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The change in relationship between the Asia-Pacific equity

markets after the 1997 Financial Crisis

Abstract

This paper shows that the correlation between a number of markets in

the Asia-Pacific region has changed after the Asian financial crisis of 1997.

The Dynamic Conditional Correlation (DCC) and a Bivariate Conditional

Correlation models are used to estimate the 36 pairwise pre- and post-

crisis correlation series for the nine Asia Pacific markets used in this paper.

Post-crisis correlation significantly increased for 26 pairwise markets and

significantly decreased for 6 pairwise markets. Korea and Japan’s relation-

ship with the rest of the markets seem to have substantial changed after

the Asian financial crisis. This shift in the relationship between markets

will have significant impact on the benefits of diversification in this region.

JEL classification: G15, G14

Keywords: Finance Crisis; Conditional correlation; Asia-Pacific markets

2



1 Introduction

Several studies have examined the comovement between the Asia-Pacific markets

and the markets of the United States, the United Kingdom and Europe. When

markets become more correlated, the economic gains from international portfolio

diversification diminishes. It is, therefore, important for any investor to under-

stand the nature and the strength of the relationship between markets. This

relationship is not a constant one. It changes through time, especially when ma-

jor world events reshape the relationships. The Asian financial crisis in 1997 had

a major impact on most of the Asia-Pacific equity markets. This paper exam-

ines the change in the relationship between markets after this crisis. A change in

the relationship will affect nature of the benefits from diversification that can be

derived from these markets.

2 Literature

When the correlation between markets increase, the benefits from diversifying

within the markets declines. Numerous studies have attempted to analyse finan-

cial integration between equity markets. The results of these studies are mixed.

The studies done on the Asia-Pacific equity markets are not readily comparable,

as the markets and the sample periods vary (see Masih and Masih 1997, Roca,

Selvanathan and Shepherd 1998, Eun and Resnick 1988, Gosh, Saidi and Johnson

1999).

Phylaktis (1999) finds evidence to support extensive capital market integration

in the Pacific Basin region while Bekaert and Harvey (1995) find similar result for

stock markets. However, Forbes and Rigobon (2002) find no evidence of significant

increase in the financial integration of the markets in this region after the 1997

Asian financial crisis. Although Cappiello, Engle and Sheppard (2003) report

that equity returns of the Americas have registered an increase in correlation in
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the late 90s, they find that the correlation within the Australasian markets have

remained unchanged during the late 90s. The Australasian equity markets used

in their study include Australia, Hong Kong, Japan and Singapore.

3 Data

This paper uses daily stock market index data from 01/06/1992 to 31/12/2003.

The national equity market indices for Australia (All Ordinaries), Hong Kong

(Hang Seng), Japan (NIKKEI 225), Korea (SE Composite), Singapore (Singapore

Straits Times) and Thailand (Bangkok S.E.T.) were used.

This paper uses daily stock market index data from 01/06/1992 to 31/12/2003.

The following national equity market indices were used:

• Australia - ASX - All Ordinaries

• Hong Kong - HS - Hang Seng

• Indonesia - JSE - Jakarta SE Composite

• Japan - NK - NIKKEI 225 Stock Average

• Korea - KSE - Korea SE Composite

• Malaysia - KLC - Kuala Lumpur Composite

• Philippines - PSE - Philippines SE Composite

• Singapore - STI - Singapore Straits Times (New)

• Thailand - BSE - Bangkok S.E.T.

These are the major markets of the Asia-Pacific region and make up almost

15% of the total world market capitalisation. All the reporting for the markets is

done alphabetically. The number of observations per series is 3,024 and the total

number of observations is 27,216. The data were obtained from Datastream.
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4 Methodology

The assumption that the conditional correlations are constant between assets is

not realistic in many financial applications. For example Tsui and Yu (1999) found

that for certain assets, the assumption of constant correlation does not hold.

Using a multivariate GARCH framework, Engle (2002) relaxes the assumption

of constant correlations by allowing the correlations to be time varying. The dy-

namic conditional correlation multivariate GARCH (DCC-MGARCH) proposed

by Engle allows for the correlation component to assume a GARCH type speci-

fication. This formulation is similar to the time-varying correlations multivariate

GARCH (VC-MGARCH) model proposed by Tse and Tsui (2002), which differs in

the scaling used. This paper uses a nine-market DCC-MGARCH and a bivariate

conditional correlation models to estimate the time varying correlation between

the nine markets.

