40 basis points of the notational exposure, or $40,000, every quarter as an insurance premium for the

protection that the buyer receives. There are no limits on the size or maturity of CDS contracts. However,

most contracts fall between $10 million to $20 million in notional amount. Maturity usually ranges from

one to ten years, with the five-year maturity being the most common maturity.

Given the nascent nature of the CDS contracts, researches using CDSdata are relatively few. Skinner

and Diaz (2003) look at early CDS prices from September 1997 to February 1999 for 31 CDS contracts.

They compare the pricing results of the Duffie and Singleton (1999) and Jarrow and Turnbull (1995) models.

Blanco, Brennan, and Marsh (2004) compare the CDS spreads with credit spread derived from corporate

bond yields and find that they match each other well. When the two sources ofspreads deviation from each

other, they find that CDS spreads have a clear lead in price discovery. In another related study, Longstaff,

Mithal, and Neis (2004) regard the spread from the CDS prices as purelydue to credit risk and use it as a

benchmark to identify the liquidity component of the corporate yield spread. Similar to Blanco, Brennan,

and Marsh, they find that the majority of the corporate spread is due to default spread. In addition to

comparing bond spreads and CDS spreads, Hull, Predescu, and White (2004) examine the relation between

the CDS spreads and announcements by rating agencies. Similar to these studies, we choose to use credit

default swap data to estimate the default risk dynamics and default risk premium. Different from them, our

work constitutes the first comprehensive study on the joint term structure of interest rates, credit spreads,

and liquidity premia using the CDS data.
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2. A Dynamic Term Structure Model of Interest, Default, and Liquidit y

We value the credit default swap spread using the reduced-form framework of Duffie (1998), Lando (1998),

Duffie and Singleton (1997), Duffie and Singleton (1999), and Duffie,Pedersen, and Singleton (2003).

First, we usert to denote the instantaneous benchmark interest rate. Historically, researchers often use

the instantaneous riskfree rate as the benchmark. Houweling and Vorst (2003) perform daily calibration of

reduced-form models using credit default swap spreads and find thatswap rates are better suited than the

Treasury yields in defining the benchmark yield curve. Here, we define the benchmark instantaneous interest

rate based on the eurodollar libor and swap rates. Libor and swap rates contain a default risk component.

Using them as benchmarks, the estimated default risk can be regarded as relative default risk.

Second, we use{λi
t}n

i=1 to denote the intensity of the Poisson process governing the default of each

industry sector and credit rating classi. We divide the underlying firms for which we have credit default

swaps data into two industry sectors: financial and non-financial (corporate). Within each industry sector,

we consider two credit rating classes: A and BBB, where the most activelyquoted credit default swaps

reside. Hence, we haven = 4 industry sector and credit rating classes. By modeling the dynamics of the

benchmark interest rater, we determine the term structure of the benchmark libor and swap rate curve. By

modeling the dynamics of the Poisson intensitiesλi and their interaction with the benchmark interest rates,

we determine the term structure of credit default swap spreads for theith industry and credit rating class.

Third, within each credit rating and industry class, the credit default swap spread quotes have different

levels of liquidity in terms of quote updating frequency across different reference firms. We divide them

into two groups as high- and low-liquidity groups. To capture the liquidity difference between these two

groups within each industry sector and credit rating class, we use{qi
t}n

i=1 to denote an instantaneous liquidity

spread. By modeling the dynamics ofqi
t , we analyze the term structure of liquidity premium within each

credit rating and industry class. To study whether the two groups also differ in credit risk, we also specify

an additional credit risk componentmi
t for the low-liquidity group.
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Formally, let(Ω,F ,(F t)t≥0,Q) be a complete stochastic basis andQ be a risk-neutral probability mea-

sure. Under this measureQ, the fair value of a benchmark zero-coupon bond with maturityτ relates to the

instantaneous benchmark interest rate dynamics by,

P(τ) = E

[

exp

(

−
∫ τ

0
rudu

)]

, (1)

whereE [·] denotes the expectation operator under the risk-neutral measureQ. Our notation implicitly states

our focus on time-homogeneous specifications.

Following Duffie (1998), Lando (1998), and Duffie and Singleton (1999), we can represent the value of

a defaultable coupon-bond in terms of the benchmark instantaneous interest rater and the Poisson intensity

λ of the default arrival:

CB(c,w,τ) = E

[

c
∫ τ

0
exp

(

−
∫ t

0
(ru +λu)du

)

dt

]

+E

[

exp

(

−
∫ τ

0
(ru +λu)du

)]

(2)

+E

[

(1−w)
∫ τ

0
λt exp

(

−
∫ t

0
(ru +λu)du

)

dt

]

,

wherec denotes the coupon rate and(1−w) denotes the recovery rate. For expositional clarity, we assume

continuous coupon payments.

For a credit default swap contract, we useS to denote the premium paid by the buyer of default protec-

tion. Assuming continuous payment, we can write the present value of the premium leg of the contract,

Premium(τ) = E

[

S
∫ τ

0
exp

(

−
∫ t

0
(ru +λu)du

)

dt

]

. (3)

Similarly, the present value of the protection leg of the contract is

Protection(τ) = E

[

w
∫ τ

0
λt exp

(

−
∫ t

0
(ru +λu)du

)

dt

]

. (4)
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Hence, by setting the present values of the two legs equal, we can solve for the credit default swap spread as

S=
E

[

w
∫ τ

0 λt exp
(

−∫ t
0(ru +λu)du

)

dt
]

E
[
∫ τ

0 exp
(

−∫ t
0(ru +λu)du

)

dt
] , (5)

which can be thought of as the weighted average of the expected defaultloss. In model estimation, we

discretize the above equation according to quarterly premium payment intervals. For the credit default swap

contracts that we have,w is fixed at 40 percent, which is the average recovery rate for senior unsecured

debts.

For an inactively traded credit default swap contract, the premium could potentially include a liquidity

component. Duffie, Pedersen, and Singleton (2003) show that this liquiditycomponent can also be modeled

via an instantaneous liquidity premium spread,q.

S=
E

[

w
∫ τ

0 λt exp
(

−∫ t
0(ru +λu +qu)du

)

dt
]

E
[
∫ τ

0 exp
(

−∫ t
0(ru +λu +qu)du

)

dt
] . (6)

Under this framework, the benchmark libor and swap rate curve is determined by the instantaneous

benchmark interest rate (r) dynamics. The credit default swap spreads are determined by the joint dynamics

of instantaneous benchmark interest rater and the Poisson arrival rateλ. Furthermore, when the credit

default swap contract is illiquid, the spreads may also include a liquidity premiumthat is controlled by the

dynamics of the instantaneous liquidity premium spreadq. We specify the three sets of dynamics in the

following subsections.

2.1. Benchmark interest rate dynamics and the term structure

We useX ∈ R2 to denote a two-dimensional vector Markov process that represents the systematic state of

the benchmark yield curve. We assume that under the risk-neutral measure Q, the state vector is governed

by a pure-diffusion Ornstein-Uhlenbeck (OU) process,

dXt = (θx−κxXt)dt+dWxt, (7)
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whereκ ∈ R2×2 controls the mean reversion of the vector process andκ−1
x θx ∈ R2 controls the long-run

mean. For the OU process to be stationary, the real part of the eigenvalues of κ must be positive. For

identification reasons, we normalize the state vector to have identity diffusion matrix. We also constrainκ

to be a lower triangular matrix. Then, the diagonal values of theκ matrix correspond to its eigenvalues. To

maintain stationarity, we constrain the diagonal values ofκx to be positive in our estimation.

We further assume that the instantaneous benchmark interest rater is affine in the state vectorX,

rt = ar +b⊤r Xt , (8)

where the parameterar ∈ R is a scalar andbr ∈ R2+ is a vector.

Our specifications in (7) and (8) belong to the affine class of term structure models of Duffie and Kan

(1996) and Duffie, Pan, and Singleton (2000). The model-implied fair value of the zero-coupon bond with

maturityτ is exponential affine in the current level of the state vector,X0,

P(X0,τ) = exp
(

−a(τ)−b(τ)⊤X0

)

, (9)

where the coefficientsa(τ) andb(τ) are determined by the following ordinary differential equations:

a′(τ) = ar +b(τ)⊤θx−b(τ)⊤b(τ)/2,

b′(τ) = br −κ⊤
x b(τ), (10)

subject to the boundary conditionsb(0) = 0 andc(0) = 0.

2.2. Default risk dynamics and the term structure of CDS spreads

We assume that the Poisson arrival rate of defaultλi underlying each industry sector and credit rating class

i is governed by a vector of interest-rate factorsX and default-risk factorsY ∈ Rk:

λi
t = ai +b⊤i Xt +c⊤i Yt , (11)

10



wherebi ∈ R2 denotes the instantaneous response of the arrival rateλ to the two benchmark interest-rate

factorsX, andci ∈ Rk+ denotes the instantaneous response to the default-risk factorsY. By allowing the de-

fault arrival intensity to be an explicit function of the benchmark interest rate factors, our model specification

captures the empirical evidence that credit spreads are related to interest rate levels (e.g., Collin-Dufresne,

Goldstein, and Martin (2001)). For model estimation, we consider both a one-factor and a two factor struc-

ture of the default risk factorsk = 1,2 and compare their relative performances.

