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ABSTRACT 

 
This paper uses the cross-sectional variance of the betas to study herd behavior towards 
market index in major developed and emerging financial markets (categorized as 
developed group, Asian group, and Latin American group). We propose one of the robust 
regression techniques to calculate the betas of the CAPM and those of the Fama-French 
three factor model, with an intention to diminish the impact of multivariate outliers in 
return data. Through the estimated values obtained from a state space model, we examine 
the evolution of herding measures, especially their pattern around sudden events such as 
the 1997-1998 financial crises. This 1997-1998 turmoil turns out to have formed a turning 
point for most of the financial markets. We document a higher level of herding in emerging 
markets than in developed markets. We also find that the correlation of herding between 
two markets from the same group is higher than that between two markets from different 
groups. This paper will shed light on the calculation of beta and on the financial policy to 
understand the dynamics of herding in financial markets.   
 
JEL Code: C1, C60, G12, G14, G15 
Keywords: Beta, Herding, Kalman Filter, Outlier, Robust Regression, Cycle.  
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Introduction 

In financial markets, herding is usually termed as the behavior of an investor to imitate the 

observed actions of others or the movements of market instead of following his own beliefs 

and information. Possibly herding is among the most mentioned but least understood terms 

in the financial lexicon. Difficulties to measure and quantify the existence of the behavior 

form obstacles for extensive research. Even so, there are at least two points people tend to 

unanimously agree upon. First, as one of the founding pillars in newly developed 

behavioral asset pricing area, herding helps to explain market wide anomalies. Since 

individual biases are not influential enough to move market prices and returns, they have 

real anomalous effect only if there is a social contamination with a strong emotional content, 

leading to more widespread phenomena such as herding. Second, it is generally accepted 

that the flood of herding may lead to a situation in which the market price fails to reflect all 

relevant information and thus the market becomes unstable and moves towards inefficiency. 

Policy makers often express concerns that herding by financial market participants 

destabilizes markets and increases the fragility of the financial system. As a result, it is in 

their interest to curtail herding (Bikhchandani and Sharma, 2001). 

Theoretical and empirical research on herding has been conducted in an isolated manner. 

Theoretical study focuses on the causes and implications of herding. The main consensus is 

that herding can be construed as being either a rational or irrational form of investor 

behavior. According to Devenow and Welch (1996), the irrational view focuses on investor 

psychology where an investor follows others blindly. On the other hand, imperfect 

information, concerns for reputation, and compensation structures foster rational herd 

behavior.1  

The empirical studies thus far do not test a particular model of herding behavior described 

in the theoretical literature; instead, they gauge whether clustering of decisions, in a purely 

statistical sense, is taking place in financial markets or within certain investor groups. Two 

streams of empirical literature have been developed to investigate the existence of herding 

                                                 
1 See Bihkchandani and Sharma (2000) for an overview of the theoretical research on rational herd behavior 
in financial markets. 
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in financial markets. The first stream analyzes the tendency of individuals or certain groups 

of investors, such as mutual fund managers and financial analysts, to follow each other and 

trade an asset at the same time. In this case, detailed records of investors’ trading activities 

are required. For instance, Lakonishok et al. (1992) measure herding as the average 

tendency of a group of money managers to buy or sell particular stocks at the same time, 

relative to what could be expected if the managers make their decision independently; 

Grinblatt et al. (1995) use data on portfolio changes of mutual funds between 1974 and 

1984 to examine herding among fund managers and the relation of such behavior to 

momentum investment strategy. Wermers (1995) proposes a portfolio-change measure, by 

which herding is measured by the extent to which portfolio weights assigned to the various 

stocks by different money managers move in the same direction;   

The second stream focuses on market-wide herding, that is, the collective behavior of all 

participants towards the market views and therefore buying or selling particular asset at the 

same time. Christie and Huang (1995) regress the cross-sectional (market wide) standard 

deviation of individual security returns on a constant and two dummy variables designed to 

capture extreme positive and negative market returns. They argue that during periods of 

market stress rational asset pricing would imply positive coefficients on these dummy 

variables, while herding would suggest negative coefficients. However, the introduction of 

dummy variables is entirely arbitrary since the choice of what is meant by “extreme” is 

subjective. And they do not control for movements in fundamentals, so it is hard to tell 

whether the negative coefficient, if there is any, is herding or just a sign of independent 

adjustment to fundamentals that is taking place.  

