
An Analytic Study of Bond Price with Jump Risk

Yu-Ting Chen, Institute of Finance
National Chiao Tung University, Hsinchu,Taiwan

Cheng-Few Lee, Department of Finance
Rutgers University, New Brunswick, NJ, USA

Yuan-Chung Sheu ∗, Department of Applied Mathematics
National Chiao Tung University, Hsinchu, Taiwan

Keywords: jump diffusion, default barrier, writedown function, bond price, credit spread
Running Title: Bond prices with jump risk

Abstract

We study bond prices in jump diffusion model incorporating default barrier scheme.
We start with a general framework under which the firm value process is assumed
to follow Merton’s jump diffusion process except that the jump size distribution is
arbitrary. We adopt exponential default barrier as in Black and Cox[5]. Moreover, as in
Longstaff and Schwartz[16] and Zhou[24], we assume that the bondholders will be paid
at the maturity even though a default may have occurred before that time. However,
if default occurs, the payoff at maturity date depends on a general writedown function.
Under this general setting, we study the properties of bond prices and derive an infinite
series expression for them. In particular, we give a non-zero lower bound and upper
bound for the credit spreads when the time to maturity tends to zero. It is interesting
to compare our results with that obtained using simulation in Zhou[24], and empirically
in Jones et.al.[10] and others. See Hilberink and Rogers[9] for related works.
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1 Introduction

There are two basic approaches to model corporate default risks, the structural approach
and the reduced form approach. In the classical structural approach such as [18], [5], [16],
[13] and [15], the dynamics of a given firm’s asset value is assumed to follow a stochastic
differential equation:

dVt = µ(Vt, t)dt+ σVtdWt.

From the continuity of sample paths of diffusion, one obtains the probability that the firm
will default near the issuance date is nearly zero. Another implication is that the credit
spreads tend to zero as the maturity tends to zero. However, empirical studies indicate that
the credit spread is actually quite large even if time to maturity is near zero. For example,
in [10], Jones et.al. found that the observed credit spreads are quite large compared to the
classical diffusion model; see also [21] for another empirical evidence against the shape of
credit spread of the classical model. In [6], Duffie and Lando interpreted this phenomenon
is due to information asymmetry.

On the other hand, in [17], the jump processes were stressed to be crucial in the modeling
of risky bonds. However, this model is overly simplified since only pure jump processes were
applied and the jump amplitudes follow a binomial distribution. Recently, there are some
works such as [24], [9] and [22] in which, in addition to a diffusion part, jumps are introduced
into the dynamic of the firm’s asset value processes. In [24], Merton’s jump diffusion model
was considered as the underlying firm value process, and the default scheme of Black and Cox
that defaults can occur at any time prior to the maturity date was incorporated. Based on
the choice of writedown functions, Zhou did not successfully derive a closed form solution
for the bond price but provided a Monte Carlo simulation scheme. With his simulation
results, he found that by manipulating the parameters, various shapes of credit spreads,
default probabilities, and the other characteristics of defaultable bonds found in empirical
studies can be recovered. In [9], Hilberink and Rogers generalized the Leland’s model; see
[14] and [15]. They assumed that the firm’s log asset value process is the sum of a Brownian
motion with drift and a downward jump compound Poisson process. Although no closed
form solution for the price of the perpetual debt, they found the Fourier transform of it. By
inverting the Fourier transform, they also found numerically the result that credit spreads
do not tend to zero as maturity goes to zero.

In this paper, we consider Merton’s jump diffusion model with Black-Cox’s default
barrier scheme. Similar to the original model of Merton, we allow two-sided jumps at
each exponential time. But the jump distribution is now arbitrary instead of a normal
distribution as in [19]. As in [16] and [24], we assume that the bondholders will be paid
at the maturity even though a default may have occurred before that time. Moreover, we
consider the general recovery rate scheme for the risky bonds. In stead of trying to derive a
closed form solution for the bond price, we shall write the zero coupon bond as an integral
equation which is expanded at the first jump time. The elements of the integral equation
are in explicit forms. (See Propositions 3.1 and 3.2 below.) Using these elements, we give
an analysis of the bond price. We have the following findings.

• As the firm’s initial value tends larger, the price of the bond approximate that of a
risk free bond.

• It is ”almost” impossible for a solvent firm to default instantaneously.
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• Under mild conditions on jump distribution and writedown function, the credit spread
bonds has a strictly positive lower bound as time to maturity tends to zero.

(For details, see Theorem 4.1 and Corollary 4.1.) On the other hand, since there cannot
occur infinitely many Poisson events in a finite interval, we can use the recursive method to
write the bond price as an infinite series in which the series converges uniformly on compacts
of space and time(See Theorem 5.1 below).

The structure of this paper is as follows. In Section 2, we recall some basic results in
structural modelling of credit risk. In Section 3, we introduce the model and use integral
equation techniques to take a first look at the bond price. Based on results in Section 3, we
study in Section 4 properties of bond prices and credit spreads. In Section 5, we derive an
infinite series expression for the bond prices.

2 Structural Modelling of Credit Risk

In this section, we give a short review of some approaches in the structural modeling of
credit risk. For details, see, e.g. [7] and [12].

2.1 The Merton Model

We want to price bonds issued by a firm. In Merton[18], the firm’s value is assumed to
follow a geometric Brownian motion:

dVt = µVtdt+ σVtdWt.

