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Objectives of the Study
Propose an alternative model of investor learning 
behavior in a dynamic, complex environment
Confirm several characteristics of common stock returns 
that have previously been investigated in isolation
Present empirical evidence on the ability of the model to 
reproduce the return behaviors documented for a 
sample of common stocks

Aside: Robustness of a system may be the result of the system 
developing into a complex structure
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Outline
An alternative approach for studying dynamic markets

Agent based computational modeling

Return characteristics that have been documented in 
the literature
An alternative model of investor learning behavior
Empirical specification of the model
Results from dynamic simulations

Sensitivity of the results to parameter variation

Summary and conclusions
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Agent-Based Computational 
Modeling

Computational study of financial markets modeled as 
evolving decentralized systems of autonomous 
interacting agents
Focus is on understanding how global regularities 
arise from the bottom up, through the repeated local 
interactions of autonomous agents
Agents are modeled as heterogeneous entities that 
interact directly or indirectly with other agents and with 
the environment based on data and behavioral rules
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Why an Alternative Approach?
Traditional models involving deductive reasoning and 
rational expectations do not always do a good job of 
predicting stock price behavior

Knowledge of the structure of the underlying model
Learning the values of the parameters

Deductive reasoning breaks down in complex 
environments where model structure may be changing 
over time due to heterogeneity of agent beliefs and 
perceptions and complexity of the environment
In this case induction, constantly forming and testing 
new hypotheses, is necessary

Sensible? Can we ever know the true model?
The world is inherently dynamic and complex
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Benchmark Sample

50 common stocks traded on the NYSE 
Random selection

2780 daily stock returns
Source CRSP
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Some Characteristics of Common 
Stock Returns

Unconditional returns are not normally distributed
Jarque-Bera test (excess skewness and kurtosis)

Heavy (Fat) Tails
Power-law estimates (α ≅ 3)

∼ (for large x) (heavy tails; large variance)

Time series dependencies
Autocorrelation
ARCH/GARCH – type behavior
Long – range dependencies in squared returns

Less well-documented
Return time-series continue to exhibit nonlinear dependencies 
after filtering for linear and ARCH-type effects
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Some Basic Statistics and Tests
Usual descriptive statistics

Mean, median, std. deviation, skewness, kurtosis
Tail Index estimates                   ~

Fat tails
Hill estimator (max likelihood under IID data)
Quintos et al. estimator (accounts for GARCH)

Time-series Dependencies
BDS statistic
Ljung-Box Q-statistic
ARCH LM statistic
Lo’s V statistic (long-range dependencies)
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Test Statistics

Dependencies
BDS test

Test will detect both linear as well as nonlinear dependencies
Ljung-Box Q test

Test will detect linear dependencies (autocorrelation)
ARCH LM test

Test will detect autoregressive conditional heteroskedasticity
Regression of squares of estimated errors on their lags

Lo’s V test
Test will detect long-run dependencies in the presence of 
short-run dependencies
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BDS Examples
Three cases
e is IID, u = N(0,1)
y follows an AR(1) process
z follows a non-linear moving average process

Results
(1) no autocorrelation; BDS does not reject IID
(2) first order AC = .6; BDS rejects IID
(3) no autocorrelation but BDS rejects IID

Thus, once we filter out any suspected linear 
relation, as well as suspected nonlinear relation, the 
BDS test allows us to test for any remaining 
nonlinear relation
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Results for the Actual Data
Basic results

Excess skewness and kurtosis relative to Normal 
Distribution benchmarks of 0 and 3
Fat tails
General evidence of dependencies
Some evidence of autocorrelation
Strong evidence of ARCH-type behavior
Some evidence of long-range dependencies in squared 
series
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Parameter Values for the Experiments

Table 3
Results by Case:  Table 1, Table 2

Actual vs Base Case
Robustness of Results to Parameter Variation

Results are relatively robust
A surprise?
Recent developments on the robustness of complex systems 
(www.physics.ucsb.edu/~complex/research/robustness.htm)