Based on the cross-sectional dispersion concept of Christie-Huang, Hwang and Salmon 

(2004) use the cross-sectional dispersion of beta to detect herding towards the market index. 

The authors apply their model to the US and Korean stock markets, and they find this herd 

behavior shows significant movements and persistence over the sample period. One merit 

of their paper is that they separate the herding from “spurious herding”, common 

movements in asset returns being induced by movements in fundamentals. Herding 

potentially leads to market inefficiency whereas “spurious herding”, or, fundamental 

adjustment, reflects just an efficient reallocation of assets on the basis of common 

information on fundamentals. However, they derive the monthly beta of an asset with daily 
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return data over monthly intervals, a period that is too short to diminish the influence of 

unusual bad or good events of the company on the beta.2   

The main purpose of our paper is to improve the Hwang-Salmon model and to investigate 

the herding towards the market in major financial markets form.3  We do this in two 

dimensions. First, it is not realistic to us that Hwang-Salmon assume that the log of cross-

sectional standard deviation of betas is normally distributed with a static mean. Starting 

from the assumptions of the stock returns, we explore the distribution of the cross-sectional 

variance of betas. By doing this, we get a time-varying cross-sectional dispersion of betas, 

which we believe is more realistic than the static one.  

We then apply the model to various financial markets, thereby obtaining the monthly 

herding measures in each market, through which we can work on our concept of relative 

herd behavior. Pairwise correlations of herding measures are calculated among these 

markets. We also identify the pattern of herd behavior during sudden events such as the 

1997-1998 global financial crises. It is hypothesized that the break out of financial crisis 

has a direct connection with the herding in the market. With the US and Korea markets, 

Hwang-Salmon conclude that financial crises stimulate a return towards efficiency and 

investors turn to fundamentals rather than the overall market movement during market 

stress. We test this argument in a global setting with constituents of more financial markets.   

To obtain the cross-sectional dispersion of the betas, we propose the use of the “right” beta 

of the CAPM or the linear factor model, a highly debated area in empirical finance. In this 

paper, we adopt a rolling robust regression approach to calculate the betas. The purpose of 

using robust regression is to diminish the influence of outliers on the point estimate of beta. 

To our knowledge, this paper is the first one to calculate outlier robust beta on emerging 

markets. 4 

                                                 
2 Regarding the time period for which beta should be estimated, five years is a widely accepted alternative. 
With very short periods of time, there is the risk of capturing an unusually good or bad period for the 
company; with very long periods of time, the data could be less representative for the company.  
3 These markets are Australia, France, Germany, Hong Kong, Japan, United Kingdom, United States, China, 
India, Indonesia, Korea, Malaysia, Philippines, Thailand, Argentina, Brazil, Chile, Colombia, Mexico, Peru, 
and Venezuela.  
4 It is worth noting that outliers could be bad noise or the most important information revealing aspect of the 
data. Hence further analysis to the identified outliers is necessary to provide more complete information. In 
other words, when influential outlier returns (containing important information) exist, neither the OLS betas 
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The original framework of the CAPM is developed in a single-period setting. In most of the 

empirical studies the beta is assumed to be constant over a defined period of time. However, 

this treatment of constant beta is contradicted by increasingly more evidence that beta is 

time-varying (Blume, 1971; Fabozzi and Francis, 1977; Fernandez, 2004). Several 

alternative models have been developed to capture the time-varying character of the beta: 

Fama and Macbeth (1973) propose a rolling regression approach to estimate the beta; 

Braun et al. (1995) use a bivariate EGARCH model to estimate a beta influenced 

asymmetrically by the market returns; Fama and French (1993) and Ferson and Harvey 

(1999) bring in macroeconomic variables to account for the beta; Faff and Brooks (1998) 

apply the Kalman filter approach to explain the stochastic evolution of the beta.  

