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Abstract 

 
The market for credit basket products has become more and more popular and 
continues to grow. The key for pricing CDOs is to derive the decomposition of default 
correlation matrix in order to obtain the correlated default time of the entities in the 
portfolio. The usual way to decompose the correlation matrix is by the algorithm of 
Cholesky decomposition. However, a Cholesky decomposition cannot work if the 
given default correlation matrix is a non-positive definite matrix. In this paper, we use 
a Spectral decomposition that can overcome the shortcoming of a Cholesky 
decomposition to select the names and then to price the CDO tranches. Our simulation 
results show that the spreads of CDO trahcnes using a Spectral decomposition are 
consistent with the spreads by a Cholesky decomposition for the case of positive 
default correlations among names. In a further step study, we use a Spectral 
decomposition to select the names of CDOs and to price different trache of CDOs for 
the case of negative default correlations among names. We find that negative default 
correlations significantly affect the values of different CDOs tranches. Generally 
speaking, the spread change due to the correlation change is more sensitive for equity 
tranches of a high-correlated portfolio. By contrast, the spread change for the super 
senior tranche is more sensitive in a medium-correlated portfolio. 

 

 

Keywords: A Cholesky Decomposition, A Spectral decomposition, CDOs 



 2

 

1 Introduction 

The credit derivative market has been developed rapidly recently. The British 

Bankers’ Association (BBA) in its Credit Derivative Report 2003/2004 estimated the 

global credit derivative market (excluding asset swaps) accounted for 3,548 trillion at 

the end of 2003, increasing to 5,021 billion in 2004 and reach 8,206 billion by 2006.  

Among the credit derivative product, the top three market shares expected in 2006 are 

credit default swaps, credit derivative indices and portfolio/synthetic CDOs 

(Collateralized Debt Obligations). 

CDOs are asset-backed securities where the underlying portfolio including 

either various types of debt obligations or focus solely on one class of debt such as 

bonds or loans. For synthetic CDOs, the collateral pool is a collection of single-name 

credit default swaps. Based on portfolio credit quality, for example, the debt tranches 

are usually classified into senior tranche, mezzanine tranche and equity. The loss 

triggered by the credit events, such as default, is distributed by the bottom-up 

sequence through the tranches. That is, as long as any loss occurs in the profile of 

collateral pool, the equity first absorbs the losses up to some extent. 

For the credit basket products, the important issue in the pricing procedures is 

to determine the default correlation parameters appearing in the model.  Hull and 

White (2001) extend the structure model to construct a multi-name pricing model and 

provide a methodology which takes counterparty default risk into account for pricing 

credit basket products. For the reduced form models, Duffie and Gârleanu (2001) 

address the dependence of default times through correlated stochastic risk intensities 

to pricing the CDO tranches.   

Li (1999, 2000) uses a normal copula function to combine the marginal default 
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probability of an underlying asset into the correlated distribution for all the assets in a 

basket.  Meneguzzo and Vecchiato (2004) test the copula sensitivity of credit 

derivatives by assuming some alternative specifications of the joint distributions of 

default risks. Other related reference, such as Bouyé et al (2000), Durrleman et al 

(2000), Bluhm (2003), Hull and White (2004), Friend and Rogge (2004), Giesecke 

(2004), and Cherubini et al (2004), also consider the applications of copulas in the 

pricing of basket credit derivatives. 

Nowadays CDOs are well known in the financial markets. Many practitioners 

use copula functions for pricing and risk monitoring CDOs. A normal copula function 

is one of the first approach and represents the current market standard in modeling 

portfolio credit risks. Li (1999, 2000) employed the normal copula function to 

combine the individual default probability for each name into the correlated 

distributions for all of the companies in a basket. One can then simulate the correlated 

default time of the entities from the joint distribution and determine the price of credit 

basket products. 

The default correlation matrix is decomposed in the simulation algorithm 

processes in order to obtain the correlated default time of the entities.  That is, we 

need to find a matrix A such that AAT=R, in which R represents the correlation matrix 

and AT is the transposition of matrix A.  The common way to derive matrix A is by a 

Cholesky decomposition. However, a Cholesky decomposition cannot work if the 

given correlation matrix is a non-positive definite matrix (Rebonato & Jackel (1999) 

and Reiβ (2002)). To solve the above mentioned problem, Rebonato and Jackel (1999) 

propose a Spectral decomposition which can decompose the correlation matrix with 

both of the negative or positive definite matrix.  

The contributions of our paper are twofold. First, we show that a Spectral 

decomposition performs as well as a Cholesky decomposition does when the default 
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correction matrix is a positive define matrix. We then demonstrate that a Spectral 

decomposition can still work when the default correction matrix is a non-positive 

define matrix by simulations. Second, we then employ a Spectral decomposition to 

choose the names of and CDOs and to price these products. Our simulation results 

show that negative default correlation significantly affects the values of different 

CDOs tranches. Generally speaking, spread changed due to correlation change is 

more sensitive in high-correlative portfolio for equity tranch. By contrast, the spread 

changed for super senior tranche is more sensitive in medium-correlative portfolio. To 

our best knowledge, our paper is the first one to price CDOs when the names have 

non-positive definite correlation matrix appeared often in the real markets. 