Hypothesis:  Robustness is the underlying mechanism that 
leads to complexity
If we could iterate on a system to make it robust the resulting 
structure would appear be highly complex
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Table 3 
           

Parameter Values of the Artificial Stock Market Model 
           

 
Learning 

Frequency d  ρ  2
υσ  

Risk-Free 
Interest Rate λ  

Pr(Comb
) 
π 

Pr(Indiv) 
(1 - π) N 

Number of 
Hypotheses 
(Rule Bases) 

           
Case 1 30 0.0137 0.5 0.0005 Actual 0.50 0.2 0.8 25 5 
Case 2 30 0.0137 0.5 0.0005 Actual 0.50 0.5 0.5 25 5 
Case 3 30 0.0137 0.5 0.0005 Actual 0.50 0.8 0.2 25 5 
Case 4 30 0.0137 0.1 0.0005 Actual 0.50 0.2 0.8 25 5 
Case 5 30 0.0137 0.9 0.0005 Actual 0.50 0.2 0.8 25 5 
Case 6 10 0.0137 0.5 0.0005 Actual 0.50 0.2 0.8 25 5 
Case 7 1000 0.0137 0.5 0.0005 Actual 0.50 0.2 0.8 25 5 
Case 8 30 0.0137 0.5 0.0005 Actual 0.50 0.2 0.8 10 5 
Case 9 30 0.0137 0.5 0.0005 Actual 0.50 0.2 0.8 50 5 

Case 10 30 0.0137 0.5 0.0005 Actual 0.50 0.2 0.8 25 3 
Case 11 30 0.0068 0.5 0.0005 Actual 0.50 0.2 0.8 25 5 
Case 12 30 0.0041 0.5 0.0005 Actual 0.50 0.2 0.8 25 5 
Case 13 30 0.0137 0.5 0.0003 Actual 0.50 0.2 0.8 25 5 
Case 14 30 0.0137 0.5 0.0007 Actual 0.50 0.2 0.8 25 5 
Case 15 30 0.0137 0.5 0.0005 +10% shift 0.50 0.2 0.8 25 5 
Case 16 30 0.0137 0.5 0.0005 +10% shift 0.50 0.2 0.8 25 5 
Case 17 30 0.0137 0.5 0.0005 Actual 0.10 0.2 0.8 25 5 
Case 18 30 0.0137 0.5 0.0005 Actual 0.90 0.2 0.8 25 5 
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Table 3 
 
Note:  The table lists the cases investigated in the simulation of the artificial stock market and the parameters varied across the cases.  Learning Frequency τ:  the 
number of periods between the dates on which any agent updates his hypotheses; d :  the mean dividend (eq. 6.1); ρ : adjustment factor for the dividend in the 

dividend generating process (eq. 6.1); 2
υσ : variance of error in the dividend generating process (eq. 6.1); λ : the coefficient of risk aversion for each agent; 

Pr(Comb) = π: probability of Combination Experimentation; Pr(Indiv): probability of Individual Experimentation (= 1 – Pr(Comb) = (1 - π); N: the number of agents; Number of 
Rule Bases:  Number of hypotheses about the future course of the (price + dividend) by each agent.  Each Rule Base contains four rules used in the construction of the two 
parameters needed for predicting next period’s (price + dividend) from information on 5 market determined variables (5 information bits) observed by all agents.   Agents 
represented in the model employ induction and reason as if by fuzzy logic when forming their expectations.  The process is modeled as a genetic-fuzzy classifier system.  We use 
the daily 1-year T-bill rates in the secondary market for the 5,000 days ending September 5, 2001 when computing demands using equation (6.4).  In the simulation, we divide this 
interest rates series by 365 to obtain the approximate daily interest rates.  The Probability of Combination Experimentation is the probability that elements of two hypotheses will be 
split and combined. The Probability of Individual Experimentation is the probability that an agent will have one of his rule bases subjected to random change.  When a particular 
rule base is selected for experimentation the probability that any individual information bit is changed equals 0.5. 
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Table 1 