As for the accuracy of these alternative estimation methods, Groenewold and Fraser (2000) 

conclude that the rolling regression, although simple, is no less accurate than those more 

complicated models. Under the rolling regression, each month only one observation is new 

and therefore this overlapping problem leads to a high degree of autocorrelation in the beta 

time series. Regarding this, Greonewold and Fraser (2000) use non-overlapping sub-periods 

and conclude that this alteration does not change the results significantly. This evidence 

justifies the fact that rolling regression remains most popular among practitioners and in 

academic research. For instance, commercial resources such as Bloomberg Professional, 

Baseline, Value Line and Datastream provide betas of certain securities. Although each 

resource gives a different result for the beta of a security due to the several differences 

involved in the calculations, they typically use ordinary least square (OLS) to regress the 

return of a security on a market index over a certain period, typically 2 to 5 years.  

However, these conventional calculations of the CAPM beta fail to consider the existence 

of bivariate or multivariate outliers, which may be quite large in real data. These outliers 

have substantial influence on the OLS point estimate of beta. The differences between the 

OLS estimate and the robust estimate might be viewed as financially significant by 

investors. Therefore, in calculating the rolling regression, we propose the robust estimation 

rather than the traditional OLS estimation.   

                                                                                                                                                     
nor the robust betas provide an adequate picture of the risk-return characteristics, and they may be combined 
to achieve more convincing results.  
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We also calculate, in addition to the CAPM beta, the beta under the three factor framework 

of Fama and French (1993). For comparison purpose, both the OLS and robust estimators 

are calculated. The establishment and analysis of Fama-French HML and SMB factor for 

stock markets other than the USA help broaden our understanding of global portfolio 

management.   

The estimated time-varying herding measures allow us to examine the concept of relative 

herding which we propose in the paper. In brief, we find that herding towards the market is 

stronger in emerging markets than in developed markets. Additionally, we find that the 

herding measure, like some macroeconomics aggregate variables, follows a pattern of 

cycles, and some sudden events can sometimes be identified as turning points of the cycles. 

Furthermore, we do not observe any trend in the magnitude and the volatility of the herding 

measure over time. Finally, we see a higher correlation of herding between two markets 

from the same group than between markets from different groups.5 

The remainder of the paper is organized as follows. Section I proposes the concept of 

relative herding and form the hypotheses. Section II develops the model and introduces the 

Kalman filter, together with the robust regression technique used in this paper. Section III 

describes the data. Empirical results on the distribution of betas and herding patterns are 

discussed in Section IV. Section V closes the paper with concluding remarks and directions 

of future research.  

I. Herd Behavior in Financial Markets 

There are various types of herding in both theoretical and empirical literature. In this paper, 

we focus on the evolution of herding towards the market index, a particular type of herding 

within the second stream of literature, as mentioned in the introduction. We will discuss 

how this type of herding affects the market and traditional asset pricing model in Section II.  

1.1 A Concept of “Relative Herding”  

                                                 
5 As it will be seen later, we group the sample markets by their development stage and geographical location. 
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In our opinion, no market is free of herd behavior. The notion of relative herding, i.e., the 

herding of one market measured against another or one period against another, may be 

more useful than the all-or-nothing view taken by the conventional literature.  

1.1.1 Relative Herding: The Cross-Sectional Perspective  

Jirasakuldech et al. (2004) point out that high informational efficiency countries are 

associated with a lower level of equity market volatility, which, according to Christie and 

Huang (1995), is an indication of less serious herd behavior in the market. Contrary to 

investors in developed markets, investors in newly established or emerging markets find it 

difficult or expensive to gather and collect information in order to conduct fundamental 

analysis. Instead, observing and imitating other investors’ decision or the market index is 

relative easy and cheap, and as a result, herding can and often ensues in emerging markets 

(Komulainen, 2001). Empirically, Choe et al. (1999) show that herd behavior existed in 

South Korean stock market eventually led to economic instability with the financial crisis 

in 1997; Komulainen (2001) and Chang et al. (2000) report the existence of herding in 

stock markets of South Korea and Taiwan.  