The dynamics of the default risk factors under the risk-neutral measureQ follow,

dYt = (θy−κxyXt −κyYt)dt+dWyt, (12)

where the benchmark interest-rate factorsXt are also allowed to have a direct feedback effect on the default

risk factor throughκxy ∈ R2×k. Thus, interest rate factors both have an contemporaneous effect ondefault

risk and predict default risk. For identification, we again normalize the instantaneous covariance to an

identity matrix. In the two-factor specification, we further constrainκy to be a lower-triangular matrix with

positive diagonal values.

The jointQ-dynamics ofZ = [X⊤,Y⊤] ∈ R2+k is, in matrix form,

dZt = (θ−κZt)dt+dWt , with θ =





θx

θy



 , κ =





κx 0

κxy κy



 . (13)

Given this compact specification, the present value of the premium leg of thecredit default swap contract

becomes,

Premium(Z0,τ) = E

[

S
∫ τ

0
exp

(

−
∫ t

0
(ru +λu)du

)]

= E

[

S
∫ τ

0
exp

(

−
∫ t

0
(aZ +b⊤Z Zu)du

)]

(14)

with aZ = ar +ai andbZ = [(br +bi)
⊤,c⊤i ]⊤. The solution is exponential affine in the state vectorZ0,

Premium(Z0,τ) = S
∫ τ

0
exp

(

−a(t)−b(t)⊤Z0

)

, (15)
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where the coefficientsa(t) andb(t) are determined by the following ordinary differential equations:

a′(t) = aZ +b(t)⊤θ−b(t)⊤b(t)/2,

b′(t) = bZ −κ⊤b(t), (16)

subject to the boundary conditionsb(0) = 0 andc(0) = 0.

The value of the protection leg becomes,

Protection(Z0,τ) = E

[

w
∫ τ

0
λt exp

(

−
∫ t

0
(ru +λu)du

)]

= E

[

w
∫ τ

0

(

cZ +d⊤
Z Zt

)

exp

(

−
∫ t

0
(aZ +b⊤Z Zu)du

)]

, (17)

with cZ = ai anddZ = [b⊤i ,c⊤i ]⊤. The solution is

Protection(Z0,τ) = w
∫ τ

0

(

c(t)+d(t)⊤Z0

)

exp
(

−a(t)−b(t)⊤Z0

)

, (18)

where the coefficients[a(t),b(t)] are determined by the ordinary differential equations in (16) and the coef-

ficients[c(t),d(t)] are determined by the following ordinary differential equations:

c′(t) = d(t)⊤θ−b(t)⊤d(t), d′(t) = −κ⊤d(t), (19)

with c(0) = cZ andd(0) = dZ. The credit default swap spread can then be solved as,

S(Z0,τ) =
w

∫ τ
0

(

c(t)+d(t)⊤Z0
)

exp
(

−a(t)−b(t)⊤Z0
)

∫ τ
0 exp(−a(t)−b(t)⊤Z0)

. (20)

2.3. Liquidity risk and the term structure of liquidity risk p remium

For each credit rating and industry groupi, we divide the firms into two subgroups based on the frequency

of quote updates. We first estimate the above default risk factors to the credit spreads of the high-liquidity

group, and then ask whether the difference in credit spreads for the low-liquidity group is due to different

credit risk, liquidity risk, or both.
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To answer this question, we introduce an idiosyncratic credit risk spread(mi
t) and an idiosyncratic liq-

uidity risk premium (qi
t), with the following risk-neutral dynamics,

mi
t = am+cmξi

t , dξi
t =

(

θm−κmξi
t

)

dt+dWmt, (21)

qi
t = aq +bqζi

t , dζi
t =

(

θq−κqζi
t

)

dt+dWqt. (22)

Then, we can expand the definition of the state vectorZ = [X⊤,Y⊤,ξ,ζ] ∈ R4+k, with

θ =



















θx

θy

θm

θq



















, κ =



















κx 0 0 0

κxy κy 0 0

0 0 κm 0

0 0 0 κq



















.

The solution to the premium on this credit default swap spread has the same form as in (20), with the

following redefinitions: aZ = ar + ai + am + aq, bZ = [(br + bi)
⊤,c⊤i ,cm,bq]

⊤, cZ = ai + am, and dZ =

[b⊤i ,c⊤i ,cm,0]⊤.

2.4. Market prices of risks

Our estimation identifies both the risk-neutral and the statistical dynamics of the interest-rate, credit-risk,

and liquidity risk factors. To derive the statistical dynamics, we assume an affine market price of risk on all

the risk factors,

γ(Zt) = γ0 + 〈γ1〉Zt (23)

with γ0 andγ1 are both vectors of the relevant dimension and〈·〉 denotes a diagonal matrix, with the diagonal

elements given by the vector inside. The affine market price of risk specification dictates that the state vector

Zt remains Ornstein-Uhlenbeck under the statistical measureP, but with an adjustment to the drift term,

dZt =
(

θ+ γ0−κPZt

)

dt+dWt , κP = κ− γ1. (24)
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For stationarity, we also constrain the diagonal elements ofκP to be positive. For identification, we normal-

ize the long-run mean of the state vectorZ to zero under the statistical measureP so thatθ = −γ0.

2.5. Positivity of interest rates and credit spreads: An alternative quadratic specification

The above specification assumes a Gaussian-affine structure for both the benchmark interest rates and the

credit spreads. Therefore, both interest rates and credit spreadscan become negative with positive proba-

bility. To guarantee positivity of interest rates and credit spreads, we also consider an alternative quadratic

functional form for the instantaneous interest rate and credit spread,whiling maintaining the same number

of parameters:

rt = ar +X⊤
t 〈br〉Xt , λi

t = ai +X⊤
t 〈bi〉Xt +Y⊤

t 〈ci〉Yt . (25)

According to Leippold and Wu (2002), the benchmark zero-coupon bond price becomes exponential quadratic

in the state vector,

P(X0,τ) = exp(−a(τ)−b(τ)⊤X0−X⊤
0 B(τ)X0), (26)

with the coefficients solving the following ordinary differential equations,

a′(τ) = ar +b(τ)⊤θx +trB(τ)−b(τ)⊤b(τ)/2,

b′(τ) = 2B(τ)θx−κ⊤
x b(τ)−2B(τ)b(τ),

B′(τ) = 〈br〉−B(τ)κx−κ⊤
x B(τ)−2B(τ)2,

(27)

starting atB(0) = 0, b(0) = 0 anda(0) = 0.

Analogously, we can derive the credit default swap premium as

S(Z0,τ) =
w

∫ τ
0

(

c(t)+d(t)⊤Z0 +Z⊤
0 D(t)Z0

)

exp
(

−a(t)−Z⊤
0 b(t)Z0

)

∫ τ
0 exp

(

−a(t)−b(t)⊤Z0−Z⊤
0 B(t)Z0

) , (28)
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with the coefficients solving the following ordinary differential equations:

a′(τ) = aZ +b(τ)⊤θ+trB(τ)−b(τ)⊤b(τ)/2,

b′(τ) = lZ +2B(τ)θ−κ⊤b(τ)−2B(τ)b(τ),

B′(τ) = 〈bZ〉−B(τ)κ−κ⊤B(τ)−2B(τ)2,

c′(t) = d(τ)⊤θ+trD(τ)−d(τ)⊤b(τ),

d′(t) = 2D(t)θ−κ⊤d(t)−2D(t)b(t)−2B(t)d(t),

D′(t) = −D(t)κ−κ⊤D(t)−4B(t)D(t),

(29)

starting ata(0) = 0, b(0) = 0, B(0) = 0, c(0) = cZ, d(0) = 0, andD(0) = 〈dZ〉. In equation (29),lZ is a

vector of zeros, which will become nonzero in the presence of linear liquidity or credit risk factors. The

details of the derivation are available upon request.

Since the signs of the idiosyncratic credit risk premium (mt) and the idiosyncratic liquidity premium

(qt) can be either negative or positive, it is appropriate to maintain the original Gaussian affine assumption

on both. In the presence of these two risk factors, the pricing formula forthe credit default swap retains

the same form as in (28), only with a corresponding expansion on the state vector Z = [X⊤,Y⊤,ξ,ζ]⊤

and the following redefinitions on the coefficients:aZ = ar + ai + am+ aq, lZ = [0,0,cm,bq]
⊤, bZ = [(br +

bi)
⊤,c⊤i ,0,0]⊤, cZ = ai + am, anddZ = [b⊤i ,c⊤i ,0,0]⊤. Furthermore, the initial condition ond(0) adjusts

from zero tod(0) = [0,0,cm,0]⊤.

3. Data and Evidence

The CDS data are from JP Morgan Chase. They are daily CDS spread quotes on seven fixed maturities at

one, two, three, four, five, seven, and ten years from May 2003 to May 2004 (256 business days) on each

reference company. We obtain the credit rating information on each reference company from Standard &

Poors, and its sector information from Reuters, publicly available on Yahoo.

We apply several filters to the data. First, we exclude the reference entitiesthat we cannot find credit

rating information on. Second, we exclude companies whose credit rating has migrated during our sam-

ple period. Third, we include only investment grade companies. Furthermore, we exclude AA and AAA
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companies because they fail to meet our liquidity standards as described below. These filters leave us with

157 reference companies. We classify the remaining reference companies based on (i) two broad industry

classifications: financial and corporate and (ii) two broad credit rating groups: A (including A+ and A-) and

BBB (including BBB+ and BBB-).