Average Values of Descriptive Statistics and Test Statistics 
Standard Errors in Parentheses; Fraction of Tests Rejecting the Null Hypothesis in Square Brackets 

          

 Actual Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 

Mean (x 100) 0.064 0.013 0.010 0.001 0.012 0.012 0.023 0.000 0.025 
 (0.005) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000) (0.002) 
Median (x 100) 0.000 -0.013 -0.003 -0.003 -0.014 -0.021 -0.035 0.000 -0.020 
 0.000  (0.003) (0.001) (0.002) (0.003) (0.004) (0.005) (0.000) (0.004) 
Std. Dev. (x 100) 2.120 1.665 1.441 0.241 1.684 1.651 2.174 0.036 2.260 
 (0.132) (0.032) (0.052) (0.069) (0.046) (0.045) (0.027) (0.008) (0.081) 
Skewness 0.424 1.304 0.948 -0.023 1.561 1.249 2.244 0.080 0.801 
 (0.049) (0.202) (0.160) (0.180) (0.167) (0.147) (0.114) (0.157) (0.099) 
Kurtosis 10.434 26.967 32.022 129.050 32.747 24.618 29.280 146.490 13.775 
 (0.551) (4.905) (2.996) (13.333) (3.468) (3.473) (2.123) (22.903) (2.443) 
Hill’s tail index 2.550 1.944 1.298 1.419 1.737 1.978 2.102 2.972 2.022 
 (0.088) (0.082) (0.094) (0.075) (0.090) (0.093) (0.028) (0.122) (0.076) 
Quintos’ tail index 2.877 2.546 1.887 1.110 2.295 2.734 2.676 3.794 2.885 
 (0.118) (0.121) (0.113) (0.097) (0.123) (0.132) (0.037) (0.164) (0.104) 
BDS, ε =1.5σ, m=3 10.45 25.08 25.46 24.13 25.32 24.53 23.93 10.73 26.06 
 [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] 
BDS, ε =2σ, m=3 9.71 23.74 24.20 23.86 23.87 22.76 22.13 12.67 23.47 
 [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] 
Ljung-Box Q(5) 31.84 518.81 543.91 604.67 535.74 539.50 424.72 404.45 558.50 
 [0.60] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] 
Ljung-Box Q(10) 40.45 530.50 563.86 630.59 556.54 557.04 438.18 412.52 574.57 
 [0.64] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] 
ARCH-LM(1) 65.17 233.78 390.03 590.31 257.82 203.27 82.93 467.88 208.64 
 [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] 
ARCH-LM(2) 72.61 242.83 416.79 732.15 279.70 216.08 86.88 615.28 220.03 
 [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [0.97] [1.00] [1.00] 
V(180) 1.17 1.43 2.15 6.59 1.55 1.45 1.10 5.28 1.28 
 [0.00] [0.17] [0.67] [0.97] [0.27] [0.20] [0.03] [0.80] [0.10] 
V(270) 1.13 1.44 2.10 7.82 1.59 1.48 1.22 6.34 1.28 
 [0.02] [0.17] [0.67] [0.97] [0.27] [0.23] [0.00] [0.83] [0.10] 

Vs(180) 0.761 0.618 0.779 1.026 0.728 0.605 0.513 0.711 0.649 
 [0.62] [0.77] [0.60] [0.07] [0.73] [0.80] [1.00] [0.50] [0.73] 

Vs(270) 0.639 0.535 0.677 0.941 0.639 0.524 0.436 0.657 0.553 
 [0.88] [0.90] [0.73] [0.10] [0.87] [0.90] [1.00] [0.63] [0.77] 