The rest of this paper is organized as follows. Section 2 describes the valuation 

models, including literature models and our model, for CDO tranches. Section 3 

presents and analyzes the simulation results using numerical examples. Section 4 

concludes the paper. 

 

2 The Valuation of CDO 

2.1 Copula Functions  

A copula function is a mathematical function that combines univariate marginal 

distribution into the full multivariate distribution. A copula of n variables is a function 

C defined on [0,1]n with range on [0,1]. Let fi(yi), Fi(yi) be the univariate marginal 

distribution function and the cumulative distribution function for each elements Yi at 

point yi respectively, for i=1,2,…,n. The multivariate distribution F with given 

marginal distributions, F1, F2,…,Fn can be determined by using copula function C, or 

 
F(y1, y2,…, yn) = C(F1 (y1) , F2 (y2) …, Fn (yn)).                  (1) 

 

Some common copula functions are normal copula, t copula, Frank Copula.  
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The normal copula function is defined as: 

 
));(),...,(),((),...,,( 1

2
1

1
1

21 ρnnn uuuuuuC −−− ΦΦΦΦ= ,                  (2) 
 

where ui is the univarite cumulative probability at Yi = yi, Φn is the n multivariate 

normal distribution function with correlation coefficient ρ, and Φ -1 is the inverse of a 

univariate normal distribution function.  The student’s t copula function is defined 

as: 

 ));(),...,(),((),...,,( 1
2

1
1

1
21 ρnvvvvn uTuTuTTuuuC −−−= ,                   (3) 

where Tv is the multivariate student’s t distribution function with v degree of freedom, 

and 1−
vT  is the inverse of the univariate student’s t distribution with v degree of 

freedom. 

 

2.2 The Li (2000) Model 

In pricing a CDO, it is required the model of joint default losses in a portfolio. Li 

(2000) provided the copula approach to solve the modeling problem of a joint loss 

distribution. A random variable, T, called time-until-default measures the period from 

today to the default.  The survival function S(t) represents the probability that an 

firm will survive until time t. The survival function can be expressed in terms of a 

hazard rate function.  Let F(t) be the distribution function of T: 

    )Pr()( tTtF ≤=           t≥0                   (4) 

and  

∫=>= −
t

duuhetTtS 0
)()Pr()( ,                       (5) 

where 

)|Pr()( tTttTtth >Δ+≤<= . 

The hazard function h(t) represents the instantaneous default probability of an 
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issuer that has survived until time t. Based on the common assumption of a constant 

hazard rate, the survival time follows an exponential distribution with parameter h, or 

,)( htetS −=                              (6) 

and 

hthetf −=)( .                             (7) 

 The hazard rate can be estimated by extracting the default probabilities using 

observable market data including asset swap spreads or the prices of risky corporate 

bonds (Li (1998)).  After the parameter of h is estimated, the distribution of the 

survival time of each issuer can be specified. 

The distribution of a credit portfolio determines the value of the tranche of the 

synthetic CDO. Li (2000) use a normal copula to link the marginal default 

probabilities of an individual name to the joint distribution of the survival times, as 

follows. 

 

)))(()),...,(()),(((),...,,( 1
22

1
11

1
21 nnnn tFtFtFtttF −−− ΦΦΦΦ= ,         (8) 

 

The main task is to simulate correlated survival times T. Let  

Yi= ))((1
ii tF−Φ .                            (9) 

Yi is simulated instead of Ti because there is one-to-one mapping between Y and T.     

Based on the Li (2000) model, the simulation algorithm is summarized as follows: 

1. Find the Cholesky decomposition A of correlation matrix R. 

2. Simulate n independent random variables Z = (Z1, Z2, … , Zn)’ from normal 

distribution. 

3. Let Y=AZ, then Y follows multivariate normal with correlation R. 

4. Obtain (T1, T2, … , Tn) by mapping back the Y’s to the T’s using 
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i

i
ii h

Y
YFT

))(1ln(
))((1 Φ−

−=Φ= − ,                  (10) 

where Φ is the normal cumulative distribution function; hi is the hazard rate function 

of i issuers and can be estimated by the equation  

RateRecovery -1
Spread CDSh = .                     (11) 

Each simulation run yields correlated survival times for all credits in the 

portfolio.  The sample path of the time-until-default takes into account two factors - 

the credit quality of an issuer (related to the hazard rate h) and the correlation matrix 

R (which influences the procedure for sampling the random variables Yi).  This 

simulated default time of each issuer is used to determine the portfolio loss 

distribution, and then to price the tranche of CDO. 

