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The Term Structure of Credit Spreads:
Theory and Evidence on Credit Default Swaps

ABSTRACT

Using a large data set on credit default swaps, we perfornmagoalysis of the term structure of
interest rates, credit spreads, and liquidity premia. \Wecseeference companies that fall into two broad
industry sectors and two broad credit rating classes. Wehch sector and credit rating class, we divide
the companies into two liquidity groups based on the quotiatipg frequency. We then study how
the term structures of credit default risk premia differassrindustry sectors, credit rating classes, and
liquidity groups.

We develop a class of dynamic term structure models thatdiectwo benchmark interest-rate fac-
tors, two credit risk factors for the high-liquidity groupasnd an additional default risk factor and a
liquidity risk factor that capture the difference betweke two liquidity groups. We link these factors to
the instantaneous benchmark interest rate and creditcspradoth an affine function and a quadratic
function, and compare their relative performance.

We estimate the models using a three-step procedure. Riesgstimate the interest-rate factor
dynamics and the instantaneous interest rate functiog tisenlibor and swap rates. Second, we take the
interest-rate factors and estimate the default-risk dyosiand the instantaneous credit spread function
using the average credit default spreads of the high-ligugtoup for each industry sector and credit
rating class. Third, we identify an additional credit risicfor and a liquidity risk factor using the credit
default swap spreads in the low-liquidity group. At eaclpstee cast the models into a state-space form
and estimate the model parameters using quasi-maximufinblel method.

Estimation shows that the quadratic specifications geadretter and more uniform performance
across the term structure of interest rates and creditdpréarthermore, firms in different industry and
credit rating classes have different default risk dynamisvertheless, in all cases, default risks exhibit
intricate dynamic interactions with the interest-ratedas. Interest-rate factors both predict the default
risk and have a contemporaneous impact on it.

Within each industry and credit rating class, the averagditdefault swap spreads for the high-
liquidity group are significantly higher than for the lovefliidity group. Estimation shows that the dif-
ference is driven by both default risk and liquidity difface. The low-liquidity group has a lower default
arrival rate, and also a much heavier discounting due toilguidity.

JEL CLASSIFICATION CODES. E43, G12, G13, C51.

KEY WORDS: credit default swap; credit risk; credit premium; term structure; liquidi$ik; liquidity

premium; quasi-maximum likelihood estimation.



The Term Structure of Credit Spreads:
Theory and Evidence on Credit Default Swaps

How to quantify, forecast, and price default risk, and how the defeldimteracts with the interest-rate risk
in determining the term structure of credit spreads are vitally important fosidaes in corporate finance,
asset pricing, investment, and risk management. However, data availabilisetarely hindered the study
of default risk. Since defaults are rare events that often lead to termirtdtibe underlying reference entity
such as a corporation, researchers need to rely heavily on cragssgaverages of different entities over a
long history to obtain any reasonable estimates of statistical default probabiMibough corporate bond
prices contain useful information on the default probability and the prickefsult risk, the information is
often mingled with the pricing of the underlying interest rate risk and othdoifasuch as liquidity and

tax!

The recent development in credit derivative securities provides usawigxcellent opportunity to better
understand the pricing of default risk and the term structure of credéags. The most common credit
derivative is in the form of a credit default swap (CDS) contract, writtara reference entity such as a
sovereign country or a corporate company. According to surveysdaytbrnational Swaps and Derivatives
Association, Inc., the outstanding notional amount of CDS contracts helsed $3.58 trillion by the end of
2003, surpassing the size of the total equity derivatives market, whioclssta $3.44 trillion for the same

time period.

A credit default swap is an over-the-counter contract that providagamce against credit risk. The
protection buyer pays a fixed fee or premium, often termed as the “spre#uk seller for a period of time.
If a certain pre-specified credit event occurs, the protection seasrqgampensation to the protection buyer.
A credit event can be a bankruptcy of the reference entity, or a efisa bond or other debt issued by the

reference entity. If no credit event occurs during the term of the sthagorotection buyer continues to pay

IMany researchers strive to identify and distinguish the different compis of corporate bond yields. Prominent examples
include Jones, Mason, and Rosenfeld (1984), Longstaff and 3th{¢895), Duffie and Singleton (1997), Duffee (1999), Elton,
Gruber, Agrawal, and Mann (2001), Collin-Dufresne, Goldstein,Madin (2001), Delianedis and Geske (2001), Liu, Longstaff,
and Mandell (2000), Eom, Helwege, and Huang (2003), HuangHarahg (2003), Collin-Dufresne, Goldstein, and Helwege
(2003), and Longstaff, Mithal, and Neis (2004).



the premium until maturity. Should a credit event occur at some point b#iereontract’s maturity, the

protection seller owes a payment to the buyer of protection, thus insulatifyyee from a financial loss.

CDS contracts can be used as a way to gain exposure to credit risk. Alttioigisk profile of a CDS
is similar to that of a corporate bond of the reference entity, there arees@wportant differences. A CDS
does not require an initial funding, which allows leveraged positions. /A @@ansaction can be entered
where a cash bond of the reference entity at a particular maturity is ritattdlea Furthermore, by entering a
CDS contract as a protection seller, an investor can easily create @shitidn in the reference credit. With

all these attributes, CDS contracts can be a great tool for diversifyihgaging an investor’s portfolio.

We obtain a large data set on credit default swap spreads. The detelsdes daily CDS spread quotes
from May 21, 2003 to May 12, 2004 on hundreds of corporate compamié across seven fixed maturities
for each company from one to ten years. We select reference coraphatefall into two broad industry
sectors (financial and non-financial) and two broad credit ratingesg#sand BBB). Within each sector and
credit rating class, we divide the companies into two liquidity groups baséueajuote updating frequency
on credit default swap spreafishe also download from Bloomberg the eurodollar libor and swap rates of

matching maturities and sample periods.

Equipped with this large data set, we study the dynamics and pricing of detkudind their impacts of
the term structure of credit default swap spreads across differgumstiry sectors and credit rating classes.
Specifically, through model development and estimation, we address theifajlfundamental questions

regarding default risk and default risk premia:

e It is well known that the term structure of interest rates is governed by rreuflygtors. How many
factors govern the term structure of credit spreads? How thesedaoteract with the interest-rate

factors?

e Unlike the term structure of interest rates that is universal across tokewirarket, credit risk is indi-

vidually unique and firm-specific. Credit default swaps have been widgttethousands of reference

2There are a few AA companies and a very limited number of AAA compahig none of those companies satisfies our
liquidity classification criterion.



entities. How the default risk dynamics and pricing differ across difteretustry sectors and credit

rating classes?

e Even within the same industry sector and credit rating class, the activitidmaitities of the credit
default swap contracts vary dramatically across different referemiites. What causes the liquidity

difference and how does the different liquidity affects the pricing oflitefault swaps?

To address these questions, we develop a class of dynamic term stimcidets of interest rate risk,
credit risk, and liquidity risk. First, we model the term structure of the bevark libor and swap rates
using two interest-rate factors. Second, we assume that the defaudt arténsities at each industry sector
and credit rating class are governed by either one or two additionahdgractors. Furthermore, we allow
the interest-rate factors to impact the default risk both dynamically and coatamgously. We link these
factors to the instantaneous benchmark interest rate and credit spachdtiv an affine and a quadratic
specification, and compare their relative performances via estimation. Fivellyse an additional default
risk factor and a liquidity risk factor to capture the difference betweenrditcspreads of the two liquidity

groups with each industry sector and credit rating class.

We estimate the models using a three-step procedure. In the first steptinvateshe interest-rate
factor dynamics and the instantaneous interest rate function using thienberkclibor and swap rates. In
the second step, we take the interest-rate factors extracted from thetdjpsas given, and estimate the
default-risk dynamics and the instantaneous credit spread functioadbriedustry sector and credit rating
class using the average credit default spreads of the high-liquiditypdosuhat sector and rating class. In
the third step, we identify the additional credit risk factor and the liquidity @skdr using the average credit
default swap spreads in the low-liquidity group. At each step, we cashtuels into a state-space form,
obtain efficient forecasts on the conditional mean and variance ofwaukarterest rates and credit default
swap spreads using an efficient filtering technique, and build the likelifummdion on the forecasting errors
of the observed series, assuming that the forecasting errors arellyatisi@ibuted. We estimate the model

parameters by maximizing the likelihood functions.

Comparing the affine and quadratic specifications, we find that the dicadpecifications generate

better and more uniform performance across the term structure of intates and credit spreads. The



interest-rate and credit-risk dynamics are also estimated with more precislenthie quadratic specifica-

tion, an indication of less model mis-specification.

Our estimation shows that one affine default-risk factor can price the ntedmeturity credit default
swap spread well, but the performance deteriorates on both ends ofetfiie spread curve. Two affine
default-risk factors can price the whole term structure of credit sgreatl. In contrast, under the quadratic
specification, one default-risk factor is sufficient to explain over 9@grof the variation on each of the
seven credit spread series for each industry sector and credit cédisgy Adding an additional quadratic
credit risk factor does not dramatically improve the performance. Hevitea nonlinear, richer dynamic
specification, one default-risk factor can explain the majority of the cred#asl variation in the high lig-

uidity group.

Our estimation also shows that firms in different industry sectors and cegiditiclasses have different
default risk dynamics. Nevertheless, in all cases the default risks stiogate dynamic interactions with
the interest-rate factors. Interest-rate factors both predict the defkdind have a contemporaneous impact

on it.

Within each industry sector and credit rating class, we find that the averadi default swap spreads
for the high-liquidity group are significantly higher than for the low-liquiditpgp. The mean term struc-
ture of credit spreads is also more upward sloping for the high-liquiditymr&stimation shows that the
different spreads between the two groups are driven by both cigddifferences and liquidity differences.
On average, the low-liquidity group has lower default arrival rated,f@nce a lower instantaneous credit
spread. For each industry sector and credit rating class, we are ablentdy a significant default-risk
factor for the low-liquidity group. This risk factor shows strong risk-malpersistence, indicating that it
affects the term structure of credit spreads across both short apdiaturities. We also identify a highly
volatile but less persistent liquidity risk factor for the credit spreads olothdiquidity group. This liquidity
factor induces a strongly positive instantaneous spread on the didectort showing that lower liquidity
induces a heavier discounting on the pricing as a compensation for liquigdityipm. The lower credit risk
and heavier liquidity discounting jointly determine the lower spread on the aefiitlt swap contracts for

the low-liquidity group in each industry sector and credit rating class.