          
Note:  Column labeled “Actual” presents results for sample series of daily with-dividend common stock returns for 50 common stocks traded on 
the NYSE.  Data are from the CRSP archive files.  All other columns are for the cases of the artificial stock market listed in Table 3 where each 
case represents a different selection of values for the parameters of the model.  The Hill and Quintos et al. estimators of the tail index are 
described in section 3 of the text.  The test statistics and the respective null hypotheses being tested for the tests BDS, Ljung-Box Q(q), ARCH-
LM(q), V(q) and Vs(q) are described in section 4 of the text.    
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Table 1 

(continued) 
Average Values of Descriptive Statistics and Test Statistics 

Standard Errors in Parentheses; Fraction of Tests Rejecting the Null Hypothesis in Square Brackets 
 

 Case 9 Case 10 Case 11 Case 12 Case 13 Case 14 Case 15 Case 16 Case 17 Case 18 

Mean (x 100) 0.008 0.024 0.013 0.014 0.012 0.011 0.013 0.012 0.015 0.122 
 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.005) 
Median (x 100) -0.017 -0.021 -0.010 -0.022 -0.013 -0.014 -0.013 -0.013 0.000 -0.001 
 (0.004) (0.005) (0.003) (0.005) (0.003) (0.003) (0.003) (0.003) (0.000) (0.002) 
Std. Dev. (x 100) 1.479 2.184 1.651 1.656 1.646 1.622 1.686 1.566 1.734 4.943 
 (0.038) (0.047) (0.051) (0.043) (0.034) (0.041) (0.035) (0.050) (0.035) (0.097) 
Skewness 1.592 1.515 1.507 1.714 1.546 1.178 1.526 1.348 0.564 0.979 
 (0.233) (0.106) (0.151) (0.225) (0.194) (0.102) (0.114) (0.082) (0.066) (0.049) 
Kurtosis 34.620 21.992 30.551 32.572 27.906 21.739 26.457 22.844 28.302 13.543 
 (4.696) (1.681) (4.255) (5.134) (3.946) (2.128) (2.910) (2.253) (1.411) (0.581) 
Hill's tail index 1.872 1.881 1.784 1.927 1.924 1.874 2.009 1.918 0.900 1.779 
 (0.087) (0.041) (0.089) (0.079) (0.072) (0.085) (0.082) (0.083) (0.017) (0.026) 
Quintos et al. tail index 2.494 2.544 2.412 2.607 2.595 2.520 2.707 2.620 1.609 2.046 
 (0.107) (0.046) (0.119) (0.106) (0.099) (0.118) (0.104) (0.116) (0.034) (0.022) 
BDS, ε =1.5σ, m=3 24.03 24.31 25.90 25.68 24.58 24.95 25.43 25.82 24.92 25.06 
 [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] 
BDS, ε =2σ, m=3 22.62 23.10 24.06 23.67 22.82 23.17 23.32 23.87 23.51 21.87 
 [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] 
Ljung-Box Q(5) 524.28 482.17 530.46 502.54 497.90 531.04 498.89 529.13 575.97 424.81 
 [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] 
Ljung-Box Q(10) 537.21 495.14 548.65 517.61 509.55 541.84 509.89 544.87 590.42 437.92 
 [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] [1.00] 
ARCH-LM(1) 281.04 136.04 204.66 159.57 138.63 205.36 155.99 159.94 569.88 143.15 
 [0.97] [1.00] [1.00] [1.00] [0.97] [1.00] [0.97] [1.00] [1.00] [1.00] 
ARCH-LM(2) 308.69 146.18 219.27 174.78 146.40 217.42 167.47 175.19 614.35 167.64 
 [0.97] [1.00] [1.00] [1.00] [1.00] [1.00] [0.97] [1.00] [1.00] [1.00] 
V(180) 1.73 1.11 1.56 1.30 1.32 1.55 1.43 1.23 2.05 0.89 
 [0.43] [0.03] [0.20] [0.07] [0.07] [0.20] [0.17] [0.10] [0.73] [0.30] 
V(270) 1.79 1.15 1.60 1.34 1.35 1.60 1.46 1.27 1.93 0.81 
 [0.40] [0.07] [0.23] [0.07] [0.13] [0.27] [0.17] [0.07] [0.53] [0.53] 