Based on these studies, we build our first hypothesis as follows: 

H1: Herding towards the market index is stronger in emerging than in developed markets.  

1.1.2 Relative Herding: The Time-Varying Perspective 

In this section we propose that herding measures fluctuate over time, and some turning 

points can be associated with the occurrence of sudden events. The study of the time-

varying character of herding is loosely inspired by the business cycle theory in economics. 6 

Business cycle study has a long tradition in economics, referring to the periodic fluctuations 

of economic activity along with its long term growth trend. There are many explanations to 

the existence of cycles. For instance, the psychological cycle explanation (by Arthur C. 

Pigou, among others) attributes it to the change of entrepreneurs’ expectation of profits and 

confidence. It is assumed that the sense of optimism and pessimism motivates businesses to 

enlarge or contract investment. When the market is rife with optimistic expectation on 

                                                 
6 In recent years economic theory has a trend of moving from the study of “business cycle” to “economic 
fluctuation”, even though some economists still use the phrase “business cycle” as a convenient shorthand.  
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consumptions, firms will attempt to increase production, leading to a general overshooting 

of output. This overshooting of output then results in an oversupply of goods, causing the 

bankruptcy of some firms, a general collapse in output, and a wave of pessimism. In turn, 

this will lead to an undersupply of goods, thereby paving the way for the next wave of 

optimism.   

Any further discussion of business cycle is beyond the interest of this paper, since our 

purpose is to draw an analogy between the investors in stock markets and the entrepreneurs. 

Imagine that when speculative prices in stocks or the whole market increase, the success 

story of some investors or the market index may attract public attention and promote word-

of-mouth enthusiasm. Herding investors may thus become more herding-oriented, 

heightening expectations for further price increases. This process in turn increases investor 

demand and thus generates another wave of price increase. If the feedback is not 

interrupted, it may produce a speculative “bubble”, in which high expectations, instead of 

fundamental values, support high current prices, thus making the bubble vulnerable and 

easy to burst, whereby people start changing their herd behavior. Since the feedback that 

propelled the bubble carries the seeds of its own destruction, the end of the bubble may be 

unrelated to new stories about fundamentals as well. A similar feedback process applies to 

negative bubbles. 7 In combination, we can expect fluctuations in the herding towards the 

market, an interwoven of upward and downward trends.  

Like the observations in the business cycles, we predict that the lengths of the cycles in 

herding toward the market (from peak to peak, or from trough to trough) vary. Here, 

loosely following the definition to the macroeconomic business cycle by the Business 

Cycle Dating Committee of the National Bureau of Economic Research (NBER)8, we 

identify a peak of herding as the beginning of a decrease which lasts more than a few 

months, and a trough as the beginning of an increase which lasts more than a few months.  

We build the second hypothesis as follows:  

                                                 
7 Consistent with some combination of feedback effects and other demand factors driving the stock market 
independently of fundamentals, De Bondt and Thaler (1985) and Jegadeesh and Titman (1993) report that 
stock prices tend to continue in the same direction over short intervals of six months to a year, but to reverse 
themselves over longer intervals. 
8  For details of the NBER definition on business cycle, refer to “The NBERs Business-Cycle Dating 
Procedure”, Business Cycle Dating Committee, National Bureau of Economic Research, October 2003.  
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H2: Herding, like some macroeconomics aggregate variables, follows a pattern of cycles. 

Some sudden events can be identified as turning points of the cycles.  