The remainder of this paper is organized as follows. The next secti@idpssome background infor-
mation on the credit default swap contract and the related literature. S@atievelops the dynamic term
structure models of interest rates, credit risks, and liquidity premia. Segtiescribes the data set and our
processing of the data. Section 4 elaborates on the estimation strategyn Sedisousses the estimation

results. Section 6 concludes.

1. Background Information on Credit Default Swap Spread

The International Swaps and Derivatives Association, Inc. estimatesiti&anding notional CDS amount
at $0.92 trillion dollars by the end of 2001. Since then, the notional amosntioae tnan tripled to $3.58
trillion by the end of 2003. This explosive development can be attributedits &ets of players. The largest
players in the CDS market are commercial banks. Traditionally, a bankindms involves credit risk since
the bank originates loans to corporations. The CDS market offers adrankractive way to transfer the
credit risk without removing assets from its balance sheet and withouvingdorrowers. Furthermore, a
bank may use CDS contracts to diversify its portfolio, which often is canaexd in certain industries or
geographic areas. Banks are the net buyers of credit derivathee®rding to Fitch's 2003 survey, global
banks held net bought positions of $229 billion in credit derivatives, gitiss sold positions of $1,324

billion.

On the other hand, insurance companies are increasingly becoming dopeantcipants in the CDS
market, primarily as sellers of protection, to enhance investment yields. yldbaurance companies had
net sold positions of $137 billion in 2003. Other players include financiarantors, who are also big
sellers of protection, with net sold positions of $166 billion. Global hedgel$uare also rumored to be
active players in the CDS market, but their activities are notoriously opandeare not detected on any

survey’s radar screen.

Sovereign names were prevalent as reference entities in the earlyfdbgsGDS market, but the share
of sovereigns as reference entities had declined from over 50 pénckd97 to less than 10 percent in 2003.

In contrast, corporate reference entities have become more commouantgdor over 70 percent of all



reference entities in 2003. This shift in reference entities reflects theé gapwth of the corporate bond

market after the mid-1990s.

The premium paid by the protection buyer to the seller, often called the'preguoted in basis points
per annum of the contract’s notional value and is usually paid quartdrBs& spreads are not the same type
of concept as “"yield spread” of a corporate bond to a governmert. tivather, CDS spreads are the annual
price of protection quoted in basis points of the notional value, and nedbas any risk-free bond or any
benchmark interest rates. Periodic premium payments allow the protectien fougteliver the defaulted
bond at par or to receive the difference of par and the bond’s eegoxalue. For example, the five-year
credit default swap for Ford was quoted around 160 basis points dh2¥p 2004. This quote means that
if someone wants to buy the five-year protection for a $10 million exposurerb éfedit, the buyer will
pay 40 basis points of the notational exposure, or $40,000, everiegqaaran insurance premium for the
protection that the buyer receives. There are no limits on the size or mat@ip® contracts. However,
most contracts fall between $10 million to $20 million in notional amount. Maturity lystanges from

one to ten years, with the five-year maturity being the most common maturity.

Given the nascent nature of the CDS contracts, researches using&®8&re relatively few. Skinner
and Diaz (2003) look at early CDS prices from September 1997 to Feghbt989 for 31 CDS contracts.
They compare the pricing results of the Duffie and Singleton (1999) amaiWJand Turnbull (1995) models.
Blanco, Brennan, and Marsh (2004) compare the CDS spreads witth speead derived from corporate
bond yields and find that they match each other well. When the two sourseseaatds deviation from each
other, they find that CDS spreads have a clear lead in price discoveayother related study, Longstaff,
Mithal, and Neis (2004) regard the spread from the CDS prices as pluwelyo credit risk and use it as a
benchmark to identify the liquidity component of the corporate yield spreadilg® to Blanco, Brennan,
and Marsh, they find that the majority of the corporate spread is due toltlefaead. In addition to
comparing bond spreads and CDS spreads, Hull, Predescu, and it €xamine the relation between
the CDS spreads and announcements by rating agencies. Similar to thésg, stedchoose to use credit
default swap data to estimate the default risk dynamics and default risk premitferent from them, our
work constitutes the first comprehensive study on the joint term strucfumteoest rates, credit spreads,

and liquidity premia using the CDS data.



2. A Dynamic Term Structure Model of Interest, Default, and Liquidit y

We value the credit default swap spread using the reduced-formvirarkef Duffie (1998), Lando (1998),
Duffie and Singleton (1997), Duffie and Singleton (1999), and Duffiedlersen, and Singleton (2003).
First, we user; to denote the instantaneous benchmark interest rate. Historically, reseaaften use
the instantaneous riskfree rate as the benchmark. Houweling and 2008&)(perform daily calibration of
reduced-form models using credit default swap spreads and fingdwlagt rates are better suited than the
Treasury yields in defining the benchmark yield curve. Here, we defineghchmark instantaneous interest
rate based on the eurodollar libor and swap rates. Libor and swap catisénca default risk component.

Using them as benchmarks, the estimated default risk can be regardagatiae default risk.

Second, we usé| i, to denote the intensity of the Poisson process governing the default lof eac
industry sector and credit rating classWe divide the underlying firms for which we have credit default
swaps data into two industry sectors: financial and non-financial ¢catg). Within each industry sector,
we consider two credit rating classes: A and BBB, where the most actixgdied credit default swaps
reside. Hence, we have= 4 industry sector and credit rating classes. By modeling the dynamics of the
benchmark interest rate we determine the term structure of the benchmark libor and swap rate &yve
modeling the dynamics of the Poisson intensiieand their interaction with the benchmark interest rates,

we determine the term structure of credit default swap spreads fiahthrelustry and credit rating class.

Third, within each credit rating and industry class, the credit defaulpspaead quotes have different
levels of liquidity in terms of quote updating frequency across differeigreace firms. We divide them
into two groups as high- and low-liquidity groups. To capture the liquidity diffiee between these two
groups within each industry sector and credit rating class, wégi$p ; to denote an instantaneous liquidity
spread. By modeling the dynamics @if we analyze the term structure of liquidity premium within each
credit rating and industry class. To study whether the two groups alsr diftredit risk, we also specify

an additional credit risk componemt for the low-liquidity group.



Formally, let(Q, 7, (7t )t>0, Q) be a complete stochastic basis dhde a risk-neutral probability mea-
sure. Under this measutg, the fair value of a benchmark zero-coupon bond with matarigglates to the

instantaneous benchmark interest rate dynamics by,

Pt)=E [exp(— /Otruduﬂ , 1)

whereE [-] denotes the expectation operator under the risk-neutral me@s@ar notation implicitly states

our focus on time-homogeneous specifications.

Following Duffie (1998), Lando (1998), and Duffie and Singleton @9%e can represent the value of
a defaultable coupon-bond in terms of the benchmark instantaneoustinteesand the Poisson intensity

A of the default arrival:

CB(c,w,1) = E [c/()rexp(—/(Jt(ru+)\u)du> dt}
+E {exp(—/OT(rujL)\u)du)] 2
+E [(l—w)/(:)\texp<—/ot(ru+)\u)du> dt},

wherec denotes the coupon rate afld— w) denotes the recovery rate. For expositional clarity, we assume

continuous coupon payments.

For a credit default swap contract, we (&® denote the premium paid by the buyer of default protec-

tion. Assuming continuous payment, we can write the present value of thméymndeg of the contract,

Premium(t [s/ exp( / ru+)\)du>dt} 3)

Similarly, the present value of the protection leg of the contract is

Protection(T) [W/ M exp< /t(ru +)\u)dU> dt] : (4)



Hence, by setting the present values of the two legs equal, we can sotiie foedit default swap spread as

o EW/sAexp(— Jo(ru+Au)du) di]

E [Jg exp(— [5(ru+Au)du)di] (5)

which can be thought of as the weighted average of the expected defsiltiIn model estimation, we
discretize the above equation according to quarterly premium paymentilstelor the credit default swap
contracts that we havay is fixed at 40 percent, which is the average recovery rate for sengacuned

debts.

For an inactively traded credit default swap contract, the premium caitshpally include a liquidity
component. Duffie, Pedersen, and Singleton (2003) show that this liqaaitponent can also be modeled

via an instantaneous liquidity premium spreqd,

_ E[w/jpAexp(— Jo(ru+Au+qu)du) dt]

E [Jg exp(— Jg(ru+Au+au)du) di] ©)

Under this framework, the benchmark libor and swap rate curve is detatrbin¢he instantaneous
benchmark interest rate)(dynamics. The credit default swap spreads are determined by the yoisnics
of instantaneous benchmark interest natend the Poisson arrival rake Furthermore, when the credit
default swap contract is illiquid, the spreads may also include a liquidity prertiatns controlled by the
dynamics of the instantaneous liquidity premium sprgadVe specify the three sets of dynamics in the

following subsections.

2.1. Benchmark interest rate dynamics and the term structure

We useX € R? to denote a two-dimensional vector Markov process that representgstieensitic state of
the benchmark yield curve. We assume that under the risk-neutral reé@silme state vector is governed

by a pure-diffusion Ornstein-Uhlenbeck (OU) process,

dX = (Bx — KxXo) dt -+ dW, (7)



wherek € R?*? controls the mean reversion of the vector processigr@y, ¢ R? controls the long-run
mean. For the OU process to be stationary, the real part of the eigesnafluemust be positive. For
identification reasons, we normalize the state vector to have identity diffusitixmé/e also constraim

to be a lower triangular matrix. Then, the diagonal values oktheatrix correspond to its eigenvalues. To

maintain stationarity, we constrain the diagonal values,db be positive in our estimation.

We further assume that the instantaneous benchmark interestisaifine in the state vectof,
ro=a +b/ X, (8)

where the parameter € R is a scalar ant), € R?* is a vector.

Our specifications in (7) and (8) belong to the affine class of term striatodels of Duffie and Kan
(1996) and Duffie, Pan, and Singleton (2000). The model-implied fairevaiuhe zero-coupon bond with

maturity T is exponential affine in the current level of the state vec{gr,
P(Xo,T) = exp( —a(t) ~ b(r) o) ©)
where the coefficienta(t) andb(t) are determined by the following ordinary differential equations:

d(1) = a +b(1) 6—Db(1) b(1)/2,

b'(t) = by —k,b(1), (10)

subject to the boundary conditiobg)) = 0 andc(0) = 0.