Vs(180) 0.730 0.631 0.646 0.697 0.642 0.680 0.648 0.663 0.691 0.616 
 [0.63] [0.87] [0.80] [0.77] [0.77] [0.70] [0.83] [0.70] [0.77] [0.87] 

Vs(270) 0.642 0.540 0.564 0.604 0.554 0.587 0.560 0.576 0.599 0.534 
 [0.87] [0.93] [0.93] [0.87] [0.83] [0.83] [0.87] [0.80] [0.90] [0.97] 

           
Note:  Column labeled “Actual” presents results for sample series of daily with-dividend common stock returns for 50 common stocks traded on the NYSE.  
Data are from the CRSP archive files.  All other columns are for the cases of the artificial stock market listed in Table 3 where each case represents a 
different selection of values for the parameters of the model.  The Hill and Quintos et al. estimators of the tail index are described in section 3 of the text.  
The test statistics and the respective null hypotheses being tested for the tests BDS, Ljung-Box Q(q), ARCH-LM(q), V(q) and Vs(q) are described in section 
4 of the text.    
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Filtering for Suspected Linear and 
Nonlinear Relations

Base upon the results shown in Table 1 and elsewhere 
in the literature we filter each series by jointly estimating 
best fit models of the form ARMA(m,n)-TARCH(p,q) to 
remove short-term dependencies
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Autoregressive Conditional 
Heteroskedasticity

Threshold ARCH model
Allows for asymmetric reactions of volatility to good and bad 
news (Glosten, Jagannathan and Runkle,1993)

The results presented in Table 2 show that the models fit 
the data well, in terms of short-term dependencies, 
however the BDS test indicates that non-linear 
dependencies still exist and long-range 
dependencies in the squared errors remains
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Table 2 
Average Values of Test Statistics  

Tests of Hypotheses About Features of the Standardized Residuals of ARMA-TARCH Models Fit to Actual and Simulated Returns 
                    

 Actual 
Case 

1 
Case 

2 
Case 

3 
Case 

4 
Case 

5 
Case 

6 
Case 

7 
Case 

8 
Case 

9 
Case 
10 

Case 
11 

Case 
12 

Case 
13 

Case 
14 

Case 
15 

Case 
16 

Case 
17 

Case 
18 

Ljung-Box Q(5) 1.48 4.25 6.24 5.82 5.86 4.20 5.87 5.02 3.95 4.19 5.02 3.85 4.22 4.99 6.11 5.31 4.83 5.35 5.83 
 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 
                    
Ljung-Box Q(10) 2.41 8.22 11.80 11.55 10.58 9.25 10.42 11.29 6.66 9.19 11.18 9.73 10.02 10.15 10.45 9.59 8.48 10.66 10.41 
 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 
                    
ARCH-LM(5) 4.69 0.94 1.93 0.58 1.78 2.01 0.39 2.47 2.82 1.76 0.99 0.92 1.47 0.97 1.30 1.26 1.37 0.61 1.62 
 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 
                    
ARCH-LM(10) 8.55 1.53 3.55 1.11 3.15 3.23 1.17 3.79 4.43 3.01 1.86 2.05 2.39 2.59 2.16 2.32 1.82 1.43 2.99 
 [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] [0.00] 
                    
BDS, ε =1.5σ, m=3 2.71 3.87 3.78 4.61 4.31 4.67 2.06 0.58 2.94 5.93 3.39 3.43 4.20 3.74 4.18 3.37 4.78 4.59 2.07 
 [0.66] [0.67] [0.77] [0.80] [0.70] [0.70] [0.47] [0.30] [0.50] [0.67] [0.60] [0.60] [0.67] [0.53] [0.63] [0.73] [0.80] [0.87] [0.50] 
                    