 

2.3 The Valuation of synthetic CDOs 

The fair premium of particular tranche is set to equate the value of the default leg to 

the value of premium leg.  Given the survival times (t1, t2, … , tn) for all credits on a 

simulation run, the default loss on each tranche can be obtained.  The loss rate for a 

particular tranche at time t (LRtranche(t)) is 

        
lowhigh

lowhighlow
tranche PP

PPPtLR
tLR

−

−−
=

)),0,)(min(max(
)( .            (12) 

where Plow and Phigh are the proportions of the default losses born by this specific 

tranche, LR(t) is the cumulative loss rate of an N-name CDO at time t and 

 

       NRtLR
N

i
itti

/)1(1)(
1

}{∑
=

< −= ,                        (13) 

where }{1 tti <
 is an indicator function to denote the counting process which jumps 

from 0 to 1 at default time of name i. The expected loss rate of the given tranche at 

present time can be written as 
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 ⎥⎦
⎤

⎢⎣
⎡∫

T

Tranche
p tdLRtBE

0
)(),0( ,                         (14) 

where P denotes the risk-neutral probability measure; B(0,t) denotes the discount 

factor for the maturity t; and T is the maturity of the CDO. For the premium leg, let 

{m0, m1, m2,…,mn} be the series of premium payment dates. Clearly, m = 0 and mn = T.  

The value of premium leg at present time (ignore the accrued premium payments 

between payments dates) is written as 

 

⎥
⎦

⎤
⎢
⎣

⎡
−−−−∑

=
− )/(}],0),(min{max[),0()(

1
1 lowhigh

n

i
lowhighiTranchehighiii

P PPPPmLRPmWBmmE

 (15) 

 

where W is the fair spread.  Set Eq. (14) equate to Eq. (15), the fair spread W can be 

determined. 

 

2.4 A Spectral Decomposition for Valuing CDOs 

As mentioned earlier, a Cholesky decomposition adopted by Li can not work when 

the default correlation matrix is not a positive-definite matrix. Recently, Rebonato & 

Jackel (1999) proposed a Spectral decomposition method that does not require a 

pre-existing positive-definite matrix to start with. Define S as eigensystem, { iλ } as 

associated set of eigenvalues of the correlation matrix C such that 

SSC ⋅Λ=⋅  with ( )idiag λ=Λ .                 (16) 

Define the non-zero elements of the diagonal matrix *Λ  as 

⎩
⎨
⎧

<
≥

=Λ
0 if           0
0 if          

: **

i

ii

i λ
λλ

λ .                          (17) 

If the target matrix C is not positive-semidefinite, it has at least one negative 
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eigenvalue and at least one of the *

iλ  will be zero. Define the non-zero elements of 

the diagonal scaling matrix T with respect to the eigensystem S as 

1
*2:

−

⎥
⎦

⎤
⎢
⎣

⎡
= ∑

m
mimi stT λ ,                          (18) 

and 

** Λ= SB .                             (19) 

Let 

** Λ== STBTB ,                    

         (20) 

and construct the matrix C~  by 

TBBC =
~

.                                   (21) 

~
C is the unique best semi-positive approximate of C with respect to the 

Frobenius norm if for any positive symmetric matrix 
*

C with CC ~*

≠ , the following 

inequation is hold.   

FF

CCCC
*~

−<−                    (22) 

F
A is the Frobenius norm of an m×n matrix A which is the matrix norm 

defined as the square root of the sum of the absolute squares of its elements, 

∑∑
= =

=
m

i

n

j
ijF

aA
1 1

2

.                          (23) 

Higham (1988, theorem 2.1) proved that Eq(22) always exists. We briefly restate the 

proof in the Appendix. 
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If the approximated matrix 
~

C is not the same as the target matrix C, there 

would exist some errors.  The error measure ε is defined as the difference of two 

matrices 
~

C and C, or 

⎟
⎠
⎞

⎜
⎝
⎛ −= ijijij CC

~
ε .                              (24) 

Define χ as the squared sum of the elements of error matrix ε,  

∑=
ij

ij
2εχ  .                               (25) 

In the following context, we use an example to demonstrate the procedures 

described above. We define a target matrix C as follows: 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

17.0
19.0

7.09.01

32

23

c
cC .                              (26) 

c23 is equal to c32 because C is a symmetric matrix. The values of c23 vary from 0.4 to 

0 in order to examine the relationship between the eigenvalue and the error measure.  

Table 1 shows the target matrix, the associated eigenvalues, the decomposed matrix B 

obtained by a Spectral decomposition, the approximated matrix and the error measure 

χ under the different value of c23. 

[Insert Table 1 Here] 

C is a positive-definite, or all of the eigenvalues are greater than zero, when c23 

is set to 0.4 and the error measure χ is zero which means the approximate matrix is 

perfect match to the target matrix. The error measure χ is bigger than zero when there 

at least one eigenvalue is negative. The smallest eigenvalue of target matrix and the 

error measure χ under different value of c23 are shown in Figure 1.   