Assume that there exists a money-market account with a constant riskless rate r. Then it
is well known that the no-arbitrage price C0 at time 0 of a contingent claim paying C(VT )
at time time T is equal to:

C0 = EQ[e−rTC(VT )] (2.1)

where Q is the risk-neutral probability measure under which the discounted firm value
follows a martingale. More specifically, V is given as:

Vt = V0 exp
{(

r − 1
2
σ2

)
t+ σWQ

t

}
,

where WQ is a standard Brownian motion under Q.
Assume that the Modigliani and Miller Theorem holds so that the value of the firm is

exogenous and is not influenced by changing the capital structure. Assume that the firm
issues a zero coupon bond with face value D which matures at time T . For simplicity, it is
assumed that this is the only liability of the firm. Then from the viewpoint of the equity
holders, equity value becomes the value of a European call option on the firm’s assets with
strike price D and maturity date T , that is, the value of the equity is:

ST = max(VT −D, 0).

On the other hand, the value of the bond holder at time T is,

BT = min(D,VT ) = D −max(D − VT , 0).
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This means the ownership of the zero coupon bond is equivalent to a long position in a
riskless bond with face value D and time to maturity T and a short position in a European
put option on firm’s assets with strike price D and maturity date T .

Therefore, based on (2.1), if one applies the Black-Scholes formula, one can obtain an
explicit pricing formula for the risky bond in Merton model.

2.2 The Merton Model For Jump Diffusion Return

The jump-diffusion model for option pricing in [19] can be directly applied to the pricing
of corporate bond. Under the risk-neutral measure Q, the value of the firm follows the
dynamics:

dVt = Vt−

[
rdt+ σdWt + d

(
Nt∑
i=1

Ui − λνt

)]
, µ ∈ R, σ ∈ R++, (2.2)

where

• W = (Wt) is a standard Brownian motion.

• N = (Nt) is a Poisson process with intensity λ.

• {Ui} is a sequence of independent jump sizes with a common distribution on (−1, 0)∪
(0,∞) and has mean ν.

• (Wt), (Nt) and {Ui} are independent.

The unique(up to indistinguishability) solution to (2.2) is given by

Vt = V0 exp
{(

r − 1
2
σ2 − λν

)
t+ σWt

} Nt∏
j=1

(1 + Uj). (2.3)

Then we can plug VT into (2.1) for time zero price of any contingent claim C(VT ) at time
T .

In particular, in the case that 1 + Uj is lognormal, there is an infinite sum of Black-
Scholes type expressions for the price of the risky zero coupon bond.(See Theorem 9.3.1 in
[4].)

2.3 The Black-Cox Model

We consider the basic extension of the Merton model in Section 2.1. due to Black and
Cox.(See [5].) The idea is to capture the possibility that defaults may occur at any time
before maturity for zero coupon bond. In [5], Black and Cox considered a asset value process
which, under the risk neutral measure, follows the dynamic:

dVt = (r − a)Vtdt+ σVtdWt.

Here a is the payout rate of the firm. Moreover, they defined the default boundary as:

Kt = K0eκt, 0 ≤ t ≤ T, (2.4)
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where κ ∈ R.(In [16], Longstaff and Schwartz adopted the constant boundary, that is,
κ = 0.) More precisely, the default time is defined by:

τ(T ) , inf{0 ≤ t ≤ T ;Vt ≤ Kt} (2.5)

with the usual convention that inf ∅ = +∞. Then, in Black-Cox model, the payoff at
maturity is

B(VT , T ) = min(VT , D),

if there is no default up to time T . If the boundary is hit before or at the maturity of the
bond, bond holders will take over the firm and receive the remaining value of the firm at
the default time:

B(Vτ(T ), τ(T )) = Kτ(T ).

Note that the payoff at maturity if there is no default can be written as

D1[τ(T )>T ] − (D − VT )+1[τ(T )>T ].

To get the price of the bond payout at maturity if there is no default, we use results on
pricing of barrier options. To get the bond payout on the default barrier, one can use the
density of the hitting time of Brownian motion and the joint density of Brownian motion
and its maximum process.(For details, see [12].)

2.4 Jumps and Default Barriers

It is natural to consider an extension of Black-Cox model in which the dynamics of the
asset-value process contains jumps. Note that in this case, defaults can occur either by
diffusion or by jumps. Then it is rare to derive closed form solutions for quantities related
to defaultable bonds . Indeed, in [24], Zhou proposed an alternative model and gave a
simulation scheme for dealing with this situation. More recently, in [9], Hilberink and
Rogers showed how to obtain an expression up to a Fourier transform of

E[e−rτ(∞)V θ
τ(∞)],

where r > 0, θ > 0 and τ(∞) = inf{t ≥ 0;Vt ≤ Kt}. For the method to work, they required
that the jumps are only downwards. Also, inversion is not a trivial problem. In the next
two sections, as in [24], we consider jump diffusion with two-sided jumps and more general
recovery scheme and derive not only some analytic properties of the bond price but also an
infinite series expression for it.