Engle’s (2002) DCC(1,1)-MGARCH model is a convenient way of estimating

the correlation using a multivariate approach which results in a reduction in the

number of parameters being estimated. However, the model estimates only two

parameters for the dynamic conditional correlation. Hence, the 36 series of pair-

wise correlations are based on the dynamics of the two parameters estimated. It

is valid to question whether the dynamics in the correlation should be the same

between every pair of markets.

By allowing each pair-wise market to have its own parameters that enables it

to describe its own correlation process, a more realistic estimation of correlation

can be achieved. The bivariate conditional correlation model achieves this. For

each pair-wise market, a distinctive set of parameters that describe the correlation

dynamics is estimated.

The returns for the individual series are calculated based on the logged differ-

ence as below:

Ri,t = 100[ln(Pi,t) − ln(Pi,t−1)] (1)
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where Pi,t is the index of the ith country. The returns are multiplied by 100 for

ease of computation. In the GARCH estimation process, the convergence of the

algorithms is sensitive to near zero values due to internal rounding off in most

of the statistical software programs used. For example, the parameters for the

GARCH(1,1) for the returns of Australia are significantly different if the series is

not multiplied by 100 when using the MATLAB statistical software.

Instead of using an autoregressive or moving average filtering process, the re-

turns are made mean zero based on a simple demeaning using the unconditional

mean of the return series. As Engle and Sheppard (2001) explain, a simple de-

meaning process should be sufficient since we are interested in modelling the higher

moments of the series. Moreover, as we have assumed normal likelihood, the cross

partial derivative of the log-likelihood with respect to the mean and variance pa-

rameters will have an expectation of zero (Engle and Sheppard 2001). In the

estimation process and the simulation process, it would also be computationally

convenient to work with fewer parameters.

The zero mean return series, εit , is calculated for Australia, Hong Kong,

Indonesia, Japan, Korea, Malaysia, the Philippines, Singapore and Thailand.

In the multivariate GARCH formulation, the zero-mean return vector St =

(ε1t, ε2t, ε3t, ..., ε9t) is set to depend on the information set ℑt−1 with a variance

Ht.

We can express the general form of the multivariate GARCH as:

St|ℑt−1 ∼ N(0, Ht) (2)

where Ht is a k by k covariance matrix and k is the number of series. As with the

univariate case, the main issue is in determining the form that Ht should take. In

the univariate case, the unconditional disturbance can be expressed as:

εt = ηt

√

ht (3)
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where ηt ∼ niid and the conditional variance, ht, can be specified to follow the

GARCH(p, q) process (Bollerslev 1986) such that:

ht = ω0 + α1ε
2

t−1
+ . . .+ αqε

2

t−q + β1ht−1 + . . .+ βpht−p (4)

where ω0 > 0, αi ≥ 0, for i = 1, . . . , q, βi ≥ 0 for i = 1, . . . , p are inequality

restrictions imposed to ensure that the conditional variance is strictly positive. A

summary expression for the above is:

ht = ω0 +

q
∑

i=1

αiε
2

t−i +

p
∑

i=1

βiht−i (5)

The estimation of the multivariate models in this paper involves a two-stage esti-

mation process. The first stage is the estimation of the univariate GARCH model

for each series. The second stage is the estimation of the dynamic conditional

correlations. The estimation will be discussed in the latter part of this paper.

This paper uses the GARCH(1,1) process for modelling the univariate vari-

ances. In most time series analyses, a GARCH(1,1) adequately explains the dy-

namics in the second order of the time series sequence. Diagnostic testing shows

that higher order GARCH specifications are not necessary for the data used.

Moreover, the moment structure for the GARCH(1,1) is clearly established (see

He and Teräsvirta 1999, Karanasos 1999). The GARCH(1,1) model is formulated

as:

ht = ω0 + α1ε
2

t−1
+ β1ht−1 (6)

where ω0 > 0, α1 ≥ 0, β1 ≥ 0.