[Insert Figure 1 Here] 

Figure 1 shows a negative relation between eigenvalues and the error measures 

χ.  That is, the smaller negative eigenvalue the target matrix has, the more the error 



 11

measure is, and the more dissimilar the approximate matrix to the target matrix.  

When all of the eigenvalues of the target matrix are non-negative, the approximated 

matrix will be identical to the target matrix. 

We have showed that the Spectral decomposition can work even the target 

matrix is not a positive-semidefinite matrix. Now, we further examine the Spectral 

decomposition in another way. A matrix can be both decomposed by Cholesky 

decomposition and Spectral decomposition. Is it producing different results of those 

two methods in Monte Carlo simulation?  If the difference is not toot much, we may 

use a Spectral decomposition instead of a Cholesky decomposition to decompose 

matrix in all situations. 

We choice twenty funds as shown in Table 2 and collect their weekly closed 

prices in the sample period form 1 Jan, 2003 to 31 Dec. 2003.  The correlation 

matrix is estimated by the historical time series data.  This 20 by 20 correlation 

matrix just can be both decomposed by Cholesky decomposition and Spectral 

decomposition that will help us to examine the different simulated results of those two 

methods. 

[Insert Table 2 Here] 

Follow Li (2000) simulation algorithm, we simulate the correlated survival 

times of 20 funds by two decomposition methods.  Let Dci and Dsi be the simulated 

survival time for ith fund by Cholesky decomposition and Spectral decomposition 

respectively.  Define error measure as 

( )∑∑
==

−=
20

1

2
20

1 i
ii

i
i DsDcerror .                      (27) 

Two methods have more different when the errors are large.  We run the 

simulations with different numbers: 100, 200, 500, 1000 and 5,000.  Figure 2 shows 

that error of every fund as adding simulation numbers to run.   
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[Insert Figure 2 Here] 

The square sums of the difference results obtained by two methods are 

calculated.  Figure 3 shows the relation between the errors and simulation runs.  

From Figure 3, the deviations of Dci from Dsi are decreasing as the number of 

simulation increasing.  When the simulation number reaches to 5,000, the deviation 

is very slight.  That is, the simulation results are almost the same when the number 

of simulation is large enough.  Based on this result, we may use Spectral 

decomposition in the pricing of basket credit products if we keep the simulation run 

large.  Following we set the number of simulation to 30,000 in the pricing of CDO. 

[Insert Figure 3 Here] 

 

3 Simulation Results 

We investigate how the default correlation changes affect the values of CDO tranches 

in this section. Suppose that the portfolio comprising 50 default swaps each with one 

million notional amount. The pool of the default swaps is assumed to be 

homogeneous in terms of spread, recovery and correlation assumptions. This portfolio 

is partitioned into a structure of four tranches: equity, mezzanine, senior and super 

senior. The attachment points, at which the underlying portfolio begins to absorb the 

loss due to default, of the tranches are 0%, 5%, 10% and 15% for equity, mezzanine, 

senior and super senior tranches, respectively. Table 3 decsribes the underlying 

collateral pool and tranches in details. 

[Table 3 Here] 

     The loss distribution is bottom-up sequentially through the tranches. For 

example, equity tranche absorbs the first 5% of losses, or 2.5 million of notional 

amounts, on the collateral pool if defaults happen. The mezzanine tranche absorbs 

losses from 5% to 10% on the portfolio due to default, and so on. 
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The default correlation matrix is decomposed using two decomposition 

methods, a Cholesky decomposition and a Spectral decomposition, to examine the 

difference of tranche valuation. If the values obtained from these two methods are not 

much different, we may use a Spectral decomposition instead of a Cholesky 

decomposition to price the CDO tranches for the merit that the former can decompose 

the default correlation without the requirement of a positive-semi definition matrix. 

We use the normal copula, which is the market standard in modeling portfolio 

credit risk, to combine the individual default probability into the correlated 

distributions for all of the companies. The results are listed in Table 4. The credit risk 

of the underlying portfolio depends on the attachment point of the tranche. The 

premium of the equity tranche is higher than that on any other tranche at all levels of 

correlation because it is associated with no subordination. By contrast, the premium of 

the super senior tranche is the lowest because the super senior tranche has the largest 

loss protection. 

[Insert Table 4 Here] 

The spread of equity and super senior tranches is a monotonic function with 

respect to default correlation. The premium on the equity tranche decreases as the 

default correlation increases. However, the premium on the super senior tranche 

increases with the correlation. The pattern of the premium for the mezzanine and 

senior tranches lies between these two tranches. The spreads of mezzanine and senior 

tranches increase first and then decrease when the default correlation increases.   