3 Integral Equation Approach for Bond Price

3.1 Basic Setup

We assume the setting in Section 2.2 and that the firm’s asset value follows (2.3). (From
now on, we will write P for Q.) Assume that the firm issues a zero coupon bond with one
dollar face value which matures at T > 0 and the term of the bond specifies the bond is of
strict priority. In the covenant, the default of the firm is defined as the first time the value
of the firm falls below the boundary defined in (2.4). That is, the default time is given by
(2.5).
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Furthermore, following [16] and [24], we assume that the payoff at T is determined by a
function of the firm value at the time of default if there is default or simply the bond pays
the full face value if there is no default. In other words, the payoff of the zero coupon bond
is given at time T by:

1[τ(T )>T ] + [1− ψ(log(Vτ(T )/Kτ(T )))]1[τ(T )≤T ]. (3.1)

Here the writedown function ψ(log x) represents the write-down fraction for the bond that
is lost due to bankruptcy costs or the others. [Actually, in [24], he considered ψ of the
affine-exponential form:

ψ(y) = a− bey.

In the special case that a = b = 1 and K0 = 1, κ = 0, one sees that the payoff of the zero
coupon bond at maturity takes the form:

1[τ(T )>T ] + Vτ(T )1[τ(T )≤T ].]

In literatures, 1−ψ is also referred to as recovery rate. It is worth noting that in empirical
studies even for the same class of bond issues, the recovery rate 1 − ψ differs significantly
over different time periods and different firms. See [2], [1] and [8].

Set Xt = log(Vt/Kt). Then

Xt = log(V0/K0) +
(
r − 1

2
σ2 − λν − κ

)
t+ σWt − Zt, (3.2)

=X0 + ct+ σWt − Zt, t ∈ R+, (3.3)

where X0 = x = log(V0/K0), c = r− 1
2σ

2−λν−κ, and Zt ,
∑Nt

n=1− log(1+Un). It follows
from (3.1) that the no arbitrage price of the bond is given by

D(V0, T ) = e−rT − e−rT Ex

[
ψ(Xτ(T ))1{τ(T )<∞}

]
= e−rT − e−rT Φ(x, T ) (3.4)

where

Φ(x, t) , Ex

[
ψ(Xτ(t))1(τ(t) ≤ t)

]
. (3.5)

Note that τ(t) = inf{0 ≤ s ≤ t;Xs ≤ 0} and Ex denotes the expectation conditioning on
X0 = x under the risk-neutral measure P. We also write E for E0.

3.2 Integral Equation For Φ

For notational convenience, from now on, we will write

Xt = X0 +Xc
t − Zt

with

Xc
t = ct+ σWt. (3.6)

For any constant x ∈ R, write x̂ = x
σ , and Jk denotes the k-th epoch time of the compound

Poisson process Z with interarrival time Sk, that is,

Jk =
k∑

j=1

Sj .
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Furthermore, if G1, · · · , Gn are random variables on R, we write FG1,··· ,Gn for their joint
distribution. We preserve F for the distribution of − log(1 + Uj).

We use an integral-equation technique to take a first look at the function Φ. To begin
with, write

{τ(T ) ≤ T} = A ∪B ∪ C ∪D (3.7)

where

A =[J1 > T ≥ τ(T )] (No jump up to maturity and default is caused by diffusion)
B =[T ≥ J1 > τ(T )] (Jump occurs up to maturity and default occurs before J1)
C =[T ≥ τ(T ) = J1] (Jump occurs up to maturity and default occurs at J1 )
D =[T ≥ τ(T ) > J1] (Jump occurs up to maturity and default occurs after J1)

Note that {A,B,C,D} is a partition of {τ(T ) ≤ T}. With these, we define GA(x, T ) =
Ex

[
ψ(Xτ(T ));A

]
, and similarly for GB, GC and GD. Before stating our results, we recall

basic facts about the distribution of maximum process of and Laplace transform of Brownian
motion with drift. For details and proofs, see [11] and [23].

Theorem 3.1 Let α ∈ R, T > 0, let W (t;α) = αt+W (t) and M(T ;α) = max0≤t≤T W (t;α).
Then the joint density of M(T ;α) and W (T ;α) is given by

fM(T ;α),W (T ;α)(m,w) =

{
2(2m−w)

T
√

2πT
eαw− 1

2
α2T− 1

2T
(2m−w)2 , w ≤ m,m ≥ 0,

0, otherwise.
(3.8)

Therefore the density of M(T ;α) is given by

fM(T ;α)(m) =

{
2√
2πT

e−
1

2T
(m−αT )2 − 2αe2αmN

(
−m−αT√

T

)
, m ≥ 0

0, otherwise,
(3.9)

and

P [M(T ;α) ≤ m] =

{
N
(

m−αT√
T

)
− e2αmN

(
−m−αT√

T

)
, m ≥ 0,

0, m < 0.
(3.10)

Here N (·) is the cumulative distribution function of standard normal distribution.

Proposition 3.1 We have the following representations of GA, GB and GC :

GA(x, T ) =ψ(0)e−λT

[
N
(
−x̂− ĉT√

T

)
+ e−2ĉx̂N

(
−x̂+ ĉT√

T

)]
, (3.11)

GB(x, T ) =ψ(0)
[∫ T

0
N
(
−x̂− ĉt√

t

)
dFJ1(t) +

∫ T

0
e−2ĉx̂N

(
−x̂+ ĉt√

t

)
dFJ1(t)

]
(3.12)

GC(x, T ) =
∫ T

0
dFJ1(t)

∫ ∞

0
dF (y)

∫ y

0
dwψ(w − y)H(x,w, t), (3.13)

where g(µ;σ2) = 1√
2πσ

exp
{
− µ2

2σ2

}
and

H(x,w, t) = g(x− w + ct; tσ2)− e−2ĉx̂g(x+ w − ct; tσ2). (3.14)
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Proof Note that ψ(Xτ(T )) = ψ(0) on A and B. By independence of {Wt; t ∈ R+} and J1,
we obtain