The credit default swap spreads differ dramatically in liquidity across different reference entities. Within

each sector and credit rating class, active quote updates are concentrated on only a few firms. To compare

the quoting activity on each firm, we first expand the quote series into daily frequency by filling missing

data points with previously available quotes. Then, we take daily differences. If the quotes are not updated

between two consecutive days, the daily differences would be zero. Thus, we use the number of days

that have non-zero daily quote differences to capture the quote updatingfrequency. Table 1 provides the

summary statistics on the quote updating frequency at different industry sectors and credit rating classes.

Each reference firm underlies seven credit default swap series at the seven fixed maturities. We compute

the total number of active quote updates on all seven series for each firm.Our sample period includes 256

business days. The average of the median updating frequency acrossall seven series is 278 times, roughly

about one update on the seven series per day, or one update on each series per seven business days. The most

active firm has 938 updates, about one update on each series every two days. The least active only have 11

updates across the whole sample period.

Within each industry sector and credit rating class, we divide the data into twogroups, with high and

low liquidity, respectively. We classify a firm into the high-liquidity group if the spread quotes on the firm

have no fewer than 364 total updates, corresponding an average of one update per week. Then, at each date

and maturity, we average the spread quotes across the high-liquidity firms within each industry sector and

credit rating class. We estimate the credit risk dynamics using the time series of these average high-liquidity

credit default swap spreads on the seven maturities.

The rest firms are classified into the low liquidity group. To investigate the impactof liquidity on the

term structure of credit spreads, we also average the quotes among the low-liquidity firms at each date,

maturity, industry sector, and credit rating class. Nevertheless, quotes with very few updates are unlikely

to be informative. Hence, for the low-liquidity group, we average acrossfirms that have at least 182 quote

updates, corresponding to an average updating frequency of at least once every two weeks.
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Figure 1 plots the time series of the average credit default swap spreads at each industry sector and credit

rating class, with left panels for high-liquidity firms and right panels for low-liquidity firms. The seven lines

in each panel denote the seven fixed maturities from one to ten years. The spreads were high during the start

of our sample following the high default year of 2002. The spreads declined and reached the bottom around

January 2004 and started to pick up again since then.

[Figure 1 about here.]

Within each industry sector, spreads on the BBB rating class are much higher than the corresponding A

group, due to the higher default probabilities. The seven maturity series under the BBB rating class are also

closer to one another than the corresponding series under the A rating class, implying a flatter term structure

for the higher credit rating class. Within the same industry sector and creditrating class, high-liquidity firms

have markedly higher CDS spreads on low-liquidity firms.

Figure 2 plots the term structure of the credit default swap spreads at different days. To reduce clus-

tering, we plot one term structure every seven business days for eachpanel. During our sample period, the

CDS spreads on high-liquidity firms mostly show upward sloping term structures. The spreads on the corre-

sponding low-liquidity firms are lower, and their term structures are also flatter, sometimes showing hump

shapes. Within the same industry sector, CDS spreads on the A rating class have steeper term structures

during our sample period than spreads on the BBB rating class.

[Figure 2 about here.]

Table 2 reports the summary statistics of the average credit swap spread series at the seven fixed ma-

turities under each industry sector, credit rating class, and liquidity group. The mean spreads are higher at

longer maturities and hence show upward sloping term structures in all groups. Within each sector and rat-

ing class, the high-liquidity groups generates much higher mean spreads than the low-liquidity group. The

differences are especially large in the financial sector, where the mean spreads on the high-liquidity groups

approximately double the mean spreads on the corresponding low-liquidity groups. Across the two credit

rating classes, the mean spreads are larger for the BBB class than for theA class. The differences are again

larger for the financial sector than for the corporate sector.
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The term structure of the standard deviation is upward sloping for the financial sector and A rating class,

but shows a hump-shape for all other groups. The skewness estimates are mostly positive, but the excess

kurtosis estimates are mostly small. The daily autocorrelation estimates are between0.96 to 0.99, showing

that the spreads are persistent, albeit less so than the benchmark interestrates.

To obtain the benchmark libor interest rate dynamics, we also download fromBloomberg the U.S. dollar

libor and swap rates that match the maturity and sample period of the credit default swap spreads data.

4. Estimation Strategy

We estimate the dynamics of benchmark interest-rate risk, credit risk, and liquidity risk in three consecutive

steps, all using quasi-maximum likelihood method. At each step, we cast the models into a state-space form,

obtain efficient forecasts on the conditional mean and variance of observed interest rates and credit default

swap spreads using an efficient filtering technique, and build the likelihoodfunction on the forecasting errors

of the observed series, assuming that the forecasting errors are normally distributed. The model parameters

are estimated by maximizing the likelihood function.

In the first step, we estimate the interest-rate factor dynamics using libor and swap rates. In the state-

space form, we regard the two interest-rate factors (X) as the unobservable states and specify the state-

propagation equation using an Euler approximation of statistical dynamics of the interest-rate factors em-

bedded in equation (24):

Xt = ΦxXt−1 +
√

Q xεxt, (30)

whereΦx = exp(−κP
x ∆t) denotes the autocorrelation matrix ofX, Q x = I∆t denotes the instantaneous co-

variance matrix ofX, with I denoting an identity matrix of the relevant dimension and∆t = 1/252 denot-

ing the daily frequency, andεxt denotes a two-dimensional i.i.d. standard normal innovation vector. The

measurement equations are constructed based on the observed libor andswap rates, assuming additive,

normally-distributed measurement errors,

yt =





LIBOR(Xt , i)

SWAP(Xt , j)



+et , cov(et) = R ,
i = 12 months,

j = 2,3,4,5,7,10 years.
(31)
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In the second step, we take the estimated interest-rate factor dynamics in the first step as given, and

estimate the credit-risk factor dynamics (Y) at each industry sector and credit rating class using the seven

average credit default swap spread series for the high-liquidity groups. In the state-space form, we specify

the state-propagation equation using an Euler approximation of statistical dynamics of the credit-risk factors

embedded in equation (24):

Yt = ΦyYt−1 +
√

Q yεyt, (32)

with Φy = exp(−κP
y ∆t), Q y = I∆t, andεyt being ak-dimensional i.i.d. standard normal innovation vector.

We estimate models with bothk = 1 andk = 2. The measurement equations are defined on the seven credit

default swap spreads,

yt = S(Xt ,Yt ,τ, i)+et , cov(et) = R ,τ = 1,2,3,4,5,7,10 years, (33)

wherei = 1,2,3,4 denotes theith industry sector and credit rating class. We repeat this step of each of four

industry and credit rating classes.

In the third step, we estimate the idiosyncratic credit risk and liquidity risk dynamics for each industry

sector and credit rating class using the average credit default spreads on the low-liquidity firms. The state-

propagation equation is defined based on an Euler approximation of the idiosyncratic credit and liquidity

risk dynamics in (21) and (22):




ξt

ζt



 = Φq





ξt−1

ζt−1



+
√

Qqεqt, (34)

with Φq = 〈exp(−κP
m∆t),exp(−κP

q∆t)〉, Qq = I∆t, andεqt being a two-dimensional i.i.d. standard normal

innovation vector. The measurement equations are defined on the seven average credit default swap spreads

on the low-liquidity firms,

yt = S(Xt ,Yt ,ξt ,ζt ,τ, i)+et , cov(et) = R , τ = 1,2,3,4,5,7,10 years. (35)

We repeat this step on each of four industry sector and credit rating classes.

Given the definition of the state-propagation equation and measurement equations at each step, we use

an extended version of the Kalman filter to filter out the mean and covariance matrix of the state variables
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conditional on the observed series, and construct predictive mean andcovariance matrix of the observed

series based on the filtered state variables. Then, we define the daily log likelihood function assuming

normal forecasting errors on the observed series:

lt+1(Θ) = −1
2

log
∣

∣Vt+1
∣

∣− 1
2

(

(yt+1−yt+1)
⊤ (

Vt+1
)−1

(yt+1−yt+1)
)

, (36)

wherey andV denote the conditional mean and variance forecasts on the observed series, respectively.

The model parameters,Θ, are then estimated by maximizing log likelihood of the data series, which is a

summation of the daily log likelihood values,

Θ ≡ argmax
Θ
L (Θ,{yt}N

t=1), with L (Θ,{yt}N
t=1) =

N−1

∑
t=0

lt+1(Θ), (37)

whereN = 256 denotes the number of observations for each series. For each step, we further assume that

the measurement errors on each series are independent but with distinctvariance.

We estimate both affine and quadratic models for the term structure of benchmark interest rates and

credit spreads. The state dynamics are the same under both specifications. Hence, the state-propagation

equations are the same for both model estimation. What differs is in the measurement equations since the

two types of specifications generate different function forms for libor, swap rates, and credit default swap

spreads as functions of the state variables.