2.2. Default risk dynamics and the term structure of CDS sprads

We assume that the Poisson arrival rate of defslulinderlying each industry sector and credit rating class

i is governed by a vector of interest-rate factdrand default-risk factor¥ € RX:

MN=a+b % +gY, (11)

10



whereb; € R? denotes the instantaneous response of the arrivahraighe two benchmark interest-rate
factorsX, andc; € Rt denotes the instantaneous response to the default-risk factBssallowing the de-
fault arrival intensity to be an explicit function of the benchmark interatst factors, our model specification
captures the empirical evidence that credit spreads are related totimédecievels (e.g., Collin-Dufresne,
Goldstein, and Martin (2001)). For model estimation, we consider both -fa@ter and a two factor struc-

ture of the default risk factods= 1,2 and compare their relative performances.

The dynamics of the default risk factors under the risk-neutral me&géwdow,

where the benchmark interest-rate factérare also allowed to have a direct feedback effect on the default
risk factor throughkyy € Rk Thus, interest rate factors both have an contemporaneous effeefaut

risk and predict default risk. For identification, we again normalize the nitesteeous covariance to an
identity matrix. In the two-factor specification, we further constigjrto be a lower-triangular matrix with

positive diagonal values.

The jointQ-dynamics oZ = [XT,YT] € RZ*X s, in matrix form,

_ Oy Ky O
dz = (06— kZ)dt+dW, with 6= , K= ) (13)

By Kxy Ky

Given this compact specification, the present value of the premium leg cfe¢ldé default swap contract

becomes,

Premium(Zo,t) — [s/ exp< /ru+)\ ﬂ [s/ exp< /az+bZZu)du>} (14)

with az = a +4a andbz = [(br +b;)",¢']". The solution is exponential affine in the state ve@gr

Premium(Zp,T) = S/OT exp(—a(t) - b(t)TZ()) , (15)

11



where the coefficienta(t) andb(t) are determined by the following ordinary differential equations:

d(t) = az+b(t) 0—b(t) b(t)/2

b(t) = bz—K'bit), (16)

subject to the boundary conditiobg)) = 0 andc(0) = 0.

The value of the protection leg becomes,

Protection(Zp,T) = E [W/OT)\t exp(— /Ot(ru —|—7\u)du>]
_ E [W/OT (cz+j2) exp<— /Ot(az+b§zu)duﬂ , (17)
with ¢z = g anddz = [b,¢']". The solution is
: _ ! T . o T
Protection(Zo,T) = W /0 (ctt)+d(t)"Zo) exp(—a(t) —b(t) ' Z) (18)

where the coefficient®(t),b(t)] are determined by the ordinary differential equations in (16) and the coef

ficients[c(t),d(t)] are determined by the following ordinary differential equations:
d(t) = dt)'e—b(t)'dt), d(t)=—-k"d(t), (19)

with ¢(0) = ¢z andd(0) = dz. The credit default swap spread can then be solved as,

w3 (c(t) + d(t) Zo) exp(—alt) — b(t) " Zo)
J§ exp(—a(t) —b(t) o) |

SZo,1) = (20)

2.3. Liquidity risk and the term structure of liquidity risk p remium

For each credit rating and industry groypve divide the firms into two subgroups based on the frequency
of quote updates. We first estimate the above default risk factors to ttie gpeeads of the high-liquidity
group, and then ask whether the difference in credit spreads forwhkgoidity group is due to different

credit risk, liquidity risk, or both.

12



To answer this question, we introduce an idiosyncratic credit risk sgirdacnd an idiosyncratic lig-

uidity risk premium ), with the following risk-neutral dynamics,

M = am+Cmfl, & = (Bm—Kmél) dt+ dWhy, (21)

G = a+beli, dg = (Bg—Kglr) dt+dVi. (22)

Then, we can expand the definition of the state veZter[X YT, &,{] € R*, with

eX KX 0 O 0

0 K Ky 0 O
0— y K= xy Ky

Om 0O O kpm O

0q 0 0 0 Kq

The solution to the premium on this credit default swap spread has the samedoin (20), with the
following redefinitions: az = a; + & +am+aq, bz = [(br +bi)",¢",cm,bg] ", ¢z = & + am, anddz =

[bi—raci—racmvo}—r'

2.4. Market prices of risks

Our estimation identifies both the risk-neutral and the statistical dynamics oftdrestirate, credit-risk,
and liquidity risk factors. To derive the statistical dynamics, we assumefiar afarket price of risk on all

the risk factors,

Y(Z:) = Yo+ (Y1)Z (23)

with yp andy; are both vectors of the relevant dimension &ndienotes a diagonal matrix, with the diagonal
elements given by the vector inside. The affine market price of risk spetdifin dictates that the state vector

Z; remains Ornstein-Uhlenbeck under the statistical mead®upat with an adjustment to the drift term,

dz = <G+VofKPZt> dt+dw, kP=k-—vy. (24)

13



For stationarity, we also constrain the diagonal elemenks o6 be positive. For identification, we normal-

ize the long-run mean of the state vecZoio zero under the statistical measireo thatd = —yy.

2.5. Positivity of interest rates and credit spreads: An akernative quadratic specification

The above specification assumes a Gaussian-affine structure for bdteribhmark interest rates and the
credit spreads. Therefore, both interest rates and credit spcaadsecome negative with positive proba-
bility. To guarantee positivity of interest rates and credit spreads, wecalssider an alternative quadratic
functional form for the instantaneous interest rate and credit spnddliing maintaining the same number

of parameters:

r=a+X% ()X, A=a+X (b)X+Y% (Y. (25)

According to Leippold and Wu (2002), the benchmark zero-coupod pdoe becomes exponential quadratic
in the state vector,

P(X0>T) = eXp(_a(T) - b(T)TXO - XOT B(T)Xo), (26)
with the coefficients solving the following ordinary differential equations,
d(1) = a+b(t)"6x+trB(t)—b(t) b(1)/2,

b'(t) = 2B(1)8x— kK, b(T) — 2B(T)b(T), (27)
B'(1) = (br) —B(T)kx— Ky B(T) — 2B(1)?,

starting atB(0) = 0, b(0) = 0 anda(0) = 0.
Analogously, we can derive the credit default swap premium as

W (e(t) +d(t) " Zo+ Zg D(t)Zo) exp(—a(t) — Zg b(t)Zo)

S(Zo.1) = Jo exp(=alt) =b(t) Zo—Z; B(t)20) | .
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with the coefficients solving the following ordinary differential equations:

d(1) = az+b(m)'O+trB(t)—b(1) b(1)/2,

(1) = lz+2B(1)8—k'b(t) —2B(1)b(1),

B'(t1) = (bz)—B(1)k—K'B(1) —2B(1)?, (29)
dt) = d(1)Te+trD(T)—d(1)Tb(),

d(t) = 2D(t)8—k'd(t)—2D(t)b(t) — 2B(t)d(t),

D'(t) = —D(t)k—k'D(t)—4B(t)D(t),

starting ata(0) = 0, b(0) = 0, B(0) =0, ¢(0) = ¢z, d(0) = 0, andD(0) = (dz). In equation (29)|z is a
vector of zeros, which will become nonzero in the presence of linear liguid credit risk factors. The

details of the derivation are available upon request.

Since the signs of the idiosyncratic credit risk premium)(and the idiosyncratic liquidity premium
(q:) can be either negative or positive, it is appropriate to maintain the origiaas&an affine assumption
on both. In the presence of these two risk factors, the pricing formulthéocredit default swap retains
the same form as in (28), only with a corresponding expansion on the steter? = [X',Y &, 7]
and the following redefinitions on the coefficients: = a + & + am+aq, Iz = [0,0,¢m,bg] ", bz = [(br +
bi)",¢",0,0]", cz = a +am, anddz = [b,¢,0,0]". Furthermore, the initial condition oth(0) adjusts
from zero tod(0) = [0,0,cm,0] .

3. Data and Evidence

The CDS data are from JP Morgan Chase. They are daily CDS spretesaqun seven fixed maturities at
one, two, three, four, five, seven, and ten years from May 2003 284 (256 business days) on each
reference company. We obtain the credit rating information on eacterefercompany from Standard &

Poors, and its sector information from Reuters, publicly available on Yahoo

We apply several filters to the data. First, we exclude the reference efiftgiese cannot find credit
rating information on. Second, we exclude companies whose credit ramgnigrated during our sam-

ple period. Third, we include only investment grade companies. Furthermar exclude AA and AAA
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companies because they fail to meet our liquidity standards as described Blese filters leave us with
157 reference companies. We classify the remaining reference commjeasied on (i) two broad industry
classifications: financial and corporate and (ii) two broad credit ratioggs: A (including A+ and A-) and

BBB (including BBB+ and BBB-).

The credit default swap spreads differ dramatically in liquidity acrosedifft reference entities. Within
each sector and credit rating class, active quote updates are categrmn only a few firms. To compare
the quoting activity on each firm, we first expand the quote series into dadyéncy by filling missing
data points with previously available quotes. Then, we take daily diffeseritthe quotes are not updated
between two consecutive days, the daily differences would be zeras, e use the number of days
that have non-zero daily quote differences to capture the quote updegqgency. Table 1 provides the
summary statistics on the quote updating frequency at different industigrseand credit rating classes.
Each reference firm underlies seven credit default swap seriee aeten fixed maturities. We compute
the total number of active quote updates on all seven series for eachCfirnsample period includes 256
business days. The average of the median updating frequency altremgen series is 278 times, roughly
about one update on the seven series per day, or one update oerBesipar seven business days. The most
active firm has 938 updates, about one update on each series evadgys: The least active only have 11

updates across the whole sample period.

Within each industry sector and credit rating class, we divide the data intgregps, with high and
low liquidity, respectively. We classify a firm into the high-liquidity group if th@ead quotes on the firm
have no fewer than 364 total updates, corresponding an average opdate per week. Then, at each date
and maturity, we average the spread quotes across the high-liquidity firms ed@th industry sector and
credit rating class. We estimate the credit risk dynamics using the time seriesefdterage high-liquidity

credit default swap spreads on the seven maturities.