GA(x, T ) =P[J1 > T ]ψ(0)P
[
min
s≤T

x+ cs+ σWs ≤ 0
]

=P[J1 > T ]ψ(0)P
[
max
s≤T

−x− cs− σWs ≥ 0
]

=P[J1 > T ]ψ(0)P
[
max
s≤T

−ĉs+Ws ≥ x̂

]
where the last equality follows from the symmetry of standard Brownian motion. By (3.10),
we have

P
[
max
s≤T

−ĉs+Ws ≥ x̂

]
=1− P

[
max
s≤T

−ĉs+Ws ≤ x̂

]
(3.15)

=1−
[
N
(
x̂+ ĉT√

T

)
− e−2ĉx̂N

(
−x̂+ ĉT√

T

)]
=N

(
−x̂− ĉT√

T

)
+ e−2ĉx̂N

(
−x̂+ ĉT√

T

)
.

This completes the proof of (3.11).
We next turn to the proof of (3.12). Again by the independence of {Wt; t ∈ R+} and

J1, and the symmetry of standard Brownian motion, we get

GB(x, T ) = ψ(0)P
[
min
s≤J1

x+ cs+ σWs ≤ 0, J1 ≤ T

]
= ψ(0)

∫ T

0
P
[
min
s≤t

x+ cs+ σWs ≤ 0
]

dFJ1(t)

= ψ(0)
∫ T

0
P
[
max
s≤t

−ĉs+Ws ≥ x̂

]
dFJ1(t).

Then replacing T with t for (3.15), we get (3.12).
Finally, from independence of {Wt; t ∈ R+}, Y1 , − log(1 + U1) and J1,

GC(x, T ) =
∫ T

0
dFJ1(t)E

[
ψ(x+Xc

t − Y1)1
(

min
s≤t

x+Xc
s > 0, x+Xc

t − Y1 < 0
)]

=
∫ T

0
dFJ1(t)

∫ ∞

0
dF (y)E

[
ψ(x+Xc

t − y)1
(

min
0≤s≤t

x+Xc
s > 0, x+Xc

t − y < 0
)]

.

where in the last line we use the fact that P [mins≤t x+Xc
s > 0, x+Xc

t − y < 0] = 0 for
y < 0. Also, observe that, using the symmetry of Brownian motion,

E
[
ψ(x+Xc

t − y)1
(

min
0≤s≤t

x+Xc
s > 0, x+Xc

t − y < 0
)]

=E
[
ψ(x− σ(−ĉt+Wt)− y)1

(
max
s≤t

−ĉs+Ws ≤ x̂, x̂− (−ĉt+Wt)− ŷ ≤ 0
)]

.

8



Now, applying the formula of the joint distribution of W (α; t) and M(α; t) with α = −ĉ,
we get for all t, y > 0,

E
[
ψ(x− σ(−ĉt+Wt)− y)1

(
max
s≤t

−ĉs+Ws ≤ x̂, x̂− (−ĉt+Wt)− ŷ ≤ 0
)]

=
∫

dw
∫ ∞

w+

dmψ(x− σw − y)1(m ≤ x̂, x̂− w − ŷ ≤ 0)
2(2m− w)
t
√

2πt
e−ĉw− 1

2
ĉ2t− 1

2t
(2m−w)2

=
∫ x̂

x̂−ŷ
dwψ(x− σw − y)e−ĉw− 1

2
ĉ2t

∫ x̂

w+

dm
2(2m− w)
t
√

2πt
e−

1
2t

(2m−w)2

=
∫ x̂

x̂−ŷ
dwψ(x− σw − y)e−ĉw− 1

2
ĉ2t

∫ 2x̂−w

|w|
dm

m

t
√

2πt
e−

1
2t

m2

=
∫ x̂

x̂−ŷ
dwψ(x− σw − y)e−ĉw− 1

2
ĉ2t 1√

2πt

[
e−

w2

2t − e−
(2x̂−w)2

2t

]
.

Note that

(2x̂− w)2 + 2tĉw + ĉ2t2 = 4x̂2 − 4x̂w + w2 + 2tĉw + ĉ2t2

= (4x̂2 + ĉ2t2 + w2 − 4x̂ĉt+ 2ĉtw − 4x̂w) + 4x̂ĉt

= (2x̂− ĉt− w)2 + 4x̂ĉt.

Therefore, ∫ x̂

x̂−ŷ
dwψ(x− σw − y)e−ĉw− 1

2
ĉ2t 1√

2πt

[
e−

w2

2t − e−
(2x̂−w)2

2t

]
=
∫ x̂

x̂−ŷ
dwψ(x− σw − y)

1√
2πt

[
e−

(w+ĉt)2

2t − e−2x̂ĉe−
(2x̂−ĉt−w)2

2t

]
=
∫ y

0
dwψ(w − y)

1
σ
√

2πt

[
e−

(x−w+ct)2

2tσ2 − e−2x̂ĉe−
(x+w−ct)2

2tσ2

]
=
∫ y

0
ψ(w − y)

[
g(x− w + ct; tσ2)− e−2x̂ĉg(x+ w − ct; tσ2)

]
dw.

This gives (3.13). �
Remark. In case that Y1 concentrates heavily on (M,∞) for some large M > 0, the

firm is not easy to survive up to the first jump time J1 which occurs prior to maturity date
T . Therefore one has Px(D) is very small, and it is tempted to use GA + GB + GC to
estimate Φ. �

To calculate GD, we recall the strong Markov property of Lévy processes. For details,
see, e.g., [3] or [20].