In the DCC-MGARCH model, the conditional variance is:

Ht ≡ DtRtDt (7)

where Rt is the time varying correlation matrix and Dt is estimated from the
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univariate GARCH model. The difference between the specification of Ht in this

model and that of Bollerslev (1990) is that the correlation, Rt is allowed to vary

with time so that the dynamic nature of the correlation can be captured.

This paper uses a nine-market DCC(1,1)-MVGARCH(1,1) specification. Higher

order DCC(1,2) and DCC(2,2) specifications are also estimated for model com-

parison. However, model comparison using the likelihood ratio test, the Akaike

information criterion (AIC) and the Bayesian information criterion (BIC) show

that the DCC(1,1) specification, adequately captures the dynamics of the corre-

lation process.

For the nine-market DCC-MGARCH model, the elements of the matrix Dt

will take the form:

Dt =



















√

h11,t 0 · · · 0

0
√

h22,t · · · 0

0 0
. . .

...

0 0 . . .
√

h99,t



















(8)

The DCC-MGARCH uses a two-stage estimation procedure. The first stage is the

conventional univariate GARCH parameter estimation for each zero mean series.

The residuals from the first stage are then standardised and used in the estimation

of the correlation parameters in the second stage.

The correlation structure is given as:

Rt = Q∗−1

t QtQ
∗−1

t (9)

The covariance structure for a DCC(1,1) is specified by a GARCH type process

as below:

Qt = (1 − λ1 − µ1)Q+ λ1(ηt−1η
′

t−1
) + µ1Qt−1 (10)

where the covariance matrix, Qt, is calculated as a weighted average of Q, the
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unconditional covariance of the standardised residuals; ηt−1η
′

t−1
, a lagged function

of the standardised residuals; and Qt−1, the past realisation of the conditional

covariance. In the DCC(1,1) specification only the first lagged realisation of the

covariance of the standardised residuals and the conditional covariance are used.

This requires the estimation of two additional parameters, λ1 and µ1. Q∗ is a

diagonal matrix whose elements are the square root of the diagonal elements of

Qt. Hence, for a nine-market specification it would take the form:

Dt =



















√
q11,t 0 · · · 0

0
√
q22,t · · · 0

0 0
. . .

...

0 0 . . .
√
q99,t



















(11)

The off diagonal elements in the matrix Rt will be ρ12,t = q12,t/
√
q11,tq22,t, where

ρ12,t is the conditional correlation between market 1 and market 2. The constant

correlation multivariate GARCH is nested within this model. If λ1 = µ1 = 0

and q11,t = 1, the constant correlation model is obtained. Thus, the constant

correlation hypothesis can be tested in this framework.

It follows that if Q and ηt−1η
′

t−1
are positive definite and diagonal, Qt then will

also be positive definite and diagonal. For the DCC to be positive definite, both

the univariate GARCH parameter restriction and the DCC parameter restrictions

must be satisfied for all series. As the moment conditions for the GARCH(1,1)

have already been discussed earlier, it would be useful to discuss restriction for

the DCC parameters. Engle and Sheppard (2001) prove that the following suffi-

cient conditions must be satisfied for the DCC parameters to ensure the positive

definiteness of Ht:

It is more convenient to estimate the DCC model using a two-stage estimation

procedure. Engle (2002) split the model into two parts - the univariate variances

and the correlations. Although the two-stage estimation is inefficient, it is still
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consistent. Engle and Sheppard (2001) provide a scrutable exposition of the proofs

for consistency and asymptotic normality of the parameter estimates.

If we let θ be parameters of the model comprising first stage GARCH variance

parameters, φ, and the second stage correlation parameters, ψ, we can express

the first stage quasi-likelihood function as:

QL1(φ|εt) = −1

2
+

T
∑

t=1

(k log(2π) + log |Ik| + 2 log |Dt| + ε′tD
−1

t IkD
−1

t εt)

= −1

2
+

T
∑

t=1

(k log(2π) + 2 log |Dt| + ε′tD
−2

t εt)

= −1

2

T
∑

t=1

(

k log(2π) +
k
∑

n=1

(log hit +
ε2

it

hit

)

)

= −1

2

k
∑

n=1

(

T log(2π) +
T
∑

t=1

(log hit +
ε2

it

hit

)

)

(12)

where Ik is an identity matrix of size k. The above log-likelihood function is the

same as that for the univariate GARCH estimation. Although a t-distribution or

a General Error distribution can be used, for convenience, the variance parame-

ters in the first stage are usually estimated assuming normal distribution in the

disturbance terms. The assumption of Gaussian innovations is used in this paper.