The rest firms are classified into the low liquidity group. To investigate the ingfdijuidity on the
term structure of credit spreads, we also average the quotes amongvtliguiglity firms at each date,
maturity, industry sector, and credit rating class. Nevertheless, quittevavy few updates are unlikely
to be informative. Hence, for the low-liquidity group, we average acfioss that have at least 182 quote

updates, corresponding to an average updating frequency of ebteasevery two weeks.
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Figure 1 plots the time series of the average credit default swap sptesathdandustry sector and credit
rating class, with left panels for high-liquidity firms and right panels for lay#idity firms. The seven lines
in each panel denote the seven fixed maturities from one to ten yearsprelaels were high during the start
of our sample following the high default year of 2002. The spreads aetind reached the bottom around

January 2004 and started to pick up again since then.

[Figure 1 about here.]

Within each industry sector, spreads on the BBB rating class are muclr ligimethe corresponding A
group, due to the higher default probabilities. The seven maturity seris thre BBB rating class are also
closer to one another than the corresponding series under the A rassginiplying a flatter term structure
for the higher credit rating class. Within the same industry sector and cadidig class, high-liquidity firms

have markedly higher CDS spreads on low-liquidity firms.

Figure 2 plots the term structure of the credit default swap spreadsfetedif days. To reduce clus-
tering, we plot one term structure every seven business days fopaaeh During our sample period, the
CDS spreads on high-liquidity firms mostly show upward sloping term strugtiitee spreads on the corre-
sponding low-liquidity firms are lower, and their term structures are alsorflatienetimes showing hump
shapes. Within the same industry sector, CDS spreads on the A rating alasstheper term structures

during our sample period than spreads on the BBB rating class.

[Figure 2 about here.]

Table 2 reports the summary statistics of the average credit swap sprasdagehe seven fixed ma-
turities under each industry sector, credit rating class, and liquidity grohe mean spreads are higher at
longer maturities and hence show upward sloping term structures in apgrivithin each sector and rat-
ing class, the high-liquidity groups generates much higher mean spreadséhlaw-liquidity group. The
differences are especially large in the financial sector, where the mesawds on the high-liquidity groups
approximately double the mean spreads on the corresponding low-liquiditypgr Across the two credit
rating classes, the mean spreads are larger for the BBB class than focliss. The differences are again

larger for the financial sector than for the corporate sector.
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The term structure of the standard deviation is upward sloping for thecfeda®ctor and A rating class,
but shows a hump-shape for all other groups. The skewness estimate®stly positive, but the excess
kurtosis estimates are mostly small. The daily autocorrelation estimates are bét@@ém 0.99, showing

that the spreads are persistent, albeit less so than the benchmark natieest

To obtain the benchmark libor interest rate dynamics, we also downloadsft@omberg the U.S. dollar

libor and swap rates that match the maturity and sample period of the credittdsfap spreads data.

4. Estimation Strategy

We estimate the dynamics of benchmark interest-rate risk, credit risk, andtjousdt in three consecutive

steps, all using quasi-maximum likelihood method. At each step, we cast thedgmutt a state-space form,
obtain efficient forecasts on the conditional mean and variance ofwaukarterest rates and credit default
swap spreads using an efficient filtering technique, and build the likelifusation on the forecasting errors
of the observed series, assuming that the forecasting errors arellyatisi@ibuted. The model parameters

are estimated by maximizing the likelihood function.

In the first step, we estimate the interest-rate factor dynamics using libomaprates. In the state-
space form, we regard the two interest-rate factdtsgs the unobservable states and specify the state-
propagation equation using an Euler approximation of statistical dynamice aftdérest-rate factors em-

bedded in equation (24):
X = OyX—1+ V/ Qxéxt; (30)

where®d, = exp(—KEAt) denotes the autocorrelation matrix %f Qx = IAt denotes the instantaneous co-
variance matrix ofX, with | denoting an identity matrix of the relevant dimension &bg= 1/252 denot-

ing the daily frequency, angy; denotes a two-dimensional i.i.d. standard normal innovation vector. The
measurement equations are constructed based on the observed libewamdates, assuming additive,

normally-distributed measurement errors,
LIBOR(X, 1) i =12 months,

+&, cov&a)==xR, (31)
SWARX, ) j=2,3,4,57,10 years

<
|
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In the second step, we take the estimated interest-rate factor dynamics irstretefr as given, and
estimate the credit-risk factor dynamicg) @t each industry sector and credit rating class using the seven
average credit default swap spread series for the high-liquidity grdupthe state-space form, we specify
the state-propagation equation using an Euler approximation of statistiGahiysof the credit-risk factors

embedded in equation (24):

Yo = OyYi-1+ 1/ Qyt, (32)

with ®y = exp(—kyAt), Qy = 1AL, andey being ak-dimensional i.i.d. standard normal innovation vector.
We estimate models with both= 1 andk = 2. The measurement equations are defined on the seven credit

default swap spreads,
yt:S(>([7Yt7T7i)+Q7 COV(Q):K7T:17273747577710year$ (33)

wherei = 1,2, 3 4 denotes théh industry sector and credit rating class. We repeat this step of eaobirof f

industry and credit rating classes.

In the third step, we estimate the idiosyncratic credit risk and liquidity risk dyrefoiceach industry
sector and credit rating class using the average credit default sppeatie low-liquidity firms. The state-
propagation equation is defined based on an Euler approximation of theridiaig credit and liquidity
risk dynamics in (21) and (22):

& &1

= Py +v/QqEqts (34)
G Gi-1

with ®g = <exp(—K],11’;At),exp(—K]§At)), Qq = IAt, andeg being a two-dimensional i.i.d. standard normal
innovation vector. The measurement equations are defined on the sevageacredit default swap spreads

on the low-liquidity firms,
yt:S(><(7Yt7Et7Zt7T7i)+Q7 COV(Q):Kv T:17273747577710years (35)

We repeat this step on each of four industry sector and credit ratingeslas

Given the definition of the state-propagation equation and measuremextioeguat each step, we use

an extended version of the Kalman filter to filter out the mean and covariarice wfethe state variables
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conditional on the observed series, and construct predictive meaoosadance matrix of the observed
series based on the filtered state variables. Then, we define the daily Ibigolice function assuming

normal forecasting errors on the observed series:

1 — 1 _ _
lt4+1(©) = —5 log |Vis1| — > ((yt+1 ~Vii1) | (Visa) ! (Yer1— Vt+1)) ; (36)

wherey andV denote the conditional mean and variance forecasts on the obseries] sespectively.
The model parameter§), are then estimated by maximizing log likelihood of the data series, which is a

summation of the daily log likelihood values,

@zargr%axg(e,{yt}{\‘zl)7 with £(0,{y},) Z)ItH (37)

whereN = 256 denotes the number of observations for each series. For eaclvstepther assume that

the measurement errors on each series are independent but with diatiante.

We estimate both affine and quadratic models for the term structure of berichntexest rates and
credit spreads. The state dynamics are the same under both specifichtemse, the state-propagation
equations are the same for both model estimation. What differs is in the messurequations since the
two types of specifications generate different function forms for libogpsrates, and credit default swap

spreads as functions of the state variables.

5. The Pricing of Interest-Rate, Credit, and Liquidity Risks
First, we first summarize the performance of the different dynamic terratateimodels in pricing interest

rates and credit default swap spreads. Then, from the estimated naodeigiers we discuss the dynamics

and pricing of benchmark interest-rate risk, credit risk, and liquidity risk.
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5.1. Model performance comparisons

Table 3 reports the summary statistics on the pricing errors of libor and ssegoumder the two-factor affine
and quadratic model specifications. The affine model explains the swegpwell, but fails miserably in
explaining the 12-month libor. The discrepancy between libor and swapisatell known in the industry.
Nevertheless, the very poor performance reveals some deficiencg tidkfactor affine specification. In
contrast, the quadratic model performs much better on the libor seriesrfiisrpance across the six swap
rates is also more uniform. Thus, the richer, nonlinear dynamic specifiadtiba quadratic model captures

the joint term structure of the libor and swap rates better.

The maximized log likelihood values § are 5067.1 for the affine model and 5229.7 for the quadratic
model, also indicating superior performance from the quadratic model. 8iese two models are not
nested, we cannot employ the standard likelihood ratio tests to gauge thecaigesfiof the likelihood
difference. Nevertheless, we follow Vuong (1989) in constructingtéstitabased on the difference between

the daily log likelihood values from the two non-nested models:
Iry =12 —1A (38)

whereltQ and{ denote the time-og likelihood value of the quadratic and affine models, respectively. Vuong

constructs a statistic based on the likelihood ratio:
M = \/-I_-Hr/olra (39)

wherep, andoj, denote the sample mean and standard deviation of the log likelihood ratio. thedwssll
hypothesis that the two models are equivalent, Vuong provesithhais an asymptotic normal distribution
with zero mean and unit variance. We construct the log likelihood ratio, atichate the sample mean
at 0.6352, and sample standard deviation at 3.0054. The standard degeltalation adjusts for serial
dependence according to Newey and West (1987), with the numbersthagen optimally according to
Andrews (1991) based on an AR(1) specification. Bhestatistic is estimated at 3.38, indicating that the
guadratic model performs significantly better than the affine model in explainengenchmark libor term

structure.
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Table 4 reports the summary statistics of the pricing errors of the creditiltdsfaap spreads on the
high-liquidity firms using one credit risk factor for both the affine and thadyatic specifications. The
affine model provides an almost perfect fit for the four-year CD®ahrbut the performance deteriorates
at both short (one year) and long (ten year) maturities. In contrastetifiermance of the quadratic specifi-
cation is more uniform across different maturities. Under the quadratafigadion, one credit risk factor,
together with the previously identified two benchmark interest-rate factansexplain all CDS spread se-
ries by over 90 percent. The one-factor quadratic model also gesdrateer likelihood values than the
corresponding affine model for each of the four industry sector eetitcating classes, but the differences

are not statistically significant in terms of the Vuong (1989) statistic.