5. The Pricing of Interest-Rate, Credit, and Liquidity Risks

First, we first summarize the performance of the different dynamic term structure models in pricing interest

rates and credit default swap spreads. Then, from the estimated model parameters we discuss the dynamics

and pricing of benchmark interest-rate risk, credit risk, and liquidity risk.
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5.1. Model performance comparisons

Table 3 reports the summary statistics on the pricing errors of libor and swap rates under the two-factor affine

and quadratic model specifications. The affine model explains the swap rates well, but fails miserably in

explaining the 12-month libor. The discrepancy between libor and swap rates is well known in the industry.

Nevertheless, the very poor performance reveals some deficiency of the two-factor affine specification. In

contrast, the quadratic model performs much better on the libor series. Its performance across the six swap

rates is also more uniform. Thus, the richer, nonlinear dynamic specificationof the quadratic model captures

the joint term structure of the libor and swap rates better.

The maximized log likelihood values (L ) are 5067.1 for the affine model and 5229.7 for the quadratic

model, also indicating superior performance from the quadratic model. Sincethese two models are not

nested, we cannot employ the standard likelihood ratio tests to gauge the significance of the likelihood

difference. Nevertheless, we follow Vuong (1989) in constructing a statistic based on the difference between

the daily log likelihood values from the two non-nested models:

lr t = lQ
t − lA

t (38)

wherelQ
t andlA

t denote the time-t log likelihood value of the quadratic and affine models, respectively. Vuong

constructs a statistic based on the likelihood ratio:

M =
√

Tµlr /σlr , (39)

whereµlr andσlr denote the sample mean and standard deviation of the log likelihood ratio. Underthe null

hypothesis that the two models are equivalent, Vuong proves thatM has an asymptotic normal distribution

with zero mean and unit variance. We construct the log likelihood ratio, and estimate the sample mean

at 0.6352, and sample standard deviation at 3.0054. The standard deviation calculation adjusts for serial

dependence according to Newey and West (1987), with the number of lags chosen optimally according to

Andrews (1991) based on an AR(1) specification. TheM -statistic is estimated at 3.38, indicating that the

quadratic model performs significantly better than the affine model in explainingthe benchmark libor term

structure.
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Table 4 reports the summary statistics of the pricing errors of the credit default swap spreads on the

high-liquidity firms using one credit risk factor for both the affine and the quadratic specifications. The

affine model provides an almost perfect fit for the four-year CDS spread, but the performance deteriorates

at both short (one year) and long (ten year) maturities. In contrast, the performance of the quadratic specifi-

cation is more uniform across different maturities. Under the quadratic specification, one credit risk factor,

together with the previously identified two benchmark interest-rate factors, can explain all CDS spread se-

ries by over 90 percent. The one-factor quadratic model also generates higher likelihood values than the

corresponding affine model for each of the four industry sector and credit rating classes, but the differences

are not statistically significant in terms of the Vuong (1989) statistic.

For comparison, we also estimate models with two credit-risk factors. Table 5 reports the summary

statistics of the pricing errors. Adding one additional credit risk factor significantly improves the perfor-

mance of the affine model at the two ends of the CDS term structure. Two affine factors explain over 98

percent of the credit spread variations except for one series. With thequadratic specification, since one

credit risk factor performs reasonably well, adding another credit riskfactor does not generate as much im-

provement. Furthermore, with two credit-risk factors, the maximized likelihood values from the affine and

quadratic specifications are close to one another. The quadratic specification no longer dominates the affine

specification. In a sense, an extra factor in the affine model can play the richer dynamics of the quadratic

model.

In the last step, to account for the idiosyncratic movements of the credit spreads for the low-liquidity

firms, we introduce an idiosyncratic credit risk factor and a liquidity factor inaddition to the two benchmark

interest rate factors and the two credit risk factors identified from the spreads on high-liquidity firms. Table 6

reports the summary statistics of the pricing errors. These two additional factors can explain most of the

idiosyncratic variation in the low-liquidity groups. Most series can be explained over 95 percent.

Overall, two interest-rate factors, especially in the quadratic forms, can explain the term structure of

the benchmark interest rates well. Two additional credit-risk factors are more than enough to explain the

term structure of credit spreads for high-liquidity firms under each industry sector and rating class. Finally,

by incorporating an additional credit risk factor and a liquidity risk factor,the model also performs well in

explaining the term structure of credit spreads on low-liquidity firms
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5.2. Dynamics and term structure of the benchmark libor interest rates

Table 7 reports the first-stage parameter estimates and the absolute magnitudesof thet-statistics (in paren-

theses) that define the dynamics and term structure of the benchmark libor interest rates. Under both affine

and the quadratic specifications,κx determines the mean-reversion of the interest-rate factorX under the

risk-neutral measureQ. The small estimates on the diagonal elements ofκx capture the persistence of inter-

est rates. The negative estimates on the off-diagonal element suggest that positive shocks on the first factor

predicts larger values on the second factor.

The estimates for the constant part of the market price of riskγx0 are negative for both factors under

the affine model. Under the quadratic model, the market price is positive on thefirst factor and negative

on the second factor. The proportional coefficients estimates,γx1, are small and not statistically different

from zero for both factors under the affine specification, indicating thatthe market price of risk does not

vary significantly with the factor level. The estimates under the quadratic modelare also small and only

statistically significant for the first factor.

Under both models, thebr estimates show that the second factor loads more heavily on the instantaneous

benchmark interest rate. These instantaneous loading coefficients interact with the risk-neutral factor dy-

namics (κ) to determine the response of the whole yield curve to unit shocks from the interest-rate factors.

Under the affine model, the contemporaneous responses of the continuously compounded spot rate to the

two dynamic factors are linear, withb(τ)/τ measuring the response coefficients. Equation (9) shows how

b(τ) measures the loading coefficient to the dynamic factors and equation (10) shows howbr andκ interact

to determineb(τ). Figure 3 plotsb(τ)/τ as a function of maturityτ. The solid line represents the first ele-

ment, which is the loading of the first interest-rate factor. This factor loads more heavily at longer maturities

than at shorter maturities. The dashed line plots the impacts of the second factor, which loads more heavily

at the short end of the yield curve. The different loading patterns relatenot only to the different magnitudes

of the two elements of thebr estimates, but also to the difference in persistence between the two factors.

Under the affine model, the first factor is estimated to be more persistent than the second factor. Hence, its

impact extends to longer maturities.

[Figure 3 about here.]
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5.3. Default arrival dynamics and the term structure of credit spreads

Tables 8 and 9 report the parameter estimates andt-statistics on the default arrival dynamics, market pricing,

and their impacts on the term structure of credit spreads at each industry sector and credit rating class.

Tables 8 reports estimates on the one-factor credit risk specifications. Tables 9 reports estimates on the

two-factor credit risk specifications. From the two tables, we draw the follow common observations.

First, the default risk dynamics and pricing differ across different industry sectors and credit rating

classes. Nevertheless, in all cases, the default risk dynamics show intricate dynamic interactions with the

interest-rate factors. Theκxy matrix captures the predictive power of interest-rate factors on the default

risk factors, whereas thebi vector captures the contemporaneous loading of the interest-rate factorson the

default arrivalλi . Estimates on both sets of parameters are significant in most cases, indicatingthat the

interest-rate factors both predict default arrivals via the drift dynamicsκxy and impact the default arrivals

contemporaneously via the loading coefficientsbi .

Second, the estimates onκy under the one-factor affine model are very small and not significantly dif-

ferent from zero. Under the two-factor affine specification, the estimates for one of the diagonal elements

of κy are close to zero. The small estimates indicate a near unit root behavior forthe credit risk dynamics.

However, the corresponding estimates are larger and also with better precision (largert-values) under the

quadratic specifications. Thus, with a nonlinear structure under the quadratic model, we can more accurately

identify a more stationary credit-risk dynamics, while delivering a uniformly well pricing performance on

CDS spreads across all maturities.

Although the quadratic models deliver better and more uniform performance,the affine models provide

a linear and hence easier-to-interpret relation between factors and credit spreads. In Figure 4, we plot the

contemporaneous loading of the two default risk factors on the continuously compounded spot rate at each

industry sector and credit rating group, as captured by the third and four elements ofbi(τ)/τ for the ith

sector and rating class. Since the default risk factors do not enter the benchmark libor curve, the loading

also directly measures the impact on the credit spread between the corporate spot rate and the libor spot rate.

The solid line denotes the first credit risk factor and the dashed line the second credit risk factor.

[Figure 4 about here.]
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Overall, both factor loadings are downward sloping under all four industry/rating classifications. And

yet, a noticeable difference shows up between the financial and corporate sectors. First, the factor loadings

in the financial sector present an exponential decay while in the corporate sector they are more or less linear.

Second, the loading differences between the two rating classes are much larger for the financial firms than

for non-financial firms, suggesting that financial firms are more sensitive to rating changes between A and

BBB classes. A lower rating generates dramatically larger spreads for thefinancial firms.

5.4. Liquidity and liquidity premiums

The liquidity of the CDS contracts, as revealed by the quote updating frequency, varies greatly across differ-

ent reference firms. Within each industry sector and credit rating class,the liquidity is concentrated on a few

firms. An important question is what makes investors to concentrate the tradingon one firm versus another.

Also important is to understand whether and how liquidity impacts the pricing of theCDS contracts.