Theorem 3.2 Let {Ft} be the usual augmentation of the natural filtration σ(Xs; 0 ≤ s ≤ t).
Then for any stopping time τ of Ft and any nonnegative Z ∈ F∞

Ex[Z ◦ θτ |Fτ ] = EXτ [Z], on {τ <∞}.

Here θ is the shift operator, that is, X ◦ θt(s) = Xt+s for all s ≥ 0. Moreover, on {τ <∞}

{Xτ+t −Xτ ; t ∈ R+} is independent of Fτ .
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Proposition 3.2 We have

GD(x, T ) = Ex [1DΦ(XJ1 , T − J1)] =
∫ T

0
dFJ1(t)

∫
dF (y)

∫ ∞

y+

dwΦ(w − y, T − t)H(x,w, t),

where H is defined in (3.14).

Proof Since every jump is observable(
∫

R\{0} dF (y) = 1), every exponential time Jn is a
stopping time. Note that

D̃ =
[
J1 ≤ T,min

s≤J1

Xs > 0
]
∈ FJ1 .

Therefore, by Strong Markov Property, we have

GD(x, T ) = Ex

[
Ex

[
1
eD
ψ(Xτ(T ))1(τ(T ) ≤ T )|FJ1

]]
= Ex

[
1
eD
Φ(XJ1 , T − J1)

]
.

Recall that Y1 = − log(1 + U1). Therefore, by the independence of J1, Y1, and {Wt; t ≥ 0},
we get

GD(x, T ) = E
[
1
(
J1 ≤ T,min

s≤J1

x+Xc
s > 0, x+Xc

J1
− Y1 > 0

)
Φ(x+Xc

J1
− Y1, T − J1)

]
=
∫ T

0
dFJ1(t)

∫
dF (y)E

[
1
(

min
s≤t

x+Xc
s > 0, x+Xc

t − y > 0
)

Φ(x+Xc
t − y, T − t)

]
.

We compute the integrand. Using the symmetry of Brownian motion, we get

E
[
1
(

min
s≤t

x+Xc
s > 0, x+Xc

t − y > 0
)

Φ(x+Xc
t − y, T − t)

]
=E

[
1
(

max
s≤t

−x− cs+ σWs < 0,−x− ct+ σWt + y < 0
)

Φ(x+ ct− σWt − y, T − t)
]

=E
[
1
(

max
s≤t

−x̂− ĉs+Ws < 0,−x̂− ĉt+Wt + y < 0
)

Φ(x− σ(−ĉt+Wt)− y, T − t)
]
.

Using the joint distribution of M(−ĉ, t) and −ĉt+Wt, we get

E
[
1
(

max
s≤t

−x̂− ĉs+Ws < 0,−x̂− ĉt+Wt + y < 0
)

Φ(x− σ(−ĉt+Wt)− y, T − t)
]

=
∫ (x̂−ŷ)∧x̂

−∞
dw
∫ x̂

w+

dvΦ(x− σw − y, T − t)
2(2v − w)
t
√

2πt
exp

{
−ĉw − 1

2
ĉ2t− 1

2t
(2v − z)2

}
=
∫ (x̂−ŷ)∧x̂

−∞
dwΦ(x− σw − y, T − t) exp

{
−ĉw − 1

2
ĉ2t

}∫ x̂

w+

2(2v − w)
t
√

2πt
exp

{
−(2v − z)2

2t

}
dv.

Similar to the calculation of GC , we have∫ (x̂−ŷ)∧x̂

−∞
dwΦ(x− σw − y, T − t) exp

{
−ĉw − 1

2
ĉ2t

}∫ x̂

w+

2(2v − w)
t
√

2πt
exp

{
−(2v − z)2

2t

}
dv

=
∫ (x̂−ŷ)∧x̂

−∞
Φ(x− σw − y, T − t)

[
g(w + ĉt; t)− g(w + tĉ− 2x̂; t)e−2ĉx̂

]
dw

=
∫ ∞

y+

Φ(w − y, T − t)
[
g(w − x− ct; tσ2)− g(w + x− ct; tσ2)e−2ĉx̂

]
dw,

where we use the change of variable x− σw 7→ w in the last equation. This completes the
proof of the proposition. �
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4 Some Properties of Bond Price

We now use the integral equation approach in Section 3 to study properties of the bond
price defined in (3.4). First, to fix idea, we adopt from [12] and [18] the following definition
of yield spreads and credit spreads.

Definition 4.1 For the bond price defined in (3.4), the promised yield for maturity T is
given by the formula

y(V0, T ) =
1
T

log
(

1
D(V0, T )

)
and the credit spread for maturity T by:

s(V0, T ) = y(V0, T )− r.

One get immediately from the definition of yield spread that

D(V0, T )ey(V0,T )T = 1.

Note that 1 is the face value of the bond.

Lemma 4.1 For all x > 0 and y > 0, the function

t 7→ E
[
ψ(x+Xc

t − y)1
(

min
s≤t

x+Xc
s > 0, x+Xc

t − y < 0
)]

(4.1)

is continuous on R++.