For comparison, we also estimate models with two credit-risk factors. Tablpdstsethe summary
statistics of the pricing errors. Adding one additional credit risk factomi@antly improves the perfor-
mance of the affine model at the two ends of the CDS term structure. Twe &ittors explain over 98
percent of the credit spread variations except for one series. Withuadratic specification, since one
credit risk factor performs reasonably well, adding another credifaisior does not generate as much im-
provement. Furthermore, with two credit-risk factors, the maximized likelih@bdes from the affine and
guadratic specifications are close to one another. The quadratic spimifico longer dominates the affine
specification. In a sense, an extra factor in the affine model can playctie¥ dynamics of the quadratic

model.

In the last step, to account for the idiosyncratic movements of the creeadpifor the low-liquidity
firms, we introduce an idiosyncratic credit risk factor and a liquidity fact@ddition to the two benchmark
interest rate factors and the two credit risk factors identified from theasisron high-liquidity firms. Table 6
reports the summary statistics of the pricing errors. These two additiontatgazan explain most of the

idiosyncratic variation in the low-liquidity groups. Most series can be expthiiver 95 percent.

Overall, two interest-rate factors, especially in the quadratic forms, calaiaxthe term structure of
the benchmark interest rates well. Two additional credit-risk factors are than enough to explain the
term structure of credit spreads for high-liquidity firms under each imgggctor and rating class. Finally,
by incorporating an additional credit risk factor and a liquidity risk factioe, model also performs well in

explaining the term structure of credit spreads on low-liquidity firms
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5.2. Dynamics and term structure of the benchmark libor intaest rates

Table 7 reports the first-stage parameter estimates and the absolute magsfithéésstatistics (in paren-
theses) that define the dynamics and term structure of the benchmark tdresirrates. Under both affine
and the quadratic specifications, determines the mean-reversion of the interest-rate factonder the
risk-neutral measur®. The small estimates on the diagonal elements,@apture the persistence of inter-
est rates. The negative estimates on the off-diagonal element sugggsbsfiive shocks on the first factor

predicts larger values on the second factor.

The estimates for the constant part of the market price ofykglare negative for both factors under
the affine model. Under the quadratic model, the market price is positive dirgdh&ctor and negative
on the second factor. The proportional coefficients estimgtgsare small and not statistically different
from zero for both factors under the affine specification, indicating ttt&imarket price of risk does not
vary significantly with the factor level. The estimates under the quadratic nasdedlso small and only

statistically significant for the first factor.

Under both models, thg estimates show that the second factor loads more heavily on the instantaneous
benchmark interest rate. These instantaneous loading coefficientcimétathe risk-neutral factor dy-
namics K) to determine the response of the whole yield curve to unit shocks from térest-rate factors.
Under the affine model, the contemporaneous responses of the costinaompounded spot rate to the
two dynamic factors are linear, with(t) /T measuring the response coefficients. Equation (9) shows how
b(t) measures the loading coefficient to the dynamic factors and equatiorh@03 fiowb, andk interact
to determineb(t). Figure 3 plotd(t)/T as a function of maturitg. The solid line represents the first ele-
ment, which is the loading of the first interest-rate factor. This factor loade hreavily at longer maturities
than at shorter maturities. The dashed line plots the impacts of the secorgvidtdtd loads more heavily
at the short end of the yield curve. The different loading patterns netdtenly to the different magnitudes
of the two elements of thb, estimates, but also to the difference in persistence between the two factors.
Under the affine model, the first factor is estimated to be more persistent thaadbnd factor. Hence, its

impact extends to longer maturities.

[Figure 3 about here.]
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5.3. Default arrival dynamics and the term structure of credt spreads

Tables 8 and 9 report the parameter estimates-atatistics on the default arrival dynamics, market pricing,
and their impacts on the term structure of credit spreads at each indestgr and credit rating class.
Tables 8 reports estimates on the one-factor credit risk specificatiofdesTa reports estimates on the

two-factor credit risk specifications. From the two tables, we draw theWwallmmmon observations.

First, the default risk dynamics and pricing differ across different itrgusectors and credit rating
classes. Nevertheless, in all cases, the default risk dynamics showatimttignamic interactions with the
interest-rate factors. Thie,y matrix captures the predictive power of interest-rate factors on the ltlefau
risk factors, whereas th® vector captures the contemporaneous loading of the interest-rate fanttire
default arrival\l. Estimates on both sets of parameters are significant in most cases, indihatirige
interest-rate factors both predict default arrivals via the drift dynamjgsnd impact the default arrivals

contemporaneously via the loading coefficidnts

Second, the estimates @p under the one-factor affine model are very small and not significanty dif
ferent from zero. Under the two-factor affine specification, the estmfateone of the diagonal elements
of ky are close to zero. The small estimates indicate a near unit root behavtbeforedit risk dynamics.
However, the corresponding estimates are larger and also with betté&igmetargert-values) under the
guadratic specifications. Thus, with a nonlinear structure under theajicachodel, we can more accurately
identify a more stationary credit-risk dynamics, while delivering a uniformlyl mecing performance on

CDS spreads across all maturities.

Although the quadratic models deliver better and more uniform perform#reaffine models provide
a linear and hence easier-to-interpret relation between factors aditl sppeeads. In Figure 4, we plot the
contemporaneous loading of the two default risk factors on the contihuoosipounded spot rate at each
industry sector and credit rating group, as captured by the third andefements ob'(t) /1t for the ith
sector and rating class. Since the default risk factors do not enter tiolrbark libor curve, the loading
also directly measures the impact on the credit spread between the ¢ergumrarate and the libor spot rate.

The solid line denotes the first credit risk factor and the dashed line tbedecedit risk factor.

[Figure 4 about here.]
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Overall, both factor loadings are downward sloping under all four itrgirating classifications. And
yet, a noticeable difference shows up between the financial and etemectors. First, the factor loadings
in the financial sector present an exponential decay while in the caepaeator they are more or less linear.
Second, the loading differences between the two rating classes are mgehfda the financial firms than
for non-financial firms, suggesting that financial firms are more seesiivating changes between A and

BBB classes. A lower rating generates dramatically larger spreads fon#meial firms.

5.4. Liquidity and liquidity premiums

The liquidity of the CDS contracts, as revealed by the quote updating fnegueries greatly across differ-
ent reference firms. Within each industry sector and credit rating ¢kesBquidity is concentrated on a few
firms. An important question is what makes investors to concentrate the t@adimge firm versus another.

Also important is to understand whether and how liquidity impacts the pricing a€ B contracts.

Table 10 reports the parameter estimates tagthtistics (in parentheses) on the idiosyncratic credit
risk and liquidity factors that account for the idiosyncratic movements of th& Spreads on the low-
liquidity firms. First, the loading parameter estimates on the idiosyncratic credfaask () are strongly
significant, showing that the default arrival rates for firms in the low-ligyigroups do have idiosyncratic
movements that are independent of the default arrival dynamics iderftifiedthe high-liquidity group

within the same industry sector and credit rating class.

Second, the estimates on the intercagptare negative under all four industry sector and credit rating
classes. These negative estimates suggest that firms in the low-liquidity@m@verage have lower default
risk and hence experience lower instantaneous credit spreads tharirfithe corresponding high-liquidity
group. This observation is intriguing and implies that, within the same industrgraxdit rating class, firms
with active CDS trading activities are associated with higher perceivelit cisk than firms with less active
CDS trading activities. Either investochiooseto trade CDS contracts on firms that they perceive to have
higher chances of downward rating migrations, or high-profile firmsigeéaenore awareness of its potential

default risk.
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The instantaneous loading estimates on the liquidity risk fadigrdre large in magnitudes and also
highly significant, showing that liquidity plays a key role in the credit spraffdrdnces between the two
liquidity groups. The intercept estimates ag are all positive, suggesting a higher discounting for the
low-liquidity contracts. Thus, the lower average CDS spreads on low-ligufidns can be attributed to a

combination of low credit risk and high liquidity discounting.

The estimates or,, which measures the risk-neutral mean-reverting behavior of the idicetym de-
fault risk factor, are very small, suggesting that the idiosyncratic cresktfactor has highly persistent
risk-neutral dynamics and hence impacts the term structure of credstdspadmost linearly across maturi-
ties. Furthermore, the estimates fap are all negative, and in several cases significantly so, implying that
this idiosyncratic credit risk has a negative market price of risk. Givemtirmalization of the statistical
dynamics, the negative market price of risk implies a positive risk-neutifal(@) for the credit risk fac-
tor. As suggested by the ordinary differential equations in (16), a pe$itior the credit risk factor helps

generate an upward sloping mean term structure of credit spreads.

The dynamics and pricing of the liquidity risk factor are dramatically differéliite estimates on the
risk-neutral mean-reversion parametgffor the liquidity factor are larger than the estimateskgrand are
all strongly significant, suggesting that the liquidity risk factor has a more staampact on the term
structure of CDS spreads. Furthermore, the estimates on the pricing of tiditjiqrisk (yqo) are mostly
positive and significant, especially for non-financial firms. Contrary &rtbgative market price on the
credit risk factor, positive market prices on the liquidity risk factor maketéne structure less upward

sloping, and hence explains the flatter term structure of CDS sprealdsvitiquidity firms.

Figure 5 shows the difference between the two factors in terms of their impatte spot rate curve of
the low-liquidity firms. The impacts of the default risk factor are in the left pariEhey are flat across ma-
turities. The loadings are larger for BBB rating than for A rating firms, aediifference is especially large
for financial firms, suggesting again that the financial firms are morétiserts rating changes between A

to BBB rating classes.

[Figure 5 about here.]
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The loadings of the liquidity factor show quite different patterns. The Igadir very high at short
maturities, but the impacts decline quickly as maturity increases, generatirapglgtdownward sloping
pattern. Also interestingly, the liquidity factor loadings on financial firms #&e more sensitive to rating

changes than non-financial firms.

Overall, our estimation suggests that the lower mean CDS spreads for lddithigiirms can be at-
tributed to two separate driving forces. First, the market regards lowdltgfirms as having less default
risk. Second, the market discounts the value of low-liquidity contracts nemeilly. On the other hand, the
flatter mean term structure for low-liquidity firms is mainly due to the positive priciie liquidity risk

for CDS contracts.