As shown in Table 4, the spread of mezzanine tranche increases when the 

default correlation is less than 0.2, whereas it decreases when the default correlation is 

more then 0.2. For the senior tranche, the premium is the largest when the default 

correlation is at 0.6 which is higher than the default correlation of mezzanine tranche 

because the senior tranche has more subordination then mezzanine tranche does. 
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The spread differences are defined as the differences between the fair spreads 

obtained by a Cholesky decomposition and these by a Spectral decomposition as 

shown in the 10th through the 13th columns in Table 4 for equity, mezzanine, senior 

and super senior tranches, respectively. The spread differences are less than 10 basis 

points for all the level of default correlations and for all tranches. Therefore, the 

pricing results based on those two decompositions are not significantly different.   

We also test the deviations of fair spread obtained by a Spectral decomposition 

from the fair spread by a Cholesky decomposition using a RMSE measure which is 

defined as 

( )
%100%) ( 1

2
,,

×
−

=
∑
=

n

SS
inRMSE

n

i
iCiS

,                  (28) 

where iSS ,  and iCS ,  denote the fair spread for ith simulation by a Spectral 

decomposition and a Cholesky decomposition, respectively, and n is the total 

simulation number, in our example n is set to 50. As shown in Table 4, the value of 

RMSE falls in the range from 0.1601% to 0.0012% in four tranches and in different 

correlation assumptions. 

Furthermore, we examine the default correlation effects, including negative 

correlations, on the pricing of CDO tranches. The default correlation is homogeneous 

when the values are one in the diagonal and r off the diagonal of the correlation 

matrix. The negative correlation effect is examined by changing one of the r’s in the 

matrix. We assume the coefficient of correlation between name 1 and name 2 is r12 

instead of r. The default correlation is a 50 by 50 symmetrical matrix as follows: 
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 .                    (29) 

The negative correlation effects are examined by some possible numbers of r12: 

-0.9, -0.7, -0.5, -0.3, and -0.1. The portfolio is assumed high-correlative assets in 

order to avoid the portfolio diversification diluting the negative correlation effects.  

Thus, the values of r are chosen from 0.5 to 0.9. The fair spreads of equity and super 

senior tranches under different assumptions of default correlation are shown in Table 

5. 

[Insert Table 5 Here] 

The results considering negative correlations are consistent with those of Table 

4, which only presents positive correlation effects. For an equity tranche, the fair 

spread is negatively correlated with the default correlations in a high-correlated 

portfolio. From Table 5, it is interesting to note that when the r12 is at value of -0.9 

(close to perfect negative correlation), the spread of equity is the largest and the 

spread of super senior tranche is the smallest for all of the r changed.  

Percent change measures the spread change in terms of percentage due to r12 

changes under the same portfolio correlation assumption. For example, percent 

change for r = 0.5 and r12 = -0.7 is calculated by: 

9.0,5.0

9.0,5.07.0,5.0
7.0,5.0

12

1212

12

  %
−==

−==−==
−==

−
=

rr

rrrr
rr S

SS
change ,                   (30) 

where S denotes the fair spread. For an equity tranche, the average % change in the 

high-correlated portfolio is higher than that in a medium-correlated portfolio. For 

example, the average % change is -0.6294% when r = 0.9, and -0.3416% when r = 0.5.  

The result is in a reversed direction for a super senior tranch. The spread changed in a 
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medium-correlated portfolio is more sensitive than in a high-correlated portfolio.  

The average % change is 0.4123% when r = 0.5, and 0.2046% when r = 0.9. 

  We summarize our simulation results as follow. We find that negative default 

correlations significantly affect the values of different CDOs tranches. Generally 

speaking, the spread change due to the correlation change is more sensitive for equity 

tranches of a high-correlated portfolio. By contrast, the spread change for the super 

senior tranche is more sensitive in a medium-correlated portfolio. 

 

4 Conclusions 

In this paper, we first demonstrate that a Spectral Decomposition method can 

decompose a positive definite correlation matrix as a Cholesky decomposition does, 

yet a Spectral Decomposition method can overcome the shortcoming of a Cholesky 

decomposition. We then use a Spectral decomposition method to choose the names 

and to price CDOs when the default correlation matrix is a non-positive definite 

matrix. We also investigate how the changes on the correlation coefficients among 

names affect the values of different tranches in a CDO structure.     

In general, we find that negative default correlations significantly affect the values 

of different CDOs tranches. Generally speaking, the spread change due to the 

correlation change is more sensitive for equity tranches of a high-correlated portfolio. 