Proof Recall that in the proof of Proposition 3.1, we have

E
[
ψ(x+Xc

t − y)1
(

min
s≤t

x+Xc
s > 0, x+Xc

t − y < 0
)]

=
∫ y

0
ψ(w − y)H(x,w, t)dw,

where H is given by (3.14). From this, it follows easily that the function in (4.1) is contin-
uous. This completes the proof. �

Lemma 4.2 Assume x > 0. Then

lim
T→0+

∂

∂T
P
[
min
s≤T

x+ cs+ σWs < 0
]

= 0. (4.2)

Also, for all n ∈ N, we have

P
[
min
t≤T

x+ ct+ σWs < 0
]

= o(Tn), as T → 0 + . (4.3)

Proof Firstly, we prove (4.2). By the symmetry of Brownian motion, we have

P
[
min
s≤T

x+ cs+ σWs ≤ 0
]

= P
[
max
s≤T

−cs+ σWs ≥ x

]
= P

[
max
s≤T

−ĉs+Ws ≥ x̂

]
.

Note that x > 0. Therefore, by (3.10), we have

P
[
max
s≤T

−ĉs+Ws ≥ x̂

]
= N

(
− x̂+ ĉT√

T

)
+ e−2ĉx̂N

(
−x̂+ ĉT√

T

)

11



which converges to 0 as T → 0+. Recall that g(x;σ2) = 1√
2πσ2

exp
{
− x2

2σ2

}
. We have

∂

∂T

[
N
(
− x̂+ ĉT√

T

)
+ e−2ĉx̂N

(
−x̂+ αT√

T

)]
=− g

(
−(x̂+ ĉT )√

T
; 1
) √

T ĉ− (x̂+ ĉT )1
2T

−1/2

T

+ e−2ĉx̂g

(
−x̂+ ĉT√

T
; 1
) √

T ĉ− (−x̂+ ĉT )1
2T

−1/2

T

=
1
2

[
−g
(
−(x̂+ ĉT )√

T
; 1
)
ĉT − x̂

T 3/2
+ g

(
x̂+ ĉT√

T
; 1
)
ĉT + x̂

T 3/2

]
=g
(
x̂+ ĉT√

T
; 1
)

x̂

T 3/2
=

1√
2π
x̂ exp

{
−1

2

(
x̂√
T

+ ĉ
√
T

)2
}

1
T 3/2

.

Observe that for all T > 0

0 ≤ 1√
2π
x̂ exp

{
−1

2

(
x̂√
T

+ ĉ
√
T

)2
}

1
T 3/2

≤ C exp
{
− x̂2

2T

}
1

T 3/2
,

for some constant C > 0 independent of T > 0. This implies that (4.2) holds.
We prove (4.3). Let n ∈ N. Then, by L’Hôspital’s rule,

lim
T→0+

P [mins≤T x+ cs+ σWs < 0]
Tn

≤ lim
T→0+

∂
∂T P [mins≤T x+ cs+ σWs < 0]

nTn−1

≤ lim
T→0+

C exp
{
− x̂2

2T

}
1

nT (n−1)+3/2
= 0.

We have completed the proof.
�

Theorem 4.1 Let D(V0, T ) be the bond price defined in (3.4) and set x = log(V0/K0). We
have the following analytic properties of bond price.
(a) As the initial asset value becomes infinity, the bond is essentially riskless: for all T > 0,

lim
V0→∞

D(V0, T ) = e−rT .

(b) It is ”almost” impossible for a solvent firm to default instantaneously: for all V0 > 0,

lim
T→0+

Px[τ(T ) ≤ T ] = 0.

(c) Assume that the writedown function ψ is continuous and 0 ≤ ψ ≤ 1. Moreover, x is a
continuity point of F (i.e.,

∫
{x} dF (y) = 0.) Then

λ ≥ lim sup
T→0+

s(V0, T ) ≥ lim inf
T→0+

s(V0, T ) ≥ λ

∫ ∞

x
ψ(x− y)dF (y). (4.4)

In particular, if ψ ≡ 1 and P[Y1 > x] > 0, we have a strictly positive credit spread for zero
maturity.

12



Proof We prove (a) first. Since the writedown function ψ is bounded, by (3.4) and (3.5),
it suffices to show that

lim
x→∞

Px [τ(T ) ≤ T ] = 0. (4.5)

Now since X = (Xt) is cádlág, it is clear that, for fixed T ,

τ(T, x) , inf{0 ≤ t ≤ T ;x+Xc
t −Xd

t ≤ 0} → ∞, x ↑ ∞.

This shows (4.5).
Next, consider (b). Write

Px [τ(T ) ≤ T ] = Px(A) + Px(B ∪ C ∪D). (4.6)

where {A,B,C,D} is the partition of {τ(T ) ≤ T} in (3.7). For the second term on the
right hand side of (4.6), we have

Px(B ∪ C ∪D) = Px [τ(T ) ≤ T, J1 ≤ T ] ≤ P[J1 ≤ T ] = 1− e−λT → 0, T → 0 + . (4.7)

On the other hand, we write

Px(A) = Px [τ(T )) ≤ T, J1 > T ] = P[J1 > T ]P
[
min
s≤T

x+ cs+ σWs ≤ 0
]
.

By (4.3), we get

Px(A) ≤ lim
T→0+

P
[
min
s≤T

x+ cs+ σWs ≤ 0
]

= 0. (4.8)

Combining (4.7) and (4.8), we get (b).
Finally, consider (c). We firstly estimate lim infT→0+ s(V0, T ). Now,

lim inf
T→0+

s(V0, T ) = lim inf
T→0+

[
1
T

log
(

1
D(V0, T )

)
− r

]
= lim inf

T→0+

[
1
T

log
(

erT

1− Φ(x, T )

)
− r

]
.