The parameters estimated in the first stage are used to condition the likelihood

for the second stage estimation.

QL2(ψ|φ̂, rt) = −1

2
+

T
∑

t=1

(k log(2π) + 2 log |Dt| + log |Rt| + ε′tD
−1

t R−1

t D−1

t εt)

= −1

2
+

T
∑

t=1

(k log(2π) + 2 log |Dt| + log |Rt| + η′tR
−1

t ηt) (13)

The DCC parameters, in ψ, are conditioned on the estimated value of the variance

parameters, in φ̂, and ηt is the standardised residual derived from the first stage

univariate GARCH estimation, which is assumed to be n.i.d. with a mean zero

and a variance, Rt. That is, ηt = εt/
√
ht for the individual series. Hence, the
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variance matrix, Rt, is also the correlation matrix of the original zero mean return

series. In the actual estimation process, the constant term is omitted as it does

not influence the parameters. Hence, for the estimation of the above equation is

simplified to:

QL∗

2
(ψ|φ̂, rt) = −1

2
+

T
∑

t=1

(log |Rt| + η′tR
−1

t ηt) (14)

The correlations estimated must lie between -1 and 1. Hence, there must be a

rescaling process that must be used to make sure that the estimates of correlations

are within these bounds. Looking at the DCC model, the covariance is estimated

using a GARCH-like process. This covariance is then scaled by the diagonal matrix

of the standard deviations. Under Cauchy-Schwartz inequality, Rt behaves like a

standard correlation matrix.

The bivariate conditional correlation model is based on the DCC framework

with parsimonious parameter specification for the GARCH variance process and

the dynamic correlation process. A GARCH(1,1) specification is used for the

variance parameters and a DCC(1,1) is used for the correlation component. The

variance is governed by:

ht = ω + αε2

t−1
+ βht−1 (15)

where ω > 0, α ≥ 0, β ≥ 0. The pair-wise correlation will be estimated as:

ρ12,t =
(1 − λ− µ)q

12
+ λ(η1,t−1η2,t−1) + µq12,t−1

√

((1 − λ− µ)q
11

+ λη2

1,t−1
+ µq11,t−1)((1 − λ− µ)q

22
+ λη2

2,t−1
+ µq22,t−1)

(16)

where, the restrictions, λ ≥ 0, µ ≥ 0 and λ + µ < 1 are imposed to ensure

stationarity. The robust standard errors are estimated in the same way as for the

multivariate DCC model. A similar two-stage estimation process is used.

Analysis is done on the correlation estimates computed from the DCC(1,1)

MGARCH and the bivariate conditional correlation models. The data is divided
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into two distinct periods. The pre-1997 period dates from June 01, 1992 to July

01, 1997 comprising of 1326 observations and the post-1997 period dates from July

01, 1998 to December 31, 2003 comprising of 1436 observations for each series.

The period of the crisis between July 02, 1997 to June 31, 1998 was omitted. This

was done to give the data a discernable break. The extreme correlations that

might have resulted from this period due to the financial crisis are therefore not

included.

The null hypothesis of interest is:

Ho : ρpre − ρpost = 0 (17)

If the null hypothesis is rejected, then there is a significant difference between

the pre- and the post-crash correlations.

5 Results

The parameter estimates of the dynamic conditional correlation of Engle (2002)

are reported in Table 1. Three different parameterisations of the DCC model

were estimated to facilitate model selection. The DCC(1,1), DCC(1,2) and the

DCC(2,2) were estimated to illustrate that a parsimonious DCC(1,1) model is

sufficient to capture the dynamics in the conditional correlation. The condition,
M
∑

m=1

λm +
N
∑

n=1

µn < 1, is met for all specifications of the DCC model, ensuring that

the process is strictly stationary and ergodic.

The lamda is the coefficient for the lagged function of the standardised residu-

als. The mu is the coefficient for the past realisation of the conditional covariance.