By contrast, the spread change for the super senior tranche is more sensitive in a 

medium-correlated portfolio. To our best knowledge, our study is the first one to 

investigate how to choose the names of CDOs and to price different tranche when the 

default correlation matrix is a non positive definite matrix. Hence our study provides a 

more general method for practitioners and academic researchers to value CDOs.  
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Appendix：The Frobeninus Norm Positive Approximant 

The Frobenius norm is defined to measure the distance between every vector that 

is: 
2/1

,

2 )(∑=
ji

ijF
aA , with aij is vector of A.          (A.1) 

Recall that a symmetric matrix A is positive definite if its eigenvalues are positive, 

and positive semidefinite, which we will denote by A≧0, if its eigenvalues are 

non-negative. The distance in the norm ||.|| form an arbitrary A to the set of positive 

definite matrices is denoted by 

X-Amin)(
0XX T ≥=

=Aδ ,           (A.2) 

and any positive definite X satisfying ||A-X||=δ(A) is termed a positive approximant 

of A in given norm. 

Let nnRA ×∈  , and let 2/)( TAAB +=  and 2/)( TAAC −=  be the symmetrix 

and skew-symmetrix parts of A respectively. Let UHB =  be a polar decomposition 

( 0 , ≥== TT HHIUU ). Then XF= (B+H)/2 is the unique positive approximant of A 

in the Frobenius norm, and 

2

0)(

22 )()(
FB

iF
i

CBA ∑
<

+=
λ

λδ .              (A.3) 

Proof :  

Let X be positive definite. Form the fact that 222

FFF
KSKS +=+  if 

TSS = and TKK −= , we have 

222

FFF
CXBXA +−=− ,                    (A.4) 

and so the problem reduces to that of approximating B. Let TZZB Λ=  

))diag( I,Z( iλ=Λ=TZ be a Spectral decomposition, and let XZZY T= . Then  

22

FF
YXB −Λ=−  
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since yii≧0 because Y is positive definite. This lower bound is attained, uniquely, for 

the matrix Y=diag(di), where 

⎩
⎨
⎧

<
≥

=
,0 ,0
,0 ,

i

ii
id

λ
λλ

               (A.6) 

that is, 

T
iF ZdZdiagX )(= .             (A.7) 

The representation XF=(B+H)/2 follows, since T
i ZZdiagH )(λ= .  
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Table 1：The Decomposition Error of a Matrix using a Spectral Decomposition  
C is the target matrix, B is the decomposed matrix obtained by a Spectral decomposition, 

TBBC =
~

is the approximate matrix. χ is the error measure and define as 

∑=
ij

ij
2εχ ⎟

⎠
⎞

⎜
⎝
⎛ −= ijijij CC

~
ε

 

C Eigenvalue B TBBC =
~

 χ 

1 0.9 0.7 0.030347 0.13191 0.087183 0.98742 1 0.9 0.7 0

0.9 1 0.4 0.61602 -0.10021 0.45536 0.88465 0.9 1 0.4   

0.7 0.4 1 2.3536 -0.05389 -0.63329 0.77203 0.7 0.4 1   

1 0.9 0.7 -0.00735 0 0.062382 0.99805 1 0.89402 0.69632 0.000100486

0.9 1 0.3 0.71062 0 0.50292 0.86433 0.89402 1 0.30097   

0.7 0.3 1 2.2967 0 -0.6729 0.73974 0.69632 0.30097 1   

1 0.9 0.7 -0.01133 0 0.060076 0.99819 1 0.89083 0.6943 0.00023784

0.9 1 0.29 0.72017 0 0.50703 0.86193 0.89083 1 0.29153   

0.7 0.29 1 2.2912 0 -0.67667 0.73629 0.6943 0.29153 1   

1 0.9 0.7 -0.01535 0 0.057803 0.99833 1 0.88764 0.69226 0.00043443

0.9 1 0.28 0.72973 0 0.51108 0.85954 0.88764 1 0.28213   

0.7 0.28 1 2.2856 0 -0.68043 0.73282 0.69226 0.28213 1   

1 0.9 0.7 -0.0194 0 0.055563 0.99846 1 0.88445 0.69019 0.000691307

0.9 1 0.27 0.7393 0 0.51506 0.85716 0.88445 1 0.27276   

0.7 0.27 1 2.2801 0 -0.68417 0.72933 0.69019 0.27276 1   

1 0.9 0.7 -0.02348 0 -0.05335 0.99858 1 0.88126 0.68808 0.00101009

0.9 1 0.26 0.74888 0 -0.51897 0.85479 0.88126 1 0.26343   

0.7 0.26 1 2.2746 0 0.68789 0.72582 0.68808 0.26343 1   

1 0.9 0.7 -0.0276 0 -0.05117 0.99869 1 0.87808 0.68596 0.001389334

0.9 1 0.25 0.75847 0 -0.52282 0.85244 0.87808 1 0.25413   

0.7 0.25 1 2.2691 0 0.69159 0.72229 0.68596 0.25413 1   

1 0.9 0.7 -0.04866 0 -0.04057 0.99918 1 0.86217 0.67496 0.004248068

0.9 1 0.2 0.80654 0 -0.54118 0.84091 0.86217 1 0.20812   

0.7 0.2 1 2.2421 0 0.70986 0.70434 0.67496 0.20812 1   

1 0.9 0.7 -0.09304 0 -0.02033 0.99979 1 0.83056 0.65155 0.015035

0.9 1 0.1 0.90312 0 -0.5737 0.81907 0.83056 1 0.11866   

0.7 0.1 1 2.1899 0 0.74521 0.66683 0.65155 0.11866 1   

1 0.9 0.7 -0.14018 0 -1.21E-16 1 1 0.79928 0.62686 0.033143

0.9 1 0 1 0 -0.60096 0.79928 0.79928 1 0.032817   

0.7 0 1 2.1402 0 0.77913 0.62686 0.62686 0.032817 1   
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Table 2: The Name List of the Fund  