To our knowledge, herding is an inherently coded human behavior, and it could be changed 

through the learning and experience of people. The increasingly easy procurement of 

information and the advancement of technology, among other factors, would attract more 

investors back to fundamental value of firms, thereby decreasing the magnitude of the 

herding. In other words, we expect to see a downward trend in the magnitude of the herding 

measure, accompanied by a decreasing volatility.  

H3: There is a downward trend in the magnitude of herding measure, and the volatility of 

the herding decreases over time.   

1.2 Correlation of Herd Behavior in Different Markets 

Hwang and Salmon (2004) find a low correlation between the herding of financial markets 

of United States and Korea. They conclude that market sentiment may not always be 

transferred internationally. This observation is interesting given the fact that it is rather 

counterintuitive. Relevant questions arise naturally. For instance, is this low correlation 

between the US and Korea the mainstream or just a special case in global markets? And if 

it is a special case, what is the main pattern we can expect on herding correlation? To 

answer these questions, a broader study, covering more sample markets, is necessary.   

Aiken (2005) states that the more open an economy is, the greater influence global equity 

markets have on changes in investor sentiment. Since the past two decades has witnessed 

the global trend of capital market liberalization and increasing cross-boarder investment, 

we have good reasons to expect that there is comovement in herding between different 

markets. Due to the differences in market development stage, listed securities, market 

participants, investor philosophy, etc., the transfer of the herding sentiment may exhibit 

different patterns across different markets. We conjecture that herding is more correlated in 

financial markets with similar development stage, or economic characters. For instance, the 

positive correlation of herding in developed markets such as the USA and the UK is higher 

than that between the USA and Argentina. As it will be seen in the data section, we divide 

our sample markets into three groups, covering major developed markets, emerging Asian 
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markets, and emerging Latin American markets, respectively. The division is made, 

somewhat arbitrarily, by their development stage and geographical location. 

H4: Herding sentiment towards the market travels across international markets. There is a 

higher correlation of herding between markets within the same group than that between 

markets from different groups.  

II. The Methodology 

2.1 Risk-Return Equilibrium with the Existence of Herding towards the Market 

The CAPM (Sharpe, 1964; Lintner, 1965) is widely used in defining the risk-return 

equilibrium relationship of equities. In the model, the market beta defines the return of 

equities. Not surprisingly, accumulating evidence shows that beta cannot be the sole 

variable to explain the equity returns. Fama and French (1993) develop their three factor 

model (F-F model, hereafter) to incorporate factors associated with size and BE/ME. Fama 

and French (1996) further show that F-F model can explain most of the departures from the 

CAPM predictions.  

Basically, both the CAPM and the F-F model are within the risk-return framework: risk 

determines the asset return. However, Hirshleifer (2001) argues that expected return of an 

asset is not only compensated by its fundamental risk, but also related to the investor mis-

valuation caused by cognitive imperfection of investors and social dynamics such as 

herding. In this section, we explore how the CAPM deviate from their original form with 

the existence of herding towards the market index. The conclusion also applies to the F-F 

model. 

Our model of measuring herding is based on Hwang and Salmon (2004). Hwang-Salmon 

assume that the log of cross-sectional standard deviation of betas is normally distributed 

with a static mean. We argue against this assumption on two grounds. First, imposing 

assumptions on the cross-sectional standard deviation of betas is not appropriate. Stock beta 

is actually derived from stock return, on which we usually make assumptions. Second, it is 

not obvious to us that the mean of the cross-sectional standard deviation of the betas should 

be static. Given the assumptions in this paper, we explore the distribution of the cross-
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sectional dispersion of betas by making assumptions on stock returns; by doing this, we get 

a time-varying series of the cross-sectional variance of beta, which we believe is more 

realistic than the static one.  

2.1.1 The model 

In essence, Hwang and Salmon (2004) measure herding on observed deviations from the 

equilibrium beliefs expressed in the CAPM. In a market with rational investors, the CAPM 

in equilibrium can be expressed as: 

                                                    )(E)(E tt mtimtit rr β=                                                   (2) 

where itr and mtr are the excess returns on asset i and the market at time t respectively; 

imtβ is the systematic risk measure; and )(Et ⋅  is the conditional expectation at time t.   