Table 10 reports the parameter estimates andt-statistics (in parentheses) on the idiosyncratic credit

risk and liquidity factors that account for the idiosyncratic movements of the CDS spreads on the low-

liquidity firms. First, the loading parameter estimates on the idiosyncratic credit riskfactor (cm) are strongly

significant, showing that the default arrival rates for firms in the low-liquidity groups do have idiosyncratic

movements that are independent of the default arrival dynamics identifiedfrom the high-liquidity group

within the same industry sector and credit rating class.

Second, the estimates on the interceptam are negative under all four industry sector and credit rating

classes. These negative estimates suggest that firms in the low-liquidity group on average have lower default

risk and hence experience lower instantaneous credit spreads than firms in the corresponding high-liquidity

group. This observation is intriguing and implies that, within the same industry andcredit rating class, firms

with active CDS trading activities are associated with higher perceived credit risk than firms with less active

CDS trading activities. Either investorschooseto trade CDS contracts on firms that they perceive to have

higher chances of downward rating migrations, or high-profile firms generate more awareness of its potential

default risk.
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The instantaneous loading estimates on the liquidity risk factor (bq) are large in magnitudes and also

highly significant, showing that liquidity plays a key role in the credit spread differences between the two

liquidity groups. The intercept estimates onaq are all positive, suggesting a higher discounting for the

low-liquidity contracts. Thus, the lower average CDS spreads on low-liquidity firms can be attributed to a

combination of low credit risk and high liquidity discounting.

The estimates onκm, which measures the risk-neutral mean-reverting behavior of the idiosyncratic de-

fault risk factor, are very small, suggesting that the idiosyncratic credit risk factor has highly persistent

risk-neutral dynamics and hence impacts the term structure of credit spreads almost linearly across maturi-

ties. Furthermore, the estimates forγm0 are all negative, and in several cases significantly so, implying that

this idiosyncratic credit risk has a negative market price of risk. Given the normalization of the statistical

dynamics, the negative market price of risk implies a positive risk-neutral drift (θ) for the credit risk fac-

tor. As suggested by the ordinary differential equations in (16), a positive θ for the credit risk factor helps

generate an upward sloping mean term structure of credit spreads.

The dynamics and pricing of the liquidity risk factor are dramatically different.The estimates on the

risk-neutral mean-reversion parameterκq for the liquidity factor are larger than the estimates forκm and are

all strongly significant, suggesting that the liquidity risk factor has a more stationary impact on the term

structure of CDS spreads. Furthermore, the estimates on the pricing of the liquidity risk (γq0) are mostly

positive and significant, especially for non-financial firms. Contrary to the negative market price on the

credit risk factor, positive market prices on the liquidity risk factor make theterm structure less upward

sloping, and hence explains the flatter term structure of CDS spreads forlow-liquidity firms.

Figure 5 shows the difference between the two factors in terms of their impactson the spot rate curve of

the low-liquidity firms. The impacts of the default risk factor are in the left panels. They are flat across ma-

turities. The loadings are larger for BBB rating than for A rating firms, and the difference is especially large

for financial firms, suggesting again that the financial firms are more sensitive to rating changes between A

to BBB rating classes.

[Figure 5 about here.]

26



The loadings of the liquidity factor show quite different patterns. The loading are very high at short

maturities, but the impacts decline quickly as maturity increases, generating a strongly downward sloping

pattern. Also interestingly, the liquidity factor loadings on financial firms are also more sensitive to rating

changes than non-financial firms.

Overall, our estimation suggests that the lower mean CDS spreads for low-liquidity firms can be at-

tributed to two separate driving forces. First, the market regards low-liquidity firms as having less default

risk. Second, the market discounts the value of low-liquidity contracts more heavily. On the other hand, the

flatter mean term structure for low-liquidity firms is mainly due to the positive pricingof the liquidity risk

for CDS contracts.

6. Conclusion

Using a large data set on CDS spread quotes, we perform a joint analysisof the term structure of interest

rates, credit spreads, and liquidity premia. Our construction and estimation of several dynamic term structure

models suggest that quadratic models perform better and more uniformly across the term structure of interest

rates and credit spreads than affine models. We also find that default risk dynamics differ across different

industry sectors and credit rating groups, but in all cases they show intricate interactions with the interest-rate

dynamics. Specifically, we find that financial firms are more sensitive to rating changes than non-financial

firms.

Our estimation also suggests that within the same industry sector and credit rating class, firms with

active CDS trading activities tend to also have higher credit risks than firms with low CDS trading activities.

Finally, low-liquidity firms induce heavier discounting on the yield curve and generate lower CDS spreads.

Positive market pricing on the liquidity risk further renders the mean term structure of CDS spreads flatter

on low-liquidity firms.
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Table 1
Summary Statistics of the Quote Updating Frequency on Credit Default Swap Spreads
Entries report the number of firms within each sector and credit rating class, as well as summary statistics
(Median, Maximum, Minimum) on the quote updating frequency. We take daily differences on the quotes of
each series and define the updating frequency as the number of days that the daily differences are nonzero,
and hence the quotes are updated, for the seven series on each firm.

Sector Rating Number of Firms Median Maximum Minimum

Financial A 28 176 580 11
Financial BBB 6 423 610 229

Corporate A 57 191 686 21
Corporate BBB 66 324 938 35

Average 39 278 704 74
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Table 2
Summary statistics of credit default swap spreads
Entries report the summary statistics of the credit default swap spreads (inbasis points) at the seven fixed
maturities under each credit rating class, industry sector, and liquidity groups. Mean, Std, Skew, Kurtosis,
and Auto denote the sample estimates of the mean, standard deviation, skewness, excess kurtosis, and the
first-order autocorrelation, respectively. Data are daily from May 21,2003 to May 12, 2004.

Maturity High Liquidity Low Liquidity

Years Mean Std Skew Kurtosis Auto Mean Std Skew Kurtosis Auto

(i) Sector: Financial; Rating: A
1 30.16 8.72 1.00 -0.33 0.98 14.53 4.70 1.59 2.46 0.97
2 39.41 10.34 0.95 -0.38 0.98 20.13 6.27 1.51 2.20 0.97
3 43.03 11.04 0.96 -0.36 0.98 22.08 6.85 1.47 2.13 0.97
4 49.69 12.41 0.91 -0.43 0.98 25.75 7.31 1.54 2.57 0.97
5 54.42 13.36 0.89 -0.49 0.98 28.35 7.67 1.58 2.75 0.97
7 61.29 13.43 0.84 -0.39 0.98 31.92 7.85 1.55 2.96 0.97
10 68.68 13.67 0.71 -0.57 0.98 35.30 8.16 1.47 2.95 0.97

(ii) Sector: Financial; Rating: BBB
1 92.68 25.42 0.27 -1.16 0.98 51.64 12.62 0.76 -0.62 0.98
2 100.30 25.51 0.39 -1.13 0.98 55.65 14.09 0.74 -0.77 0.98
3 103.69 25.87 0.39 -1.13 0.98 56.89 14.73 0.73 -0.81 0.98
4 108.55 25.00 0.46 -1.08 0.98 58.50 12.94 0.82 -0.54 0.98
5 111.83 24.61 0.48 -1.04 0.98 60.01 11.76 0.88 -0.32 0.98
7 117.29 22.51 0.32 -1.17 0.98 60.96 9.23 0.85 0.04 0.97
10 123.18 20.52 0.16 -1.28 0.98 63.56 7.04 0.28 -0.22 0.96

(iii) Sector: Corporate; Rating: A
1 28.85 8.17 0.78 -0.43 0.98 26.93 5.07 0.97 0.92 0.98
2 39.67 9.55 0.64 -0.77 0.98 31.37 5.39 0.54 0.23 0.98
3 43.77 10.01 0.64 -0.79 0.98 32.93 5.54 0.44 0.09 0.98
4 48.88 10.38 0.72 -0.56 0.98 36.52 5.78 0.32 -0.04 0.98
5 52.34 10.62 0.76 -0.42 0.98 39.06 5.92 0.23 -0.15 0.98
7 58.29 10.31 0.67 -0.42 0.98 41.78 5.62 -0.07 -1.02 0.99
10 64.46 9.57 0.46 -0.50 0.98 45.25 6.11 0.34 -1.06 0.99

(iv) Sector: Corporate; Rating: BBB
1 63.35 17.89 1.30 0.88 0.98 39.55 6.49 0.51 0.05 0.98
2 75.09 19.31 1.22 0.64 0.98 46.26 7.04 0.37 0.12 0.98
3 79.17 19.76 1.20 0.58 0.98 48.61 7.16 0.31 0.12 0.98
4 83.66 19.28 1.15 0.38 0.98 52.21 6.92 0.00 -0.11 0.98
5 86.71 19.00 1.11 0.28 0.98 54.79 6.82 -0.16 -0.31 0.98
7 91.97 17.14 1.08 0.28 0.98 58.41 6.51 -0.31 -0.94 0.98
10 97.23 15.31 0.97 0.19 0.98 62.89 7.13 -0.00 -1.19 0.98
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Table 3
Summary statistics of pricing errors on the libor and swap rates
Entries report the summary statistics of the pricing errors on the U.S. dollar libor and swap rates under
the two-factor Gaussian affine model (left hand side under “Affine”) and the two-factor Gaussian quadratic
model (left hand side under “Quadratic”). We estimate both models by using quasi-maximum likelihood
method joint with unscented Kalman filter. We define the pricing error as the difference between the ob-
served interest rate quotes and the model-implied fair values, in basis points.The columns titled Mean, Std,
Auto, Max, and VR denote, respectively, the sample mean, the standard deviation, the first-order autocorre-
lation, the maximum absolute error, and the explained percentage variance,defined as one minus the ratio
of pricing error variance to interest rate variance, in percentages. The last row reports the maximized log
likelihood for each model.