6. Conclusion

Using a large data set on CDS spread quotes, we perform a joint anafiybis term structure of interest
rates, credit spreads, and liquidity premia. Our construction and estim&tienaral dynamic term structure
models suggest that quadratic models perform better and more uniforragsabe term structure of interest
rates and credit spreads than affine models. We also find that defaudyriamics differ across different
industry sectors and credit rating groups, but in all cases they shovaietinteractions with the interest-rate
dynamics. Specifically, we find that financial firms are more sensitive tagratianges than non-financial

firms.

Our estimation also suggests that within the same industry sector and credjt alatss, firms with
active CDS trading activities tend to also have higher credit risks than fiithdow CDS trading activities.
Finally, low-liquidity firms induce heavier discounting on the yield curve anukgate lower CDS spreads.
Positive market pricing on the liquidity risk further renders the mean ternstsiiei of CDS spreads flatter

on low-liquidity firms.
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Table 1

Summary Statistics of the Quote Updating Frequency on Credit Defalt Swap Spreads

Entries report the number of firms within each sector and credit rating, @assell as summary statistics
(Median, Maximum, Minimum) on the quote updating frequency. We take dailgreifices on the quotes of
each series and define the updating frequency as the number of datyeettaily differences are nonzero,
and hence the quotes are updated, for the seven series on each firm.

Sector Rating Number of Firms Median Maximum Minimum
Financial A 28 176 580 11
Financial BBB 6 423 610 229
Corporate A 57 191 686 21
Corporate BBB 66 324 938 35
Average 39 278 704 74
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Table 2

Summary statistics of credit default swap spreads

Entries report the summary statistics of the credit default swap spreablagjg points) at the seven fixed
maturities under each credit rating class, industry sector, and liquiditypgrddean, Std, Skew, Kurtosis,
and Auto denote the sample estimates of the mean, standard deviation, skesxgess kurtosis, and the
first-order autocorrelation, respectively. Data are daily from May2P03 to May 12, 2004.

Maturity High Liquidity Low Liquidity

Years Mean Std Skew Kurtosis Auto Mean Std Skew Kurtosis Auto

(i) Sector: Financial; Rating: A

1 30.16 872 1.00 -0.33 0.98 1453 470 1.59 246 0.97
2 39.41 10.34 0.95 -0.38  0.98 20.13 6.27 151 220 0.97
3 43.03 11.04 0.96 -0.36 0.98 22.08 6.85 1.47 213  0.97
4 49.69 1241 0.91 -0.43 0.98 25.75 731 154 257 097
5 54.42 13.36  0.89 -0.49 0.98 28.35 7.67 158 275 0.97
7 61.29 1343 0.84 -0.39 0.98 31.92 7.85 155 296 0.97
10 68.68 13.67 0.71 -0.57 0.98 3530 816  1.47 295 0.97
(i) Sector: Financial; Rating: BBB
1 92.68 25.42 0.27 -1.16  0.98 51.64 12.62 0.76 -0.62 0.98
2 100.30 25.51 0.39 -1.13  0.98 55.65 14.09 0.74 -0.77 0.98
3 103.69 25.87 0.39 -1.13  0.98 56.89 14.73 0.73 -0.81 0.98
4 108,55 25.00 0.46 -1.08 0.98 58,50 12.94 0.82 -0.54 0.98
5 111.83 2461 0.48 -1.04 0.98 60.01 11.76 0.88 -0.32 0.98
7 117.29 2251 0.32 -1.17  0.98 60.96 9.23 0.85 0.04 0.97
10 123.18 20.52 0.16 -1.28 0.98 63.56 7.04 0.28 -0.22 0.96
(i) Sector: Corporate; Rating: A
1 28.85 817 0.78 -0.43 0.98 26.93 507 0.97 0.92 0.98
2 39.67 955 0.64 -0.77 0.98 3137 539 054 0.23 0.98
3 43.77 10.01 0.64 -0.79  0.98 32.93 554 0.44 0.09 0.98
4 48.88 10.38 0.72 -0.56 0.98 3652 578 0.32 -0.04 0.98
5 52.34 10.62 0.76 -0.42 0.98 39.06 592 0.23 -0.15 0.98
7 58.29 10.31 0.67 -0.42 0.98 41.78 5.62 -0.07 -1.02  0.99
10 64.46 9.57 0.46 -0.50 0.98 45.25 6.11 0.34 -1.06  0.99
(iv) Sector: Corporate; Rating: BBB
1 63.35 17.89 1.30 0.88 0.98 39.55 6.49 051 0.05 0.98
2 75.09 1931 1.22 0.64 0.98 46.26 7.04 0.37 0.12 0.98
3 79.17 19.76 1.20 0.58 0.98 48.61 7.16 0.31 0.12 0.98
4 83.66 19.28 1.15 0.38 0.98 52.21 6.92 0.00 -0.11  0.98
5 86.71 19.00 1.11 0.28 0.98 54.79 6.82 -0.16 -0.31 0.98
7 9197 17.14 1.08 0.28 0.98 58.41 6.51 -0.31 -0.94 0.98
10 97.23 1531 0.97 0.19 0.98 62.89 7.13 -0.00 -1.19 0.98
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Table 3

Summary statistics of pricing errors on the libor and swap rates

Entries report the summary statistics of the pricing errors on the U.S. dollarditmb swap rates under
the two-factor Gaussian affine model (left hand side under “Affina®) the two-factor Gaussian quadratic
model (left hand side under “Quadratic”). We estimate both models by usiagi-gnaximum likelihood
method joint with unscented Kalman filter. We define the pricing error as therelifte between the ob-
served interest rate quotes and the model-implied fair values, in basis gdietsolumns titled Mean, Std,
Auto, Max, and VR denote, respectively, the sample mean, the standaatiale, the first-order autocorre-
lation, the maximum absolute error, and the explained percentage vanficeed as one minus the ratio
of pricing error variance to interest rate variance, in percentages.lash row reports the maximized log
likelihood for each model.

Maturity Affine Quadratic

Years Mean Std  Auto Max VR Mean Std  Auto Max VR

1 756 17.35 0.91 46.89 5.08 -1.53  7.99 0.78 33.21 79.85
2 -0.23 4.09 0.88 10.38 98.46 -0.23 281 0.66 1156 99.27
3 -0.05 0.22 0.16 1.11  99.99 0.30 1.59 0.57 7.33 99.84
4 0.08 0.95 0.41 5.05 99.95 -0.13 1.15 0.40 7.81 99.93
5 0.36 0.85 0.30 6.51 99.96 0.06 0.70 0.34 5.75 99.97
7 -0.72 1.03 0.74 3.87 99.94 -0.48 1.15 0.60 446  99.93
10 0.50 1.85 0.76 6.60 99.78 0.70 2.10 0.70 757 99.72
Average 1.07 3.76 0.59 1149 86.17 -0.19 2.50 0.58 11.10 396.9
L 5067.1 5229.7
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Table 4

Summary statistics of pricing errors on credit default swap spread with one credit risk factor

Entries report the summary statistics of the pricing errors on the creditldsfaap spreads under both
affine and quadratic specifications. Both specifications use one dsddiactor to price the high-liquidity
credit-default swap spread at each industry and credit rating clagsestimate both models by using
guasi-maximum likelihood method joint with unscented Kalman filter. We define ibm@rerror as the
difference between the spread quotes and the model-implied fair valuesisgwoints. The columns titled
Mean, Std, Auto, Max, and VR denote, respectively, the sample meanatigasd deviation, the first-order
autocorrelation, the maximum absolute error, and the explained percemtégece, defined as one minus
the ratio of pricing error variance to interest rate variance.

Maturity Affine Quadratic
Years Mean Std  Auto Max VR Mean Std  Auto Max VR
(i) Sector: Financial; Rating: A
1 -0.35 386 0.97 1255 80.41 -1.31 269 0.83 18.98 90.49
2 1.33 207 0.97 5.48 96.01 158 174 057 1796 97.15
3 -1.37 136 0.96 6.07 98.47 -1.16 150 035 2259 98.14
4 -0.00 0.02 0.66 0.08 100.00 -0.06 1.14 0.09 18.07 99.16
5 025 1.00 0.96 2.48 99.44 -0.04 119 027 1585 99.21
7 0.02 126 0.93 3.59 99.12 -0.35 121 0.43 13.07 99.19
10 -0.26 244  0.95 7.77 96.81 0.09 220 084 10.89 97.40
(i) Sector: Financial; Rating: BBB
1 -2.26 400 096 1581 97.52 -1.19 6.37 0.79 47.22 93.73
2 0.33 232 095 7.69 99.17 0.37 3.62 041 4579 97.99
3 -0.82 2.08 0.96 7.64 99.35 -1.01 330 0.38 4458 98.37
4 0.01 0.01 0.84 0.04 100.00 -0.14 247 0.08 39.28 99.03
5 -0.26 125 0.96 3.86 99.74 -0.26 244 024 3400 99.02
7 -0.57 297 0.97 6.92 98.26 -0.21 257 045 29.23 98.70
10 -0.40 552 097 12.38 92.75 0.05 3.78 0.79 23.08 96.61
(i) Sector: Corporate; Rating: A
1 -466 188 0.96 8.89 94.72 -3.66 223 0.75 20.74 9255
2 0.10 0.84 0091 251 99.23 033 140 039 1753 97.86
3 -0.85 0.66 0.93 2.93 99.56 -062 137 035 19.63 98.13
4 0.00 0.01 0.80 0.02 100.00 019 111 019 16.72 98.86
5 -0.13 035 0.90 1.40 99.89 -0.06 094 0.07 1491 99.22
7 0.03 1.28 0.95 4.36 98.47 -0.03 104 039 13.14 98.98
10 -0.24 3.23 0.97 8.73 88.59 023 197 086 11.00 95.78
(iv) Sector: Corporate; Rating: BBB

1 -581 268 096 11.90 97.75 -298 554 058 63.04 90.40
2 019 129 0.95 3.91 99.56 055 3.72 023 5439 96.29
3 -0.51 1.09 0.95 4.35 99.70 -0.57 323 0.16 49.68 97.33
4 0.00 0.00 0.65 0.01 100.00 -0.09 288 011 4570 97.76
5 -0.27 0.68 0.96 2.18 99.87 -0.32 262 0.13 40.86 98.10
7 -0.17 2.88 0.98 6.62 97.18 -0.07 265 0.38 34.19 97.61
10 -0.16 5.38 0.98 12.13 87.64 0.32 335 073 26.09 9522
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Table 5

Summary statistics of pricing errors on credit default swap spread@ with two credit risk factor

Entries report the summary statistics of the pricing errors on the creditiitisfsap spreads under both
affine and quadratic specifications. Both specifications use two crddfadgors to price the high-liquidity
credit-default swap spread at each industry and credit rating classdefihe the pricing error as the dif-
ference between the spread quotes and the model-implied fair valuesjdrpbags. The columns titled
Mean, Std, Auto, Max, and VR denote, respectively, the sample meanatidasd deviation, the first-order
autocorrelation, the maximum absolute error, and the explained percesmtdgece, defined as one minus
the ratio of pricing error variance to interest rate variance.