BDS, ε =2σ, m=3 2.08 2.55 2.24 2.02 2.78 3.22 1.21 1.70 1.53 4.31 1.93 2.10 3.04 2.16 2.54 2.27 3.27 2.55 1.66 
 [0.48] [0.63] [0.50] [0.43] [0.53] [0.53] [0.40] [0.37] [0.40] [0.53] [0.37] [0.43] [0.53] [0.43] [0.50] [0.53] [0.67] [0.60] [0.33] 
                    
V(180) 1.31 1.23 1.25 1.32 1.16 1.21 0.96 1.35 1.13 1.36 1.05 1.14 1.08 1.10 1.23 1.19 1.12 1.28 1.14 
 [0.00] [0.00] [0.00] [0.07] [0.00] [0.00] [0.07] [0.07] [0.03] [0.00] [0.10] [0.00] [0.03] [0.00] [0.00] [0.03] [0.00] [0.00] [0.00] 
                    
V(270) 1.32 1.21 1.22 1.31 1.16 1.21 1.15 1.48 1.15 1.39 1.09 1.15 1.09 1.08 1.23 1.17 1.11 1.29 1.16 
 [0.00] [0.00] [0.03] [0.13] [0.00] [0.00] [0.00] [0.07] [0.03] [0.00] [0.00] [0.00] [0.13] [0.00] [0.00] [0.03] [0.00] [0.00] [0.00] 
                    
Vs(180) 0.30 0.51 0.58 0.98 0.54 0.48 0.45 0.48 0.43 0.53 0.43 0.47 0.51 0.48 0.52 0.52 0.55 0.59 0.34 
 [0.92] [0.90] [0.83] [0.10] [0.80] [0.73] [0.90] [0.53] [0.87] [0.77] [0.90] [0.77] [0.80] [0.77] [0.70] [0.83] [0.83] [0.87] [0.93] 
                    
Vs(270) 0.25 0.44 0.49 0.87 0.46 0.41 0.38 0.44 0.36 0.46 0.37 0.40 0.44 0.41 0.45 0.44 0.47 0.51 0.28 
 [0.92] [0.90] [0.83] [0.27] [0.83] [0.80] [0.90] [0.53] [0.93] [0.77] [0.90] [0.80] [0.80] [0.80] [0.73] [0.90] [0.83] [0.90] [0.93] 
                    
Note:  Column labeled “Actual” presents results for sample series of daily with-dividend common stock returns for 50 common stocks traded on the NYSE.  Data are from the CRSP archive files.  All other columns are for 
the cases of the artificial stock market listed in Table 3 where each case represents a different selection of values for the parameters of the model.  The test statistics and the respective null hypotheses being tested for the 
tests BDS, Ljung-Box Q(q), ARCH-LM(q), V(q) and Vs(q) are described in section 4 of the text.  The ARMA-TARCH model is described in section 5 of the text. 
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Summary of Results for Actual 
Return Data

Evidence against Normal Distribution
Fat Tails
Autocorrelation
Autoregressive Conditional Heteroskedasticity
Long-range Dependencies in Volatility (squared errors)
Nonlinear Dependencies

After filtering out short-run linear and nonlinear dependencies
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The Proposed Model

The Market Environment
Description of Economic Agents

Determinants of Demands for the Risky Security
Hypothesis Development

Process
Expectation Formation

Process
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The Market Environment
Two-asset Market 

Risk-free bond pays constant interest rate, r
Risky stock
The stock pays a stochastic dividend of dt where

Where the error term is distributed 
Intuition:  Consider this to be a proxy for information flow on a 
daily basis

t1tt )dd(dd υρ +−+= −
( )2,0N υσ
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Agents
N agents, each with Exponential (CARA) utility function 
(constant parameters)

Constant absolute risk aversion:  λ
Agents do not differ in terms of utility functions
Agents have a one-period time horizon and select their 
demands for the risk asset based upon predictions about 
the price + dividend and their utility functions
Agents differ in terms of the hypotheses they hold about 
the process for the price (+ dividend)