Maturity Affine Quadratic

Years Mean Std Auto Max VR Mean Std Auto Max VR

1 7.56 17.35 0.91 46.89 5.08 -1.53 7.99 0.78 33.21 79.85
2 -0.23 4.09 0.88 10.38 98.46 -0.23 2.81 0.66 11.56 99.27
3 -0.05 0.22 0.16 1.11 99.99 0.30 1.59 0.57 7.33 99.84
4 0.08 0.95 0.41 5.05 99.95 -0.13 1.15 0.40 7.81 99.93
5 0.36 0.85 0.30 6.51 99.96 0.06 0.70 0.34 5.75 99.97
7 -0.72 1.03 0.74 3.87 99.94 -0.48 1.15 0.60 4.46 99.93
10 0.50 1.85 0.76 6.60 99.78 0.70 2.10 0.70 7.57 99.72
Average 1.07 3.76 0.59 11.49 86.17 -0.19 2.50 0.58 11.10 96.93

L 5067.1 5229.7
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Table 4
Summary statistics of pricing errors on credit default swap spreads with one credit risk factor
Entries report the summary statistics of the pricing errors on the credit default swap spreads under both
affine and quadratic specifications. Both specifications use one credit risk factor to price the high-liquidity
credit-default swap spread at each industry and credit rating class. We estimate both models by using
quasi-maximum likelihood method joint with unscented Kalman filter. We define the pricing error as the
difference between the spread quotes and the model-implied fair values, in basis points. The columns titled
Mean, Std, Auto, Max, and VR denote, respectively, the sample mean, the standard deviation, the first-order
autocorrelation, the maximum absolute error, and the explained percentagevariance, defined as one minus
the ratio of pricing error variance to interest rate variance.

Maturity Affine Quadratic

Years Mean Std Auto Max VR Mean Std Auto Max VR

(i) Sector: Financial; Rating: A
1 -0.35 3.86 0.97 12.55 80.41 -1.31 2.69 0.83 18.98 90.49
2 1.33 2.07 0.97 5.48 96.01 1.58 1.74 0.57 17.96 97.15
3 -1.37 1.36 0.96 6.07 98.47 -1.16 1.50 0.35 22.59 98.14
4 -0.00 0.02 0.66 0.08 100.00 -0.06 1.14 0.09 18.07 99.16
5 0.25 1.00 0.96 2.48 99.44 -0.04 1.19 0.27 15.85 99.21
7 0.02 1.26 0.93 3.59 99.12 -0.35 1.21 0.43 13.07 99.19
10 -0.26 2.44 0.95 7.77 96.81 0.09 2.20 0.84 10.89 97.40

(ii) Sector: Financial; Rating: BBB
1 -2.26 4.00 0.96 15.81 97.52 -1.19 6.37 0.79 47.22 93.73
2 0.33 2.32 0.95 7.69 99.17 0.37 3.62 0.41 45.79 97.99
3 -0.82 2.08 0.96 7.64 99.35 -1.01 3.30 0.38 44.58 98.37
4 0.01 0.01 0.84 0.04 100.00 -0.14 2.47 0.08 39.28 99.03
5 -0.26 1.25 0.96 3.86 99.74 -0.26 2.44 0.24 34.00 99.02
7 -0.57 2.97 0.97 6.92 98.26 -0.21 2.57 0.45 29.23 98.70
10 -0.40 5.52 0.97 12.38 92.75 0.05 3.78 0.79 23.08 96.61

(iii) Sector: Corporate; Rating: A
1 -4.66 1.88 0.96 8.89 94.72 -3.66 2.23 0.75 20.74 92.55
2 0.10 0.84 0.91 2.51 99.23 0.33 1.40 0.39 17.53 97.86
3 -0.85 0.66 0.93 2.93 99.56 -0.62 1.37 0.35 19.63 98.13
4 0.00 0.01 0.80 0.02 100.00 0.19 1.11 0.19 16.72 98.86
5 -0.13 0.35 0.90 1.40 99.89 -0.06 0.94 0.07 14.91 99.22
7 0.03 1.28 0.95 4.36 98.47 -0.03 1.04 0.39 13.14 98.98
10 -0.24 3.23 0.97 8.73 88.59 0.23 1.97 0.86 11.00 95.78

(iv) Sector: Corporate; Rating: BBB
1 -5.81 2.68 0.96 11.90 97.75 -2.98 5.54 0.58 63.04 90.40
2 0.19 1.29 0.95 3.91 99.56 0.55 3.72 0.23 54.39 96.29
3 -0.51 1.09 0.95 4.35 99.70 -0.57 3.23 0.16 49.68 97.33
4 0.00 0.00 0.65 0.01 100.00 -0.09 2.88 0.11 45.70 97.76
5 -0.27 0.68 0.96 2.18 99.87 -0.32 2.62 0.13 40.86 98.10
7 -0.17 2.88 0.98 6.62 97.18 -0.07 2.65 0.38 34.19 97.61
10 -0.16 5.38 0.98 12.13 87.64 0.32 3.35 0.73 26.09 95.22
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Table 5
Summary statistics of pricing errors on credit default swap spreads with two credit risk factor
Entries report the summary statistics of the pricing errors on the credit default swap spreads under both
affine and quadratic specifications. Both specifications use two credit risk factors to price the high-liquidity
credit-default swap spread at each industry and credit rating class. We define the pricing error as the dif-
ference between the spread quotes and the model-implied fair values, in basis points. The columns titled
Mean, Std, Auto, Max, and VR denote, respectively, the sample mean, the standard deviation, the first-order
autocorrelation, the maximum absolute error, and the explained percentagevariance, defined as one minus
the ratio of pricing error variance to interest rate variance.

Maturity Affine Quadratic

Years Mean Std Auto Max VR Mean Std Auto Max VR

(i) Sector: Financial; Rating: A
1 0.01 0.08 0.43 0.38 99.99 -0.40 1.64 0.85 5.45 96.46
2 1.39 0.72 0.91 2.62 99.52 1.26 1.09 0.72 6.36 98.89
3 -1.38 0.80 0.94 4.11 99.48 -1.44 1.02 0.61 12.27 99.15
4 0.00 0.00 0.22 0.00 100.00 -0.05 0.57 0.08 8.96 99.79
5 0.27 0.76 0.93 2.09 99.68 0.21 0.93 0.65 8.02 99.52
7 0.05 0.75 0.89 2.02 99.68 -0.04 0.50 0.06 7.95 99.86
10 -0.20 1.72 0.95 3.88 98.42 -0.25 1.50 0.85 9.58 98.80

(ii) Sector: Financial; Rating: BBB
1 -0.64 1.59 0.93 3.85 99.61 -0.10 1.83 0.74 10.63 99.48
2 0.07 0.11 0.39 0.53 100.00 -0.00 0.44 0.02 6.74 99.97
3 -1.42 1.20 0.94 4.59 99.78 -1.18 1.32 0.90 6.41 99.74
4 -0.32 1.06 0.93 2.84 99.82 -0.00 0.25 0.01 3.68 99.99
5 -0.16 1.68 0.97 3.13 99.53 0.03 0.82 0.91 1.74 99.89
7 0.01 0.03 0.41 0.20 100.00 -0.05 1.53 0.91 4.21 99.54
10 -0.51 1.56 0.94 3.97 99.43 -0.27 3.05 0.94 7.00 97.79

(iii) Sector: Corporate; Rating: A
1 -0.44 1.88 0.98 3.98 94.72 -0.65 2.16 0.69 19.36 93.00
2 1.94 0.92 0.95 3.64 99.07 1.73 1.56 0.39 18.15 97.34
3 -0.28 0.53 0.93 2.01 99.72 -0.41 1.37 0.21 21.07 98.12
4 0.00 0.00 0.50 0.01 100.00 -0.02 1.15 0.08 18.24 98.77
5 -0.30 0.30 0.94 0.81 99.92 -0.25 1.04 0.09 16.18 99.03
7 0.01 0.09 0.43 0.38 99.99 0.08 0.96 0.17 13.89 99.13
10 -0.14 0.98 0.96 2.39 98.95 -0.02 1.10 0.51 12.05 98.69

(iv) Sector: Corporate; Rating: BBB
1 -3.39 4.22 0.98 15.16 94.44 -0.60 3.14 0.52 37.52 96.92
2 1.18 1.75 0.98 3.46 99.18 1.92 2.11 0.36 26.61 98.81
3 -0.24 0.63 0.96 2.06 99.90 -0.19 1.38 0.13 21.21 99.51
4 0.00 0.00 0.04 0.00 100.00 -0.05 1.12 0.06 17.76 99.67
5 -0.30 0.56 0.98 1.04 99.91 -0.31 1.03 0.27 14.29 99.70
7 0.00 0.00 0.08 0.01 100.00 -0.03 0.72 0.07 11.42 99.82
10 -0.00 0.54 0.92 2.40 99.88 -0.05 0.95 0.66 9.01 99.62
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Table 6
Summary statistics of pricing errors on the low-liquidity credit default swap spreads
Entries report the summary statistics of the pricing errors on the low-liquidity credit default swap spreads. In
addition to two interest rate factors and two credit risk factors that have been identified using the benchmark
interest rates and the high-liquidity credit default swap spreads, we addone additional idiosyncratic credit
risk factor and a liquidity risk factor to account for the credit spread movements in the low-liquidity groups.
We define the pricing error as the difference between the spread quotesand the model-implied fair values, in
basis points. The columns titled Mean, Std, Auto, Max, and VR denote, respectively, the sample mean, the
standard deviation, the first-order autocorrelation, the maximum absolute error, and the explained percentage
variance, defined as one minus the ratio of pricing error variance to interest rate variance.