(Note that by (b), Φ(x, T ) → 0 as T → 0+). On the other hand, since 0 ≤ ψ ≤ 1, we have
Φ(x, T ) ≥ GC(x, T ). Therefore,

lim inf
T→0+

s(V0, T ) = lim inf
T→0+

1
T

log
(

1
1− Φ(x, T )

)
≥ lim

T→0+

1
T

log
(

1
1−GC(x, T )

)
.

Since 0 ≤ GC(x, T ) ≤ Φ(x, T ) → 0 as T → 0+, we have, using L’Hôspital’s Rule,

lim
T→0+

1
T

log
(

1
1−GC(x, T )

)
= lim

T→0+

∂GC
∂T (x, T )

1−GC(x, T )

= lim
T→0+

∂GC

∂T
(x, T ).
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By (3.13), Lemma 4.1 and Fundamental Theorem of Calculus, we obtain

∂GC

∂T
(x, T ) =λe−λT

∫ ∞

0
dF (y)E

[
ψ(x+Xc

T − y)1
(

min
s≤T

x+Xc
s > 0, x+Xc

T − y < 0
)]

.

Recall that ψ is continuous and
∫
{x} dF (y) = 0. Therefore,

lim inf
T→0+

s(V0, T ) ≥ lim
T→0+

∂GC

∂T
(x, T ) = λ

∫ ∞

0
ψ(x− y)1(x− y < 0)dF (y)

= λ

∫ ∞

x
ψ(x− y)dF (y).

This proves the lower bound of (4.4).
Next, we show that λ ≥ lim supT→0+ s(V0, T ). Using the partition {A,B,C,D} of

{τ(T ) ≤ T} as in (3.7), we have

Φ(x, T ) = Ex

[
ψ(Xτ(T ));B ∪ C ∪D

]
+GA(x, T ).

Since P(B ∪ C ∪D) ≤ P[J1 ≤ T ] = 1− e−λT and ψ ≤ 1, we have

Ex

[
ψ(Xτ(T ));B ∪ C ∪D

]
≤ 1− e−λT .

This implies that
Φ(x, T ) ≤ (1− e−λT ) +GA(x, T ).

Therefore

lim sup
T→0+

s(V, T ) = lim sup
T→0+

1
T

log
(

1
1− Φ(x, T )

)
≤ lim

T→0+

1
T

log
(

1
e−λT −GA(x, T )

)
.

Note that GA(x, T ) ≤ Φ(x, T ) → 0 as T → 0+ and, hence, limT→0+

(
e−λT −GA(x, T )

)
= 1.

By L’Hôspital’s Rule, we have

lim
T→0+

1
T

log
(

1
e−λT −GA(x, T )

)
= lim

T→0+

−
(
−λe−λT − ∂GA

∂T (x, T )
)

e−λT −GA(x, T )

= lim
T→0+

(
λ+

∂GA

∂T
(x, T )

)
.

It remains to compute limT→0+
∂GA
∂T (x, T ). We know from the expression of GA(x, T ) that

GA(x, T ) = ψ(0)e−λT P
[
min
s≤T

x+ cs+ σWs ≤ 0
]
.

By (4.2), we get limT→0+
∂GA
∂T (x, T ) = 0. We have obtained the upper bound in (4.4). This

completes the proof. �

Corollary 4.1 Assume the conditions of Theorem 4.1(c) hold . In the special case that
ψ ≡ 1 and P[V0/K0 ≤ 1/(1 +U1)] =

∫∞
x dF (y) = 1, we have limT→0+ s(V0, T ) exists and is

equal to λ.
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Remark 1. For ψ ≡ 1, we have the extreme case that the bond pays nothing at maturity
if default occurs. Corollary 4.1. gives that if further the jump of firm value only focuses on
eroding the initial log-survival ratio log(V0/K0) then we have strictly positive credit spread
λ > 0 for bond with nearly zero maturity.

�

Remark 2. We compare results in [24] with conclusions of Theorem 4.1. In [24], Zhou
considered normally distributed jump sizes and a special form of writedown function. Then,
by simulation, he found the followings.(Below ε > 0 is very small.)

• In Figure 1 of [24], the greater the volatility of jump size distribution is, the greater
the credit spread s(V0, ε) is. Compare this with Theorem 4.1(c).

• In Figure 2 and Figure 7 of [24], although there is possibility of jumps, no matter
how large the intensity λ is and how much the jump distribution may concentrate on
a level above the initial log-survival ratio x = log(V0/K0), the instantaneous default
probability limT→0+ Px[τ(T ) ≤ T ] = 0. We proved this in Theorem 4.1(b) for general
jump distributions and general bounded nonnegative writedown functions.

• In Figure 6 of [24], the larger the initial firm value V0 is, the smaller the credit spread
s(V0, ε) is. Compare this with Theorem 4.1(c).

• In Figure 5 of [24], the smaller the intensity λ is, the smaller s(V0, ε) is. Compare this
with Theorem 4.1. Note that for every small jump intensity, Theorem 4.1(c) gives a
good estimate of s(V0, ε).

• In Figure 8 of [24], large V0 tends to imply small expected writedown Φ(log(V0/K0), T ).
Compare this with Theorem 4.1(a).

On the other hand, although the modeling in [9] is different from ours in some aspects,
it is interesting to compare their numerical results with Theorem 4.1. For related results,
see for example Section 2.4 in [12].