No. Name of the Fund No. Name of the Fund 

1 DIT Wachstum Global 11 INVESCO GT European Bond A 

2 DIT Wachstum Europa 12 Schroder ISF Euro Eq A Inc 

3 DIT Wachstum Plus 13 Schroder ISF US Sm Cos A Inc 

4 Templeton Gbl Bond A dis  14 Schroder ISF Gl Eq Sig A Inc 

5 DIT Finanzwerte 15 Schroder ISF Eur Eq Sig A Inc 

6 DIT Softwarefonds 16 DIT Multimedia 

7 Baring Hgh Yld Bd  Hdgd 17 Franklin Capital Gth/A 

8 DIT Biotechnologie 18 INVESCO GT Cont Europe A 

9 INVESCO GT Asia Enterprise A 19 INVESCO Maximum Income A 

10 Schroder ISF North Amer A Inc 20 INVESCO GT Amer Enterprise A 
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Table 3: The CDO Portfolio and Tranches 
 
Collateral Description Tranching 

Number of Obligors 50 Equity 0%-5% 

Notional Per Credit 1m Mezzanine 5%-10% 
Total Portfolio Size 50m Senior 10%-15% 
Maturity (years) 5 Super Senior 15%-100%
CDS Spread on each credit (bps) 100   
Recovery Rate on each credit 35%   
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Table 4: The Spread of each Tranche in a CDO structure with Positive Default Correlation 
The hypothetical portfolio with an underlying collateral pool and tranches is shown in Table 3. The number of simulation is 50 and there are 30,000 runs in each simulation. Standard errors are 
in parenthesis below the fair spread (in basis points). The interest rate is assumed a constant rate of 2%. 

Cholesky Decomposition Spectral Decomposition Spread Differences (in bps) 

RMSE (in %) 
Default 

Correlation 
Equity Mezzanine Senior Super Equity Mezzanine Senior Super Equity Mezzanine Senior Super 

0.1 3099.23  514.14 102.06 1.35 3106.72 519.54  104.27 1.47 -7.49 -5.39 -2.21 -0.12  

 (18.61)  (3.57) (0.40) (0.07) (12.75) (2.93)  (0.77) (0.04) 0.1048% 0.0637% 0.0249% 0.0012% 

0.2 2387.23  545.21 177.79 5.53 2378.16 552.99  183.00 5.73 9.07 -7.78 -5.21 -0.20  

 (11.37)  (3.28) (2.09) (0.17) (7.37) (3.87)  (1.81) (0.08) 0.1090% 0.0826% 0.0539% 0.0022% 

0.3 1908.77  541.18 226.78 11.37 1904.28 546.39  232.20 11.74 4.49 -5.22 -5.42 -0.37  

 (11.06)  (2.53) (1.66) (0.37) (7.73) (3.14)  (2.26) (0.20) 0.1601% 0.0628% 0.0553% 0.0043% 

0.4 1547.79  522.85 257.31 18.03 1549.88 526.59  262.94 18.66 -2.09 -3.74 -5.63 -0.63  

 (7.55)  (1.20) (1.39) (0.47) (5.11) (1.87 ) (2.68) (0.15) 0.0584% 0.0386% 0.0581% 0.0071% 

0.5 1263.23  494.37 274.51 25.40 1258.59 496.14  279.03 26.38 4.64 -1.77 -4.52 -0.97  

 (4.08)  (0.70) (0.30) (0.61) (3.41) (3.09)  (2.76) (0.27) 0.0691% 0.0405% 0.0523% 0.0103% 

0.6 1022.29  457.62 280.22 33.40 1016.41 456.32  285.13 34.49 5.88 1.29 -4.91 -1.09  

 (3.37)  (2.57) (1.51) (0.72) (4.65) (2.88)  (2.39) (0.11) 0.0650% 0.0551% 0.0528% 0.0126% 

0.7 812.27  412.91 277.77 42.32 806.53 412.73  282.66 43.76 5.74 0.18 -4.89 -1.44  

 (3.96)  (3.07) (1.66) (0.72) (2.29) (3.06)  (1.79) (0.13) 0.0622% 0.0550% 0.0514% 0.0156% 