Maturity Affine Quadratic

Years Mean Std Auto Max VR Mean Std Auto Max VR

(i) Sector: Financial; Rating: A
1 2.82 1.29 0.96 5.93 97.82 0.10 1.59 0.97 3.77 96.69
2 2.13 0.78 0.95 3.62 99.43 0.80 0.87 0.95 2.53 99.29
3 -0.37 0.32 0.93 1.27 99.92 -0.78 0.35 0.94 1.76 99.90
4 -0.00 0.00 0.29 0.02 100.00 -0.00 0.00 0.01 0.04 100.00
5 0.07 0.28 0.94 0.66 99.96 0.17 0.31 0.95 0.82 99.95
7 0.02 0.17 0.88 0.45 99.98 0.02 0.20 0.89 0.46 99.98
10 -0.00 0.04 0.49 0.15 100.00 0.00 0.01 0.07 0.05 100.00

(ii) Sector: Financial; Rating: BBB
1 -1.45 2.54 0.99 5.92 99.00 -1.05 2.53 0.99 5.50 99.01
2 0.00 0.16 0.13 2.23 100.00 0.01 0.18 0.17 2.52 100.00
3 -0.29 1.39 0.97 2.70 99.71 -0.29 1.39 0.97 2.78 99.71
4 0.00 0.10 0.03 1.53 100.00 0.01 0.09 0.12 1.42 100.00
5 0.21 0.77 0.98 1.25 99.90 0.19 0.76 0.98 1.32 99.90
7 -1.63 2.81 0.99 6.00 98.45 -1.68 2.82 0.98 6.14 98.43
10 -3.52 4.85 0.98 11.41 94.41 -3.37 5.01 0.98 11.68 94.04

(iii) Sector: Corporate; Rating: A
1 -0.08 3.47 0.99 7.27 81.96 0.62 2.82 0.98 5.91 88.14
2 -0.06 1.93 0.99 4.61 95.93 0.29 1.82 0.98 4.20 96.35
3 -1.33 0.78 0.98 3.48 99.39 -1.23 0.76 0.98 3.35 99.42
4 0.00 0.01 0.49 0.10 100.00 -0.00 0.02 0.55 0.16 100.00
5 0.60 0.69 0.98 2.27 99.57 0.58 0.69 0.98 2.28 99.58
7 0.02 0.10 0.53 0.88 99.99 0.03 0.09 0.56 0.77 99.99
10 -0.24 0.73 0.96 1.49 99.42 -0.35 0.65 0.95 1.41 99.55

(iv) Sector: Corporate; Rating: BBB
1 0.66 2.87 0.98 7.72 97.43 0.38 1.71 0.91 7.98 99.09
2 1.33 1.34 0.98 3.46 99.51 0.77 1.09 0.96 2.91 99.68
3 -0.50 0.40 0.95 1.45 99.96 -0.76 0.29 0.92 1.57 99.98
4 -0.00 0.00 0.27 0.03 100.00 0.00 0.00 0.23 0.04 100.00
5 0.15 0.36 0.97 0.88 99.96 0.26 0.35 0.96 1.19 99.97
7 0.00 0.05 0.57 0.20 100.00 0.02 0.07 0.35 0.53 100.00
10 0.01 0.28 0.91 0.95 99.97 -0.16 0.42 0.92 1.00 99.93
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Table 7
Dynamic and term structure of the benchmark libor interest rates
Entries report the parameter estimates and the absolute magnitudes of thet-statistics (in parentheses) that
determine the dynamics and term structure of the benchmark libor interest rates. The estimations are based
on 12-month libor and swap rates of two, three, five, seven, and ten years, with quasi-maximum likelihood
method.

Model κx γx0 γx1 ar br

Affine









0.2365 0
(5.22) −−

−0.9338 0.3073
(12.87) (5.35)

















−0.1987
(4.45)

−0.9752
(3.77)

















0.0819
(0.05)

−0.0321
(0.00)









[

0.0046
(1.04)

]









0.0000
(0.04)
0.0116
(20.2)









Quadratic









0.7597 0
(64.5) −−

−0.6567 0.1196
(38.17) (26.6)

















1.1885
(15.7)

−1.6100
(25.8)

















0.7581
(3.79)
0.0774
(0.06)









[

0.0081
(79.7)

]









0.0006
(8.20)
0.0025
(22.9)








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Table 8
One-factor default arrival dynamics and the term structure of credit spreads
Entries report the second-stage parameter estimates and the absolute magnitudes of thet-statistics (in paren-
theses) that determine the one-factor default arrival dynamics and the term structure of credit spreads. The
estimations are based on high-liquidity credit default swap spreads at each of the four industry and credit
rating classes with quasi-maximum likelihood method.

Θ κxy κy γy0 γy1 ai b⊤i ci

(i) Affine Models
Financial A -0.0363 0.1033 0.0001 -0.0230 0.0232 0.0143 -0.0014 0.0015 0.0038

( 1.00 ) ( 5.57 ) ( 0.03 ) ( 0.07 ) ( 0.04 ) ( 1.62 ) ( 5.39 ) ( 41.5 ) ( 19.5 )
Financial BBB 0.0486 -0.0421 0.0001 -0.0175 0.0176 0.0369 0.0017 0.0021 0.0137

( 2.13 ) ( 5.28 ) ( 0.02 ) ( 0.01 ) ( 0.01 ) ( 1.71 ) ( 1.53 ) ( 16.3 ) ( 18.1 )
Corporate A 0.1974 0.0618 0.0001 -0.0226 0.0227 0.0128 0.0002 0.0015 0.0035

( 7.72 ) ( 6.49 ) ( 0.03 ) ( 0.05 ) ( 0.04 ) ( 1.69 ) ( 0.67 ) ( 15.0 ) ( 23.1 )
Corporate BBB -0.1196 0.0735 0.0001 -0.0224 0.0225 0.0308 -0.0029 0.0008 0.0056

( 2.90 ) ( 3.55 ) ( 0.01 ) ( 0.08 ) ( 0.04 ) ( 6.36 ) ( 7.08 ) ( 10.0 ) ( 14.4 )

(ii) Quadratic Models
Financial A 0.3922 -0.0211 0.0718 0.0181 0.0537 0.0061 0.0006 -0.0007 0.0032

( 28.7 ) ( 11.3 ) ( 9.24 ) ( 0.00 ) ( 0.02 ) ( 28.1 ) ( 23.00 ) ( 12.6 ) ( 20.7 )
Financial BBB 0.2768 0.0947 0.2043 0.1493 0.0551 0.0186 0.0009 -0.0030 0.0112

( 24.2 ) ( 32.1 ) ( 28.9 ) ( 0.02 ) ( 0.02 ) ( 47.0 ) ( 5.32 ) ( 45.7 ) ( 16.4 )
Corporate A 0.1108 0.0079 0.1396 0.0875 0.0521 0.0050 -0.0008 -0.0010 0.0083

( 20.5 ) ( 5.94 ) ( 24.5 ) ( 0.00 ) ( 0.01 ) ( 27.6 ) ( 45.9 ) ( 20.7 ) ( 44.0 )
Corporate BBB 0.1906 0.0646 0.2056 0.1536 0.0520 0.0125 -0.0014 -0.0020 0.0140

( 24.9 ) ( 48.8 ) ( 30.3 ) ( 0.01 ) ( 0.01 ) ( 21.6 ) ( 19.8 ) ( 20.2 ) ( 17.3 )
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Table 9
Two-factor default arrival dynamics and the term structure of credit spreads
Entries report the second-stage parameter estimates and the absolute magnitudes of thet-statistics (in paren-
theses) that determine the two-factor default arrival dynamics and the term structure of credit spreads. The
estimations are based on high-liquidity credit default swap spreads at each of the four industry and credit
rating classes with quasi-maximum likelihood method.