An agent’s prediction for the next period depends upon how 
she/he reasons and the hypothesis the agent feels is currently 
the best for prediction purposes

Each Agent is endowed with one share: N total shares
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Demand for the Security

Assuming pt+1 and dt+1 are normally distributed, and 
single period time horizons, optimal demand by agent i
for the risky asset equals

(A)

Where             should be regarded as the individual 
agent’s prediction based upon the prediction model he 
selects to use (loosely, a subjective expectation)

σλ 2
dp,t,i

t1t1tt,i
t,i

)r1(p]dp[E
x

+

++ +−+
=

[ ]•t,iE
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Learning and the Formation of 
Expectations

Agents are assumed to use a linear forecasting equation:

Under the assumed dividend process this is the rational 
forecasting rule in a rational expectations equilibrium
However, agents in our model cannot be sure that such an 
equilibrium exists
We take the structure of the forecasting equation as given
Agents understand the environment is complex and employ a 
fuzzy logic learning algorithm to generate model parameter 
estimates

t,ittt,i1t1tt,i b)dp(a)dp(E ++=+ ++
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Price Predictions for any Given 
Hypothesis

Agents observe data they then use to form beliefs about 
the values of the parameters a and b
The parameters a and b associated with an hypothesis 
are determined by the ultimate aggregation of the 4 
fuzzy rules making up the hypothesis ,

e.g.  If {price/fundamental value} is low, then a is low and b is high.
We shall call the first part the “conditional” part and the second 
part the “action” part
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The Formation of Expectations
There are five market descriptors for the conditional 
part of the rule: 
[p*r/d, p/MA(5), p/MA(10), p/MA(100), p/MA(500)]

Each market descriptor is represented by four fuzzy 
information sets: “low, moderately low, moderately high, 
high” which are coded as “1, 2, 3, 4” respectively, a “0” is 
used to record the absence of a descriptor

Each forecast parameter (a, b), is also represented by 
four fuzzy information sets: “low, moderately low, 
moderately high, high” which are coded as “1, 2, 3, 4”
respectively
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Our Model (Figure 1)
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The Formation of Expectations

A market hypothesis(a rule base) consists of four fuzzy 
rules.
Each agent can entertain up to five different market 
hypotheses at any given moment.
In making demand decisions, an agent will utilize the 
market hypothesis that has recently proven to be the most 
accurate. Forecast accuracy is given by the inverse of

2
ttj,i,1ttt

2
j,i,1t

2
j,i,t )]dp(E)dp[(e)1(e +−++−= −− θθ

e2 j,i,t
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Inductive Learning
Each market hypothesis is assigned a fitness value 
given by:

where s is the specificity of the market hypothesis
Agents revise their market hypotheses on average every 
τ periods, a GA is used to guide this by subjecting the 
hypotheses to a process that mimics  “reproduction, 
crossover and mutation” as described earlier where the 
hypotheses operated on and replaced depend upon their 
‘fitness’.
Inductive learning is captured by the constant 
formulation of new hypotheses, testing of the 
hypotheses, and the elimination of poor hypotheses. 

sef 2
j,i,tj,i,t β−−=
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Simulation Flow

1. Investors form tentative hypotheses about how data on 
current market condition and past history can be used 
to forecast next period price and dividend

2. Relying on these hypotheses, investors predict next 
period price and dividend and determine demands for 
risky asset

3. Market clearing price is determined and dividend is 
computed

4. Investors update the accuracies of their hypotheses
5. Steps 2 thru 4 are repeated
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Simulation Flow

6. After every τ periods, the hypotheses are revised—the 
bad hypotheses are discarded and the good 
hypotheses are combined and modified to produced 
new hypotheses
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The Experiments
Learning frequency τ = 30 periods
Combination experiments occur with probability .2
Individual experiments occur with probability .8