Maturity Affine Quadratic
Years Mean Std  Auto Max VR Mean Std  Auto Max VR
(i) Sector: Financial; Rating: A
1 0.01 0.08 0.43 0.38 99.99 -0.40 164 0.85 545 96.46
2 139 0.72 0.91 2.62 99.52 1.26 1.09 0.72 6.36 98.89
3 -1.38 0.80 0.94 4.11 99.48 -1.44  1.02 0.61 12.27 99.15
4 0.00 0.00 0.22 0.00 100.00 -0.05 0.57 0.08 8.96 99.79
5 0.27 0.76 0.93 2.09 99.68 0.21 0.93 0.65 8.02 99.52
7 0.05 0.75 0.89 2.02 99.68 -0.04 0.50 0.06 7.95 99.86
10 -0.20 1.72 0.95 3.88 98.42 -0.25 150 0.85 9.58 98.80
(ii) Sector: Financial; Rating: BBB
1 -0.64 1.59 0.93 3.85 99.61 -0.10 1.83 0.74 10.63 99.48
2 0.07 0.11 0.39 0.53 100.00 -0.00 044 0.02 6.74 99.97
3 -1.42 1.20 0.94 4.59 99.78 -1.18  1.32 0.90 6.41 99.74
4 -0.32 1.06 0.93 2.84 99.82 -0.00 0.25 0.01 3.68 99.99
5 -0.16 1.68 0.97 3.13 99.53 0.03 0.82 0.91 1.74 99.89
7 0.01 0.03 0.41 0.20 100.00 -0.05 1.53 0.91 421 99.54
10 -0.51 156 0.94 3.97 99.43 -0.27 3.05 0.94 7.00 97.79
(iii) Sector: Corporate; Rating: A
1 -0.44 1.88 0.98 3.98 94.72 -0.65 2.16 0.69 19.36 93.00
2 1.94 0.92 0.95 3.64 99.07 1.73 156 0.39 18.15 97.34
3 -0.28 0.53 0.93 2.01 99.72 -0.41 137 0.21 21.07 98.12
4 0.00 0.00 0.50 0.01  100.00 -0.02 1.15 0.08 18.24 98.77
5 -0.30 0.30 0.94 0.81 99.92 -0.25 1.04 0.09 16.18 99.03
7 0.01 0.09 0.43 0.38 99.99 0.08 0.96 0.17 13.89 99.13
10 -0.14 098 0.96 2.39 98.95 -0.02 1.10 051 12.05 98.69
(iv) Sector: Corporate; Rating: BBB

1 -3.39  4.22 0.98 15.16 94.44 -0.60 3.14 052 3752 96.92
2 1.18 1.75 0.98 3.46 99.18 1.92 211 0.36 26.61 98.81
3 -0.24  0.63 0.96 2.06 99.90 -0.19 1.38 0.13 2121 9951
4 0.00 0.00 0.04 0.00 100.00 -0.05 1.12 0.06 17.76 99.67
5 -0.30 0.56 0.98 1.04 99.91 -0.31 1.03 0.27 1429 99.70
7 0.00 0.00 0.08 0.01 100.00 -0.03 0.72 0.07 1142 99.82
10 -0.00 054 0.92 2.40 99.88 -0.05 0.95 0.66 9.01 99.62
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Table 6

Summary statistics of pricing errors on the low-liquidity credit default swap spreads

Entries report the summary statistics of the pricing errors on the low-liquidityittdefault swap spreads. In
addition to two interest rate factors and two credit risk factors that hae identified using the benchmark
interest rates and the high-liquidity credit default swap spreads, weraglddditional idiosyncratic credit
risk factor and a liquidity risk factor to account for the credit spread mmeargs in the low-liquidity groups.
We define the pricing error as the difference between the spread gunotéise model-implied fair values, in
basis points. The columns titled Mean, Std, Auto, Max, and VR denote,atdsglg, the sample mean, the
standard deviation, the first-order autocorrelation, the maximum absalateaerd the explained percentage
variance, defined as one minus the ratio of pricing error variance to shtate variance.

Maturity Affine Quadratic
Years Mean Std  Auto Max VR Mean Std  Auto Max VR
(i) Sector: Financial; Rating: A
1 282 129 0.96 5.93 97.82 0.10 159 0.97 3.77 96.69
2 213 0.78 0.95 3.62 99.43 0.80 0.87 0.95 2.53 99.29
3 -0.37 032 0.93 1.27 99.92 -0.78 035 094 1.76 99.90
4 -0.00 0.00 0.29 0.02  100.00 -0.00 0.00 0.01 0.04 100.00
5 0.07 028 094 0.66 99.96 0.17 031 095 0.82 99.95
7 0.02 0.17 0.88 0.45 99.98 0.02 020 0.89 0.46 99.98
10 -0.00 0.04 049 0.15 100.00 0.00 0.01 0.07 0.05 100.00
(i) Sector: Financial; Rating: BBB
1 -145 254  0.99 5.92 99.00 -1.05 253 0.99 5.50 99.01
2 0.00 0.16 0.13 2.23 100.00 0.01 0.18 0.17 2,52 100.00
3 -0.29 139 0.97 2.70 99.71 -0.29 139 0.97 2.78 99.71
4 0.00 0.10 0.03 1.53 100.00 0.01 0.09 0.12 1.42  100.00
5 021 0.77 0.98 1.25 99.90 0.19 0.76 0.98 1.32 99.90
7 -1.63 281 0.99 6.00 98.45 -1.68 2.82 0.98 6.14 98.43
10 -352 485 098 11.41 94.41 -3.37 501 098 11.68 94.04
(i) Sector: Corporate; Rating: A
1 -0.08 347 0.99 7.27 81.96 0.62 282 0.98 5.91 88.14
2 -0.06 193 0.99 4.61 95.93 029 182 0.98 4.20 96.35
3 -1.33 0.78 0.98 3.48 99.39 -1.23 0.76 0.98 3.35 99.42
4 0.00 0.01 049 0.10 100.00 -0.00 0.02 0.55 0.16  100.00
5 0.60 0.69 0.98 2.27 99.57 0.58 0.69 0.98 2.28 99.58
7 0.02 0.10 0.53 0.88 99.99 0.03 0.09 0.56 0.77 99.99
10 -0.24 0.73 0.96 1.49 99.42 -0.35 0.65 0.95 1.41 99.55
(iv) Sector: Corporate; Rating: BBB

1 0.66 2.87 0.98 7.72 97.43 038 171 0091 7.98 99.09
2 133 134 0.98 3.46 99.51 0.77 1.09 0.96 2.91 99.68
3 -0.50 040 0.95 1.45 99.96 -0.76 0.29 0.92 1.57 99.98
4 -0.00 0.00 0.27 0.03  100.00 0.00 0.00 0.23 0.04 100.00
5 0.15 0.36 097 0.88 99.96 0.26 035 0.96 1.19 99.97
7 0.00 0.05 0.57 0.20 100.00 0.02 0.07 0.35 0.53 100.00
10 001 028 091 0.95 99.97 -0.16 042 0.92 1.00 99.93
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Table 7

Dynamic and term structure of the benchmark libor interest rates

Entries report the parameter estimates and the absolute magnituded-stdlistics (in parentheses) that
determine the dynamics and term structure of the benchmark libor interest Thie estimations are based
on 12-month libor and swap rates of two, three, five, seven, and tes, yeién quasi-maximum likelihood

method.
Model Kx Yx0 Yx1 ay by
[ 02365 0 | [ —01987] 0.0819 [ 0.0000 ]
Affine (5.22) —— (4.45) (0.05) [ 0.0046 ] (0.04)
~0.9338 03073 ~0.9752 —00321 | | (104 | | 00116
| (1287) (535 | (3.77) (0.00) | (202) |
0.7597 0 11885 ] 0.7581 [ 0.0006 ]
: (64.5) —— (15.7) (3.79 [ 0.0081 | (8.20)
Quadratic | 6567 01196 ~1.6100 00774 | | (797) | | 00025
| (3817) (266) | (25.8) (0.06) | (229) |
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Table 8

One-factor default arrival dynamics and the term structure of credit spreads

Entries report the second-stage parameter estimates and the absolutedeagiditbe-statistics (in paren-
theses) that determine the one-factor default arrival dynamics andrthetieicture of credit spreads. The
estimations are based on high-liquidity credit default swap spreadsabé#ee four industry and credit

rating classes with quasi-maximum likelihood method.

© Kxy Ky Yy W1 a b’ G
(i) Affine Models
Financial A -0.0363 0.1033 0.0001 -0.0230 0.0232 0.014300D4 0.0015 0.0038
(1.00) (5.57) (0.03) (0.07) (0.04) (1.62) (5.39) (415) (Qp
Financial BBB 0.0486 -0.0421 0.0001 -0.0175 0.0176 0.0369001¥ 0.0021 0.0137
(2.13) (5.28) (0.02) (0.01) (0.01) (1.71) (153) (16.3) (up
Corporate A 0.1974 0.0618 0.0001 -0.0226 0.0227 0.0128 0@.000.0015 0.0035
(7.72) (6.49) (0.03) (0.05) (0.04) (1.69) (0.67) (15.0) (&B
Corporate BBB -0.1196 0.0735 0.0001 -0.0224 0.0225 0.03@80029 0.0008 0.0056
(290) (3.55) (0.01) (0.08) (0.04) (6.36) (7.08) (10.0) (ap
(i) Quadratic Models
Financial A 0.3922 -0.0211 0.0718 0.0181 0.0537 0.0061 @(®0O0-0.0007 0.0032
(28.7) (11.3) (9.24) (0.00) (0.02) (28.1) (23.00) (12.6) O(R)
Financial BBB 0.2768 0.0947 0.2043 0.1493 0.0551 0.0186 0020 -0.0030 0.0112
(24.2) (32.1) (28.9) (0.02) (0.02) (47.0) (5.32) (457) @p
Corporate A 0.1108 0.0079 0.1396 0.0875 0.0521 0.0050 ©8.000.0010 0.0083
(20.5) (5.94) (245) (0.00) (0.01) (27.6) (459) (20.7) (¢
Corporate BBB 0.1906 0.0646 0.2056 0.1536 0.0520 0.0125001d. -0.0020 0.0140

(24.9) (48.8) (30.3) (0.01) (0.01) (21.6) (19.8) (20.2) (3Ay
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Table 9

Two-factor default arrival dynamics and the term structure of credit spreads

Entries report the second-stage parameter estimates and the absoluteaeagfithd-statistics (in paren-
theses) that determine the two-factor default arrival dynamics and thestaucture of credit spreads. The
estimations are based on high-liquidity credit default swap spreads fabé#ee four industry and credit
rating classes with quasi-maximum likelihood method.