Θ κxy κy γy0 γy1 ai bi ci

(i) Affine Models
Financial A -0.1694 0.0686 0.0001 0 0.0287 -0.0060 0.0069 0.0005 0.0003

( 3.36 ) ( 3.43 ) ( 0.01 ) — ( 0.42 ) ( 0.06 ) ( 1.27 ) ( 0.41 ) ( 0.13 )
0.2931 -0.2120 0.4474 0.7912 -1.9590 0.7815 — 0.0004 0.0067
( 1.95 ) ( 4.90 ) ( 2.58 ) ( 8.57 ) ( 1.92 ) ( 0.02 ) — ( 2.69 ) ( 4.07 )

Financial BBB 0.6387 0.1686 0.4582 0 -0.2490 0.4515 0.0342 0.0044 0.0089
( 7.80 ) ( 5.37 ) ( 10.29 ) — ( 0.15 ) ( 0.02 ) ( 0.25 ) ( 2.33 ) ( 3.99 )
0.2125 0.0112 0.1718 0.0947 0.0573 0.0873 — 0.0071 0.0172
( 2.13 ) ( 0.39 ) ( 3.60 ) ( 11.6 ) ( 0.19 ) ( 0.03 ) — ( 12.5 ) ( 10.1 )

Corporate A -0.1975 0.6094 0.0005 0 -1.8568 -0.0019 0.0103 0.0002 0.0012
( 0.61 ) ( 5.27 ) ( 0.01 ) — ( 7.00 ) ( 0.00 ) ( 1.79 ) ( 0.32 ) ( 0.30 )
0.4848 -0.1206 0.0965 0.0418 -0.1767 0.0325 — 0.0034 0.0055
( 3.32 ) ( 0.28 ) ( 3.15 ) ( 0.60 ) ( 0.13 ) ( 0.01 ) — ( 19.5 ) ( 5.74 )

Corporate BBB -0.3278 0.2385 0.0006 0 -0.5814 -0.0041 0.0320 -0.0029 0.0011
( 4.37 ) ( 5.70 ) ( 0.01 ) — ( 4.64 ) ( 0.00 ) ( 0.45 ) ( 6.34 ) ( 0.52 )
0.0480 0.0277 0.1494 0.0147 -0.1889 0.0104 — 0.0016 0.0055
( 0.47 ) ( 0.34 ) ( 7.50 ) ( 0.27 ) ( 0.05 ) ( 0.01 ) — ( 17.2 ) ( 12.4 )

(ii) Quadratic Models
Financial A -0.0407 -0.0320 0.5577 0 0.5019 0.5520 0.0041 0.0003 0.0067

( 1.74 ) ( 2.03 ) ( 9.85 ) — ( 4.93 ) ( 0.02 ) ( 12.2 ) ( 6.48 ) ( 9.05 )
-0.4381 0.0742 -0.1412 0.0120 -1.2139 0.0032 — -0.0011 0.0021
( 21.3 ) ( 21.1 ) ( 2.57 ) ( 1.31 ) ( 21.6 ) ( 0.00 ) — ( 68.4 ) ( 20.5 )

Financial BBB 0.0159 0.0628 0.1034 0 -0.2342 0.0980 0.0092 -0.0008 0.0002
( 0.37 ) ( 13.8 ) ( 14.5 ) — ( 2.30 ) ( 0.13 ) ( 7.3 ) ( 4.68 ) ( 1.01 )
-0.0261 -0.2045 0.4805 1.6345 -1.5258 1.6254 — -0.0015 0.0325
( 0.96 ) ( 7.89 ) ( 9.31 ) ( 14.2 ) ( 8.9 ) ( 0.07 ) — ( 49.6 ) ( 12.1 )

Corporate A 0.6625 -0.0392 0.0004 0 1.1627 -0.0054 0.0039 -0.0010 0.0006
( 28.0 ) ( 7.08 ) ( 0.06 ) — ( 17.1 ) ( 0.00 ) ( 23.3 ) ( 59.0 ) ( 11.95 )
-0.2741 0.0274 -0.0621 0.1090 -0.7897 0.1001 — -0.0008 0.0049
( 13.8 ) ( 6.40 ) ( 7.25 ) ( 5.99 ) ( 18.1 ) ( 0.02 ) — ( 105.7 ) ( 21.2 )

Corporate BBB -0.0569 0.0087 0.0846 0 -0.1380 0.0846 0.00980.0006 0.0001
( 1.60 ) ( 1.36 ) ( 6.44 ) — ( 1.83 ) ( 0.07 ) ( 15.0 ) ( 9.46 ) ( 0.74 )
-0.1874 -0.0738 0.1988 0.4640 -0.8735 0.4640 — -0.0011 0.0120
( 9.76 ) ( 8.12 ) ( 12.3 ) ( 17.6 ) ( 11.0 ) ( 0.02 ) — ( 79.9 ) ( 11.4 )
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Table 10
Idiosyncratic credit and liquidity risk
Entries report the third-stage parameter estimates andt-statistics (in parentheses) that determine the idiosyn-
cratic credit and liquidity risk dynamics in accounting for the idiosyncratic credit spreads embedded in the
low-liquidity credit default swaps. The parameters are estimated using quasi-maximum likelihood method.

Credit Risk Liquidity Risk

Θ κm γm0 γm1 am cm κq γq0 γq1 aq bq

(i) Affine Models
Financial A 0.0010 -0.0275 -0.0500 -0.0062 0.0030 0.3312 -0.1299 0.2832 0.3423 0.2822

( 0.06 ) ( 0.51 ) ( 0.01 ) ( 13.9 ) ( 26.3 ) ( 9.55 ) ( 0.47 ) ( 0.16 ) ( 1.48 ) ( 7.89 )
Financial BBB 0.0001 -0.0732 -0.0381 -0.0150 0.0093 0.9375-0.4433 0.9374 2.9285 2.7536

( 0.00 ) ( 2.53 ) ( 0.01 ) ( 1.24 ) ( 30.7 ) ( 10.6 ) ( 0.75 ) ( 0.11 ) ( 2.44 ) ( 9.07 )
Corporate A 0.0012 -1.0741 -0.0577 -0.0011 0.0028 0.8452 4.9606 0.8448 6.0187 0.9083

( 0.01 ) ( 1.58 ) ( 0.01 ) ( 2.00 ) ( 9.92 ) ( 36.34 ) ( 4.14 ) ( 1.38 ) ( 6.08 ) ( 17.1 )
Corporate BBB 0.0009 -0.0991 -0.0434 -0.0176 0.0042 0.33760.6776 0.2911 1.0670 0.3245

( 0.10 ) ( 5.08 ) ( 0.19 ) ( 9.67 ) ( 27.9 ) ( 15.6 ) ( 3.48 ) ( 0.44 ) ( 7.73 ) ( 11.8 )

(ii) Quadratic Models
Financial A 0.0008 -0.5700 -0.0502 -0.0067 0.0038 0.9494 1.8194 0.9003 2.3761 0.8999

( 0.02 ) ( 6.08 ) ( 0.01 ) ( 1.08 ) ( 45.2 ) ( 28.0 ) ( 2.72 ) ( 0.45 ) ( 5.82 ) ( 8.67 )
Financial BBB 0.0001 -0.0902 -0.0381 -0.0166 0.0105 0.9070-0.4327 0.9070 2.9863 2.6709

( 0.00 ) ( 2.52 ) ( 0.01 ) ( 4.01 ) ( 26.5 ) ( 17.0 ) ( 0.91 ) ( 0.12 ) ( 3.50 ) ( 11.6 )
Corporate A 0.0102 -0.2178 -0.0399 -0.0043 0.0052 0.6745 2.9258 0.6735 4.2633 0.8047

( 0.11 ) ( 1.40 ) ( 0.01 ) ( 1.49 ) ( 17.6 ) ( 28.3 ) ( 3.46 ) ( 1.60 ) ( 5.38 ) ( 14.0 )
Corporate BBB 0.0068 -0.2343 -0.0087 -0.0229 0.0082 0.52733.3088 0.5204 2.7831 0.3963

( 0.22 ) ( 6.28 ) ( 0.00 ) ( 0.56 ) ( 17.8 ) ( 39.4 ) ( 8.57 ) ( 1.61 ) ( 19.1 ) ( 19.1 )
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Figure 1
Time series of credit default swap spreads.
The seven lines in each panel plot the time-series of the average quotes oncredit default swap spreads at
seven fixed maturities for each industry sector, credit rating class, and liquidity group. Data are daily from
May 21, 2003 to May 12, 2004, 256 days per series. For ease of comparison, we use the same scaling for
the two liquidity groups under each industry sector and credit rating class.
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Figure 2
Term structure of credit default swap spreads.
Lines in each panel plot the term structure of the average quotes on credit default swap spreads at different
days for each credit rating class, industry sector, and liquidity group. Data are daily from May 21, 2003
to May 12, 2004, 256 days per series. To reduce clustering, we plot one term structure every seven days
for each panel. For ease of comparison, we use the same scaling for the two liquidity groups under each
industry sector and credit rating class.
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Figure 3
Benchmark interest rate factor loading.
Solid line denotes the contemporaneous response of the continuously compounded benchmark spot rate to
unit shocks from the first interest-rate factor. The dashed line plots the response to unit shocks from the
second factor. The loadings are computed based on the estimated affine model of benchmark interest rate.
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Figure 4
Default risk factor loading.
Solid lines denote the contemporaneous response of the continuously compounded corporate spot rate to
unit shocks from the first default risk factor. The dashed line plots the response to unit shocks from the
second default risk factor. The loadings are computed based on the parameter estimates of the two-factor
affine model of default risk.
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Figure 5
Idiosyncratic default risk and liquidity risk factor loading.
Lines in the left panel plot the contemporaneous response of the spot rate on the low-liquidity group to unit
shocks from the idiosyncratic default risk factor. Lines in the right panel plot the response to unit shocks
from the liquidity risk factor.
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