Mutation (flipping) of individual elements in the hypothesis 
equals 0.5 

We simulate the market for 2,500 periods and then 
record outcomes for the following 2500 periods
Realized returns are computed in the usual fashion
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Conclusion
The model does a good job reproducing behaviors in 
security returns that are consistent with observed returns
We focus on learning, abstracting from market trading 
structure issues

Future research will blend in micro-structure of trading

The environment is complex and as such agents learn 
by induction and the application of fuzzy logic, two 
features we feel are reasonable representations of actual 
behavior
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Essence of the Framework
Hypothesis development and use based upon a 
selection process motivated by induction and the 
individual’s reasoning process  
Once the initial conditions are defined, all subsequent 
events in the virtual financial market are initiated and 
driven by agent-agent and agent-environment 
interactions (realized market data)

Predictive models (hypotheses) survive because they are 
perceived as being ‘currently’ the best

Poorly performing hypotheses are discarded or modified
New hypotheses are generated and tested
Hypotheses are continually checked against the data

Agents can hold more than one hypothesis at any time
Dynamic, self-referential learning:  Agents learn from 
data they have helped generate, e.g. Market prices
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The BDS Test

Assume we have T observations on a univariate time 
series xt

Suppose the series is IID, then the probability of any two 
consecutive points being less than ε apart in distance will 
equal a constant 

Partition the total time series into ‘histories’ each of 
length n, which may overlap

( )T,C1 ε
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The BDS Test

Consider a comparison of the points in two n-length 
histories, one beginning at date t and one beginning at 
date q = t+1.  Define the set of matched points as

Define the joint probability of every pair of points 
satisfying the distance condition by the probability  

( ) ( ) ( )1nq1nt1q1tqt x,x.....,,.........x,x,x,x −+−+++

( )T,Cn ε
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The BDS Test
If the data in the series xt are actually independent, then 
for t ≠ q the probability that every pair of points is less 
than ε apart in distance will equal the product of the 
individual probabilities.
Moreover, if the xt are also identically distributed, all of 
the n probabilities will be the same and each will be the 
same as the case where n = 1.
The BDS statistic therefore tests the null hypothesis that

which is the null hypothesis that the data are IID 

~ N(0,1)

( ) ( )T,CT,C n
n

1 εε =

( ) ( ) ( )[ ] ( )T,/T,CT,CTT,BDS n
n

1nn εσεεε −=
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Demands
Agents in the model know that the demand equation will 
hold in a homogeneous rational expectations equilibrium 
when the degree of risk aversion is constant across 
individuals.  
However, the fact that they must use induction to form 
and modify hypotheses and that they use fuzzy rules 
(more on this shortly) when forming expectations, means 
that they never know the true model of prices nor if the 
market is actually in equilibrium.
We assume agents select to use (A) when setting their 
demands, knowing that sometimes the market will be in 
equilibrium and that sometimes it will not.
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Hypothesis Development
Agents hold multiple hypotheses about prediction 
models
They revise these hypotheses over time based upon 
how well the hypotheses have performed (fitness is a 
function of squared forecast error and parsimony of the 
hypothesis)

Experiments carried out by agents – formation of new 
hypotheses

Combining elements of existing hypotheses 
Occurs with probability π =.2

Modifying parameters of existing hypotheses 
Occurs with probability (1-π) =.8
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Hypothesis Development
Revisions to hypotheses occur ever τ periods
An inaccurate hypothesis has a high probability of being 
replaced by a new hypothesis

The process is like the mechanism that is found in 
machine-learning via a genetic algorithm
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Structure of a Rule Within an 
Hypothesis

A complete rule such as [0 1 3 0 2 | 2 4] would mean 
If p/MA(5) is “low”, p/MA(10) is “moderately high”, and 
p/MA(500) is “moderately low” then a is “moderately low”, 
and b is “high”.

Notice that since p*r/d and p/MA(100) are represented by 
0’s, they don’t play any role in the conditional part of the 
rule.