�

5 Infinite Series Expression for Bond Price

Now, consider the space ET , R+ × [0, T ], T > 0. Take E = R+ × [0,∞) for notational
convenience. The positive operator L on B(ET )b is defined by the formula,

Lf(x, t) =
∫ T

0
dFJ1(t)

∫
dF (y)

∫ ∞

y+

dwf(w − y, T − t)H(x,w, t).

where H is defined in (3.14). Here f ∈ B(ET )b is a bounded B(ET )-measurable function.
Then by Proposition 3.1. and 3.2., we can write Φ as

Φ(x, t) = G(x, t) + LΦ(x, t),∀(x, t) ∈ E. (5.1)

where

G , GA +GB +GC (5.2)

15



Now, after n-th iteration of (5.1), we have

Φ(x, t) =
n∑

k=0

LkG(x, t) + Ln+1Φ(x, t) (5.3)

where L0 = Id and Lk+1f = L(Lkf). From the definition of L, one sees that

Lf(x, t) = Ex

[
f(XJ1 , t− J1)1

(
J1 ≤ t, min

0≤s≤J1

Xs > 0
)]

.

In general, after nth iteration, we have the following result.

Lemma 5.1 Let f be a nonnegative B(ET )−measurable function. Then for any n ∈ N,

Lnf(x, t) = Ex

[
f(XJn , t− Jn)1

(
Jn ≤ t, min

0≤s≤Jn

Xs > 0
)]

. (5.4)

Proof The proof proceeds with induction. We already have the case n = 1 by the definition
of L. Assume that for n = k the conclusion of the lemma holds. Then for n = k + 1,

Lk+1f(x, t) =Ex

[
Lkf(XJ1 , t− J1)1

(
J1 ≤ t, min

0≤s≤J1

Xs > 0
)]

=Ex

[
EXJ1

[
f(XJk

, v − Jk)1
(
Jk ≤ t, min

0≤s≤Jk

Xs > 0
)] ∣∣∣∣∣

v=t−J1

1
(
J1 ≤ t, min

0≤s≤J1

Xs > 0
)]

,

where we have applied the case of (5.4) for n = k in the last line. On the other hand, by
Strong Markov Property of X, we have

Ex

[
f(XJk+1

, t− Jk+1)1
(
Jk+1 ≤ t, min

0≤s≤Jk+1

Xs > 0
)]

=Ex

[
Ex

[
f(XJk+1

, t− Jk+1)1
(
Jk+1 ≤ t, min

J1≤s≤Jk+1

Xs > 0
) ∣∣∣∣∣FJ1

]
1
(
J1 ≤ t, min

0≤s≤J1

Xs > 0
)]

=Ex

[
EXJ1

[
f(XJk

, v − Jk)1
(
Jk ≤ t, min

0≤s≤Jk

Xs > 0
)] ∣∣∣∣∣

v=t−J1

1
(
J1 ≤ t, min

0≤s≤J1

Xs > 0
)]

Hence, we have proved that (5.4) holds for n = k + 1. By induction hypothesis, we have
proved the lemma. �

Since we cannot have infinitely many jumps on a compact interval, it is not difficult to
see the following result.

Proposition 5.1 For every T > 0 and f ∈ B(ET )b, Lnf converges to 0 as n → ∞ uni-
formly on ET .

Proof It suffices to consider nonnegative f since we can apply the result to f+ and f−

and then combine the results on f± for f . Note that by Lemma 3.1, for each n ∈ N and
(x, t) ∈ ET , we have

0 ≤ Ln(x, t) = Ex

[
f(XJn , t− Jn)1

(
Jn ≤ t, min

0≤s≤Jn

Xs > 0
)]

≤ ‖f‖∞P[Jn ≤ t] ≤ ‖f‖∞P[Jn ≤ T ].
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Since Jn is the n−th jump time of the compound Poisson process, we have

P[Jn ≤ T ] =
∞∑

m=n

e−λT (λT )m

m!
.

This implies that Lnf converges to zero uniformly on ET as n→∞. �
From this, we obtain from (5.3) that for every bounded ψ,

Φ(x, T ) = lim
n→∞

(
n∑

k=0

LkG(x, T ) + Ln+1Φ(x, T )

)
=

∞∑
k=0

LkG(x, T ), (5.5)

where G is given as in (5.2). Write x = log(V0/K0). By (3.4), we get the following main
result.

Theorem 5.1 For the general nonnegative bounded writedown function ψ, the bond price
of (3.4)is given by the formula

D(V0, T ) = e−rT − e−rT
∞∑

m=0

LmG(log(V0/K0), T ), (5.6)

where G = GA + GB + GC and GA, GB, and GC are give as in (3.11), (3.12) and (3.13)
respectively. Moreover the series converges uniformly on ET .

Remark. In our setting, even if there is default prior to maturity, the remaining value of
one dollar is paid until maturity date T . If one considers the case in which the remaining
value is paid immediately at the time of default for which the discount factor to be used is
e−rτ , then a formula similar to (5.6) can be derived with exactly the same scheme.

�
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[22] P.J., Schönbucher, Valuation of securities subject credit risk, Working paper, University
of Bonn, 1996.

[23] S.E. Shreve, Stochastic Calculus for Finance II: Continuous Time Models, Springer-
Verlag, New York, 2003.

[24] C. Zhou, The term structure of credit spreads with jump risk, Journal of Banking &
Finance 26 (2001), 2015-2040.

18