) Kxy Ky Yyo Yy1 g bi Ci

(i) Affine Models
Financial A -0.1694 0.0686 0.0001 0 0.0287 -0.0060 0.006900@5 0.0003

(3.36) (3.43) (0.01) — (0.42) (0.06) (1.27) (0.41) (0.13)
0.2931 -0.2120 0.4474 0.7912 -1.9590 0.7815 —  0.0004 0.0067
(1.95) (4.90) (2.58) (857) (1.92) (0.02) —  (269) (4.07)
Financial BBB 0.6387 0.1686 0.4582 0  -0.2490 0.4515 0.0342004 0.0089
(7.80) (5.37) (10.29) — (0.15) (0.02) (0.25) (2.33) (3.99)
0.2125 0.0112 0.1718 0.0947 0.0573 0.0873 —  0.0071 0.0172
(2.13) (0.39) (3.60) (11.6) (0.19) (0.03) — (125) (10.1)
Corporate A -0.1975 0.6094 0.0005 0  -1.8568 -0.0019 0.0103002 0.0012
(0.61) (5.27) (0.01) — (7.00) (0.00) (1.79) (0.32) (0.30)
0.4848 -0.1206 0.0965 0.0418 -0.1767 0.0325 —  0.0034 0.0055
(3.32) (0.28) (3.15) (0.60) (0.13) (0.01) —  (195) (5.74)
Corporate BBB -0.3278 0.2385 0.0006 0  -0.5814 -0.0041 @03®.0029 0.0011
(4.37) (5.70) (0.01) — (4.64) (0.00) (0.45) (6.34) (0.52)
0.0480 0.0277 0.1494 0.0147 -0.1889 0.0104 —  0.0016 0.0055
(0.47) (0.34) (7.50) (0.27) (0.05) (0.01) — (17.2) (124)

(i) Quadratic Models
Financial A -0.0407 -0.0320 0.5577 0 0.5019 0.5520 0.004100@B 0.0067

(1.74) (2.03) (9.85) — (4.93) (0.02) (122) (6.48) (9.05)
-0.4381 0.0742 -0.1412 0.0120 -1.2139 0.0032 —  -0.0011 2000
(21.3) (21.1) (257) (1.31) (21.6) (0.00) —  (68.4) (205)
Financial BBB 0.0159 0.0628 0.1034 0  -0.2342 0.0980 0.00920008 0.0002
(0.37) (13.8) (145) — (2.30) (0.13) (7.3) (4.68) (1.01)
-0.0261 -0.2045 0.4805 1.6345 -1.5258 1.6254 —  -0.0015 26.03
(0.96) (7.89) (9.31) (14.2) (89) (0.07) — (496) (12.1)
Corporate A 0.6625 -0.0392 0.0004 0  1.1627 -0.0054 0.003900i0 0.0006
(28.0) (7.08) (0.06) — (17.1) (0.00) (23.3) (59.0) (11.95)
-0.2741 0.0274 -0.0621 0.1090 -0.7897 0.1001 —  -0.0008 4®.00
(13.8) (6.40) (7.25) (5.99) (18.1) (0.02) — (105.7) (21.2)
Corporate BBB -0.0569 0.0087 0.0846 0  -0.1380 0.0846 0.00980006 0.0001
(1.60) (1.36) (6.44) — (1.83) (0.07) (15.0) (9.46) (0.74)
-0.1874 -0.0738 0.1988 0.4640 -0.8735 0.4640 —  -0.0011 20,01
(9.76) (8.12) (12.3) (17.6) (11.0) (0.02) —  (79.9) (11.4)
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Table 10

Idiosyncratic credit and liquidity risk

Entries report the third-stage parameter estimates-atatistics (in parentheses) that determine the idiosyn-
cratic credit and liquidity risk dynamics in accounting for the idiosyncratiditispreads embedded in the
low-liquidity credit default swaps. The parameters are estimated usingmpaaxgmum likelihood method.

Credit Risk Liquidity Risk

e Km Ym0 Yot am Cm Kq Yoo Yot aq by

(i) Affine Models

Financial A 0.0010 -0.0275 -0.0500 -0.0062 0.0030  0.33121299 0.2832 0.3423 0.2822
(0.06) (0.51) (0.01) (13.9) (26.3) (9.55) (0.47) (0.16) 44) (7.89)

Financial BBB 0.0001 -0.0732 -0.0381 -0.0150 0.0093  0.937%4433 0.9374 2.9285 2.7536
(0.00) (2.53) (0.01) (1.24) (30.7) (10.6) (0.75) (0.11) 42) (9.07)

Corporate A 0.0012 -1.0741 -0.0577 -0.0011 0.0028 0.8452606 0.8448 6.0187 0.9083
(0.01) (158) (0.01) (2.00) (9.92) (36.34) (4.14) (1.38).0®) (17.1)

Corporate BBB 0.0009 -0.0991 -0.0434 -0.0176 0.0042 0.3306776 0.2911 1.0670 0.3245
(0.10) (5.08) (0.19) (9.67) (27.9) (15.6) (3.48) (0.44) 7¥F) (11.8)

(i) Quadratic Models

Financial A 0.0008 -0.5700 -0.0502 -0.0067 0.0038  0.94948194 0.9003 2.3761 0.8999
(0.02) (6.08) (0.01) (1.08) (45.2) (28.0) (2.72) (0.45) §&) (8.67)

Financial BBB 0.0001 -0.0902 -0.0381 -0.0166 0.0105 0.907@4327 0.9070 2.9863 2.6709
(0.00) (2.52) (0.01) (4.01) (26.5) (17.0) (0.91) (0.12) §®) (11.6)

Corporate A 0.0102 -0.2178 -0.0399 -0.0043 0.0052 0.674®258 0.6735 4.2633 0.8047
(0.11) (1.40) (0.01) (1.49) (17.6) (28.3) (3.46) (1.60) 3®) (14.0)

Corporate BBB 0.0068 -0.2343 -0.0087 -0.0229 0.0082 0.5233088 0.5204 2.7831 0.3963
(0.22) (6.28) (0.00) (0.56) (17.8) (39.4) (8.57) (1.61) (Up (19.1)

40



Sector: Financial; Rating: A; High Liquidity

Sector: Financial; Rating: A; Low Liquidity
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Sector: Financial; Rating: BBB; High Liquidity

Julo3 Oct03 Jan04 Apro4

Sector: Financial; Rating: BBB; Low Liquidity

Julo3 Oct03 Jan04 Apro4

Sector: Corporate; Rating: A; High Liquidity

Julo3 Oct03 Jan04 Apro4

Sector: Corporate; Rating: A; Low Liquidity

Julo3 Oct03 Jan04 Apro4

Sector: Corporate; Rating: BBB; High Liquidity

Julo3 Oct03 Jan04 Apro4

Sector: Corporate; Rating: BBB; Low Liquidity
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Time series of credit default swap spreads.
The seven lines in each panel plot the time-series of the average quotesditndefault swap spreads at
seven fixed maturities for each industry sector, credit rating class, anditiggroup. Data are daily from

May 21, 2003 to May 12, 2004, 256 days per series. For ease of cmmpawe use the same scaling for
the two liquidity groups under each industry sector and credit rating class.
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Sector: Financial; Rating: A; High Liquidity Sector: Financial; Rating: A; Low Liquidity

CDS, Bps
CDS, Bps

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Maturity, Years Maturity, Years

Sector: Financial; Rating: BBB; High Liquidity Sector: Financial; Rating: BBB; Low Liquidity

Maturity, Years Maturity, Years

Sector: Corporate; Rating: A; High Liquidity Sector: Corporate; Rating: A; Low Liquidity
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Figure 2

Term structure of credit default swap spreads.

Lines in each panel plot the term structure of the average quotes ahdméalilt swap spreads at different
days for each credit rating class, industry sector, and liquidity growgta Bre daily from May 21, 2003
to May 12, 2004, 256 days per series. To reduce clustering, we péotesm structure every seven days
for each panel. For ease of comparison, we use the same scaling forattiguigity groups under each
industry sector and credit rating class.
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Benchmark libor and swap rates

\

Interest-rate factor loading, Bps

4
Maturity, Years

Figure 3

Benchmark interest rate factor loading.

Solid line denotes the contemporaneous response of the continuouslywwtegddoenchmark spot rate to
unit shocks from the first interest-rate factor. The dashed line plotse$ponse to unit shocks from the
second factor. The loadings are computed based on the estimated affieleofoehchmark interest rate.
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Sector: Financial; Rating: A Sector: Financial; Rating: BBB
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Figure 4

Default risk factor loading.

Solid lines denote the contemporaneous response of the continuously cadegozorporate spot rate to
unit shocks from the first default risk factor. The dashed line plots éspanse to unit shocks from the
second default risk factor. The loadings are computed based on thegi@r estimates of the two-factor
affine model of default risk.
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Sector: Financial; Rating: A Sector: Financial; Rating: A
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Figure 5

Idiosyncratic default risk and liquidity risk factor loading.

Lines in the left panel plot the contemporaneous response of the $patrr#he low-liquidity group to unit
shocks from the idiosyncratic default risk factor. Lines in the right ppfat the response to unit shocks
from the liquidity risk factor.
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