The two coefficients work in the same way as in an ARMA type specification. In

most cases, one lag in the function of the standardised residual and the past

realisation of conditional covariance is sufficient to capture the dynamics of the

process. Table 1 clearly confirms this observation. The parameter estimates for
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Table 1: Parameter estimates for the DCC-MGARCH models.

DCC Parameters

λ1 λ2 µ1 µ2

sum of
parameters

DCC(1,1) 0.0096 0.9794 0.9889

(0.0034) (0.0110)

Log-likelihood -42987.0121

DCC(1,2) 0.0143 0.4300 0.5398 0.9840

(0.0040) (0.1309) (0.1363)

Log-likelihood -42981.2769

DCC(2,2) 0.0143* 0.0000* 0.4298* 0.5399* 0.9840

(0.0069) (0.0131) (0.7715) (0.7574)

Log-likelihood -42981.2782

The parameter estimates of the dynamic conditional correlation model are reported in
this table. The robust standard errors are reported in the parentheses.
* insignificant at the 1% level of significance.

the DCC(1,1) specification are significant. The t-statistics from the standardised

residuals for λ1 and µ1 are 2.82 and 89.15, respectively. These t-statistics strongly

reject the insignificance of the parameter estimates at any conventional level of

significance. The DCC(1,2) specification has two lags in the past realisation of

the conditional covariance. The parameter estimates for µ1 and µ2 are almost

half the value of the µ1 in the DCC(1,1). The standard errors are also markedly

higher for the DCC(1,2). The t-statistics were 3.61, 3.29 and 3.96 for λ1, µ1 and

µ2, respectively, which are significantly smaller compared to that of the DCC(1,1)

t-statistics.

The parameter estimates for DCC(2,2) on the other hand were statistically

insignificant at the 1% level of significance. The t-statistics were 2.07, 0.00, 0.56

and 0.71 for λ1, λ1, µ1 and µ2, respectively. Therefore, this specification for the

correlation dynamics can be discarded.

Table 2 reports the calculated values of the AIC and the BIC. Both the cri-

teria favour the more parsimonious specification of DCC(1,1). Coupled with the

significance of the parameter estimates based on the t-statistics, the DCC(1,1) is

a suitable model amongst the family of the DCC models to adequately capture
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Table 2: The AIC and BIC criteria for various DCC specifica-
tions.

Information Criteria

DCC specification
Akaike Information

Criteria
Schwarz Information

Criteria

DCC(1,1) -85916.0242* -85741.6468*

DCC(1,2) -85902.5538 -85722.1634

DCC(2,2) -85900.5564 -85714.1530

* The smallest calculated value based on a fixed number of observations.

the dynamics in the conditional correlation.

Table 3 reports the parameter estimates for the correlation component of the

bivariate conditional correlation model. The parameter estimates for the GARCH

component of the model is the same as that of the DCC model.

For most pair-wise markets, the lambda is higher than the lambda estimated

using the DCC model. Thus, it is easy to observe that the persistence in the

correlation for each pair-wise market is different. The lowest lambda of 0.6532

is recorded for Japan and Malaysia, and the highest of 0.9951 for Korea and

Malaysia.

The standard errors for the estimates are provided in the parentheses. All

the lambda estimates are significant at the 1% level of significance. The standard

errors for mu are much higher than that for the lambda. Not all the mu estimates

are significant. The log-likelihood is also provided for each pair-wise estimation.
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Table 3: Bi-Variate Conditional Correlation GARCH re-

sults.

Hong Kong Indonesia Japan Korea Malaysia Philippines Singapore Thailand

Australia µ 0.0200 0.0238 0.0183 0.0065 0,0086 0.0106 0.0300 0.0082

(0.0265) (0.0097) (0.0066) (0.0021) (0.0059) (0.0058) (0.0120) (0.0037)

λ 0.9515 0.8727 0.9625 0.9935 0.9611 0.9768 0.8944 0.9816

(0.0987) (0.0683) (0.0176) (0.0023) (0.0213) (0.0143) (0.0389) (0.0076)

Loglik -8699 -8373 -8530 -9339 -8236 8625 -8008 -9031

Hong Kong µ 0.0469 0.0064 0.0511 0.0249 0.0065 0.00513 0.0253

(0.0096) (0.0022) (0.0243) (0.0080) (0.0091) (0.0090) (0.0071)