0.8 621.03  359.56 264.79 52.49 617.61 361.84  269.72 54.02 3.43 -2.28 -4.93 -1.53  

 (4.62)  (2.97) (2.84) (0.76) (2.78) (0.87)  (1.80) (0.05) 0.0668% 0.0431% 0.0623% 0.0169% 

0.9 431.77  295.01 239.06 64.87 430.53 298.60  242.70 66.51 1.24 -3.59 -3.65 -1.64  

 (3.86)  (4.90) (3.76) (0.69) (4.11) (1.67)  (1.62) (0.04) 0.0728% 0.0643% 0.0534% 0.0177% 
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Table 5: The Spread of each tranche in a CDO with Negative Default Correlations 
The hypothetical portfolio with an underlying collateral pool and tranches is shown in Table 3.  The number of simulation is 50 and there are 30,000 runs in each simulation.  Standard errors 
are in parenthesis below the fair spread (in basis points).  The interest rate is assumed a constant rate of 2%.  S denotes for fair spread.  % change measures correlation sensitivity on the 
spread.  For example, % change(r = 0.5,r12 = -0.7) 9.012,5.09.012,5.07.012,5.0 /)( −==−==−== −= rrrrrr SSS . 
 

r 
0.5 0.6 0.7 0.8 0.9 r12 

S  % change S % change S % change S % change S % change 
Equity 

1279.68 _- 1037.98 - 832.91 - 645.23 - 465.19 - -0.9 
(9.49)  (10.21)  (8.53)  (8.32)  (5.31)  

1274.44 -0.4089% 1036.81 -0.1129% 830.12 -0.3345% 642.91 -0.3608% 462.77 -0.5194% -0.7 (8.35)  (9.07)  (8.90)  (7.92)  (5.02)  
1271.66 -0.2187% 1033.81 -0.2890% 826.55 -0.4302% 639.66 -0.5057% 459.77 -0.6493% -0.5 (8.79)  (10.18)  (9.16)  (7.79)  (5.20)  
1264.56 -0.5583% 1029.17 -0.4492% 820.43 -0.7402% 636.35 -0.5160% 456.95 -0.6129% -0.3 (8.71)  (10.05)  (9.17)  (7.75)  (5.03)  
1262.27 -0.1807% 1025.04 -0.4013% 819.25 -0.1439% 632.29 -0.6388% 453.59 -0.7359% -0.1 (8.56)  (9.76)  (8.56)  (7.82)  (5.28)  

Average  -0.3416%  -0.3131%  -0.4122%  -0.5053%  -0.6294% 

Super Senior Tranche 
25.40 - 33.20 - 42.21 - 52.05 - 63.78 - -0.9 
(0.65)  (0.76)  (0.85)  (1.05)  (1.29)  
25.49 0.3456% 33.55 1.0768% 42.30 0.2114% 52.11 0.1147% 63.88 0.1570% -0.7 (0.62)  (0.69)  (0.84)  (1.05)  (1.30)  
25.59 0.3925% 33.68 0.3692% 42.43 0.3084% 52.22 0.2021% 64.01 0.2052% -0.5 (0.62)  (0.69)  (0.84)  (1.06)  (1.29)  
25.60 0.0542% 33.78 0.3166% 42.14 -0.6975% 52.36 0.2657% 64.16 0.2228% -0.3 (0.64)  (0.69)  (0.90)  (1.06)  (1.28)  
25.82 0.8569% 33.91 0.3809% 42.67 1.2746% 52.50 0.2832% 64.31 0.2334% -0.1 (0.61)  (0.70)  (0.86)  (1.09)  (1.30)  

Average  0.4123%  0.5359%  0.2742%  0.2164%  0.2046% 
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Figure 1: The Error and Eigenvalue of a Matrix using A spectral Decomposition  

y-axis is χ( ∑ −=
ij

ijij CC 2
~

)(χ ) that is the error of matrix and x-axis is the smallest 

eigenvalue form the second column of Table 1. 
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Figure 2: The Numbers of Simulations and the Difference of Two Methods 

We define the results of cholesky decomposition and Spectral decomposition after Monte Carlo 

simulation as Dc and Ds.  Numbers of the simulation are 100, 200, 500, 1000 and 5000.  Define error 

is: 

( )2

iii DsDcerror −=    

 

 

χ 

Eigenvalue 

i-th fund 

Number  

of Simulation



 27

0

5

10

15

20

25

30

35

40

100 200 500 1000 5000

Number of Simulations
Total Simulation

Error

 

Figure 3: The Numbers of Simulations and the Total Simulation Errors 

We define the results of a Cholesky decomposition and a Spectral decomposition using Monte Carlo 

simulations as Dc and Ds. The Numbers of the simulation are 100, 200, 500, 1000 and 5000. Define the 

total error measure of simulations is: 

( )∑∑
==

−=
20

1

2
20

1 i
ii

i
i DsDcerror    

Total Simulation Error 