λ 0.8888 0.9926 0.9489 0.9458 0.9862 0.9105 0.9633

(0.0231) (0.0026) (0.0254) (0.0239) (0.0240) (0.0180) (0.0118)

Loglik -10365 -10566 -11336 -10177 -10658 -9721 -10947

Indonesia µ 0.0167 0.0198 0.0064 0.0189 0.0357 0.0117

(0.0128) (0.0097) (0.0038) (0.0106) (0.0084) (0.0050)

λ 0.8761 0.9319 0.9876 0.9720 0.9237 0.9800

(0.0823) (0.0266) (0.0091) (0.0203) (0.0206) (0.0097)

Loglik -10179 -10931 -9689 -10073 -9529 -9258

Japan µ 0.0085 0.0411 0.0129 0.0263 0.0105

(0.0036) (0.0199) (0.0043) (0.0141) (0.0041)

λ 0.9910 0.6532 0.9765 0.9478 0.9828

(0.0043) (0.2411) (0.0096) (0.0304) (0.0068)

Loglik -11101 -10025 -10434 -9849 -10831

Korea µ 0.0040 0.0097 0.0065 0.0106

(0.0025) (0.0071) (0.0022) (0.0104)

λ 0.9951 0.9821 0.9929 0.9835

(0.0038) (0.0170) (0.0025) (0.0203)

Loglik -10805 -11187 -10580 -11547

Malaysia µ 0.0115 0.0434 0.0535

(0.0233) (0.0203) (0.0177)

λ 0.9634 0.9250 0.8565

(0.1178) (0.0500) (0.0706)

Loglik -9990 -9242 -10299

Philippines µ 0.0177 0.0227

(0.0080) (0.0072)

λ 0.9702 0.9620

(0.0122) (0.0139)

Loglik -9839 -10758

Singapore µ 0.0232

(0.0074)

λ 0.9649

(0.0135)

Loglik -10132

Table 4 reports on the pre- and post-Asian financial crisis results. The pre- and

post-crisis correlations are the arithmetic average over the sample periods. The

tick indicates that the pre- and post-crisis correlations are significantly different at

the 1% level of significance. The asterisk indicates that the post-crisis correlation
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is lower than the pre-crisis correlation.

For a majority of the markets, the post-crisis correlation is higher than the pre-

crisis correlations. However, the correlation decreased after the financial crisis for

Hong Kong and Malaysia, Indonesia and Malaysia, Indonesia and the Philippines,

Indonesia and Singapore, Malaysia and the Philippines, Malaysia and Singapore,

Malaysia and Thailand, and the Philippines and Singapore. The decline in the

correlation is significant except for Malaysia and the Philippines correlation. This

result is consistent for both the bivariate and the DCC models except for the

Philippines and Singapore correlation. It is also interesting to note that this

decline is registered in most of the correlations that result from Malaysia and the

Philippines markets with other markets in the region.

For those markets that register an increase in post-crisis correlation, the in-

crease is insignificant only for the correlation between Australia and Indonesia,

Hong Kong and Indonesia, and the Philippines and Singapore.

There is clear evidence that the correlation has increased for a majority of the

markets after the 1997 Asian financial crisis. The biggest increase in correlation

is between Japan and Korea. There is also a large increase in the correlation

between Australia and Korea, Korea and Singapore, and Hong Kong and Korea.

An interesting finding is that the markets of Japan and Korea have become

more correlated with a majority of the other markets in this region. There is a

substantial increase in the post-crisis correlations between Australia and Japan,

Hong Kong and Japan, Japan and Korea, Japan and the Philippines, Japan and

Singapore, and Japan and Thailand. The increase in correlation between Indone-

sia and Japan, and Japan and Malaysia is small but, nevertheless, significant.

For Korea, its correlation has increased substantially with the markets of Aus-

tralia, Hong Kong, Japan, Malaysia, the Philippines, Singapore and Thailand.

Another interesting finding is the decline in the correlation between Malaysia

and a majority of the markets in the region. There is a substantial decline in
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Table 4: Comparison between pre- and post-Asian financial crisis correlation.

Bivariate DCC(1,1)

Pre Post sig Pre Post sig

Australia & Hong Kong 0.3979 0.4434
√

0.3963 0.4485
√

Australia & Indonesia 0.2095 0.2148 0.2014 0.2190

Australia & Japan 0.2888 0.3842
√

0.2835 0.3832
√

Australia & Korea 0.0756 0.3786
√

0.1577 0.3116
√

Australia & Malaysia 0.2297 0.2368
√

0.2261 0.2408
√

Australia & Philippines 0.2019 0.2290
√

0.2018 0.2292
√

Australia & Singapore 0.3489 0.3809
√

0.3402 0.3924
√

Australia & Thailand 0.2042 0.2397
√

0.2028 0.2399
√

Hong Kong & Indonesia 0.2575 0.2617 0.2582 0.2665

Hong Kong & Japan 0.2203 0.4425
√

0.2768 0.3997
√

Hong Kong & Korea 0.2795 0.5594
√

0.1845 0.3826
√

Hong Kong & Malaysia 0.3491 0.3158*
√

0.3521 0.3178*
√

Hong Kong & Philippines 0.2252 0.2521
√

0.2249 0.2507
√

Hong Kong & Singapore 0.4748 0.5568
√

0.4934 0.5595
√

Hong Kong & Thailand 0.3153 0.3465
√

0.3251 0.3450
√

Indonesia & Japan 0.1563 0.1684
√

0.1361 0.1799
√

Indonesia & Korea 0.1121 0.1688
√

0.0955 0.1863
√

Indonesia & Malaysia 0.2770 0.2565*
√

0.2765 0.2578*
√

Indonesia & Philippines 0.2581 0.2256*
√

0.2570 0.2346*
√

Indonesia & Singapore 0.3245 0.3078*
√

0.3281 0.3134*
√

Indonesia & Thailand 0.2433 0.2616
√

0.2469 0.2614
√

Japan & Korea 0.0093 0.3895
√

0.1158 0.3135
√

Japan & Malaysia 0.1999 0.2131
√

0.1766 0.2349
√

Japan & Philippines 0.0924 0.1956
√

0.1019 0.1883
√

Japan & Singapore 0.2414 0.3534
√

0.2488 0.3502
√

Japan & Thailand 0.1191 0.2228
√

0.1317 0.2108
√

Korea & Malaysia 0.0724 0.1907
√

0.0980 0.1761
√

Korea & Philippines 0.0794 0.1919
√

0.0883 0.1843
√

Korea & Singapore 0.0920 0.4268
√

0.1790 0.3635
√

Korea & Thailand 0.1984 0.2880
√

0.1613 0.2694
√

Malaysia & Philippines 0.2156 0.2141* 0.2145 0.2120*

Malaysia & Singapore 0.4791 0.3697*
√

0.4732 0.3875*
√

Malaysia & Thailand 0.3151 0.3048*
√

0.3202 0.3112*
√

Philippines & Singapore 0.2587 0.2601 0.2648 0.2644*

Philippines & Thailand 0.2052 0.2378
√

0.2132 0.2379
√

Singapore & Thailand 0.3578 0.3821
√

0.3662 0.3817
√

The mean is the arithmetic mean of the daily conditional correlation over the sample period.
The pre-1997 correlation is the mean until July 01, 1997 comprising of 1326 observations and the
post-1997 correlation are the mean from July 01, 1998 comprising of 1436 observations.
* The post-1997 is lower than the pre-1997 mean.

√
significant at 1%.

17



the correlation between Malaysia and Singapore. The other markets that have

become less correlated with Malaysia after the crisis are Hong Kong, Indonesia

and Thailand. The pegging of the Malaysian ringgit to the US dollar may have

contributed to the decline in the integration of Malaysia with the rest of the

markets. There is also a significant decline in the correlation between Indonesia

and the markets of the Philippines and Singapore.

6 Conclusions

The result from the analysis of the pre- and post-correlation provides strong evi-

dence of an increase in the correlations between a majority of the markets in this

region after the Asian financial crisis. Korea’s and Japan’s correlations with the

other markets in the region seem to have substantially increased. The markets of

Korea and Japan seem to register the highest increase in post-crisis correlation.

This has serious implications for investors contemplating portfolio diversification

in this region.

There is also a significant decline in the correlation between Malaysia and the

rest of the region. The pegging of the ringgit can be cited as a plausible reason.

The correlation with the Indonesian market has also declined against some of the

markets in the region.
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