We follow the assumption of Hwang-Salmon that investors form firstly the common 

market-wide view, )(Et mtr , and their behavior is then conditional on it. When herding 

towards the market occurs, the investors shift their beliefs to follow the performance of the 

overall market more than they should in the CAPM. In other words, they ignored the 

equilibrium relationship in the CAPM and move towards matching the return on individual 

assets with that of the market. For instance, it is a common strategy that investors buy 

“underperforming” assets and sell “overperforming” assets. When herding towards the 

market occurs, if the market goes up significantly, then an asset with an intrinsic beta of 1.5 

will become the target of selling, since its price increases more than the market index and 

looks more expensive. This selling of the asset leads to the decrease of the asset price. On 

the other hand, an asset with an intrinsic beta of 0.5 will become the target of buying, since 

its price increases less than the market index and looks cheaper. The buying of the asset 

leads to the increase of the asset price. Similar behavior happens when market goes down 

significantly.  

Thus, when there exists herding towards the market portfolio, the conventional CAPM no 

longer holds, and the expected returns on the asset and the observed beta will be biased, 

denoted as )(Eb
t itr and b

imtβ , respectively. The mis-valuation mechanism can be described as 

follows. 
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When the market increases significantly, for an equity whose imtβ is larger than one, 

)(E)(E tt mtit rr >  as the CAPM says. However, the selling-herding of the investors will push 

the equity’s price downward, making )(E)(E0 t
b
t itit rr <<  and, therefore, imt

b
imt ββ <<1 . 

For the same asset, when the market decreases significantly and thus )(E)(E tt mtit rr <  as 

the CAPM predicts, buying-herding of the investors will push the asset’s price upwards, 

making 0)(E)(E b
tt << itit rr  and, therefore, imt

b
imt ββ <<1 . The inverse process applies to 

the situation when 1<imtβ , and in this case, the biased beta will become larger when market 

changes, i.e., imt
b
imt ββ >>1 . For an equity whose 1=imtβ , it is neutral to herding.   

The above process can be expressed with the following mean reverting process: 

)1()(E
)(E

t

b
t −−== imtmtimt

mt

itb
imt hr

r βββ                                  (3) 

where mth is a latent herding parameter that changes over time. When 0=mth , there is no 

herding and the equilibrium CAPM holds; when 1=mth , there is perfect herding towards 

the market portfolio and all the individual assets move in the direction and with same 

magnitude as the market portfolio. In general, 10 << mth , and some degree of herding 

exists. When 0<mth , there is reversed herding.9 

The form of herding under discussion represents market-wide behavior. So it is preferable 

to use all assets in the market than a single asset to eliminate the effects of idiosyncratic 

movements in any individual b
imtβ . Then, 

))1((var)(var −−= imtmtimtc
b
imtc h βββ  

                                                            )(var)1( 2
imtcmth β−=                                                 (4) 

where )(var ⋅c  is the cross-sectional variance.  

                                                 
9 The opposite form of the behavior, called “adverse herding”, could also happen when individual returns 
become more sensitive for large beta securities but less sensitive for low beta securities. In this case, high 
betas become higher and low betas become lower.  
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In plain words, the existence of herding makes the cross-sectional dispersion of the 

individual betas smaller than it would be in equilibrium. 

Taking logarithms of Eq.4 on both sides, 

                              )1log(2)](log[var)](log[var mtimtc
b
imtc h−+= ββ                              (5) 

Define )1log(2 mtmt hH −=  and )])(E(log[var imtct βμ = , and write  

mttimtc νμβ +=)](log[var  

where we assume ),0iid(~ 2
mvσmtν . 

In Appendix I, we prove that )](log[var imtc β  can be better approximated by a normal 

distribution with time-varying mean,  

)
N

))])'(((Diag[
log()])(E(log[var

t

N

1

12
,

t

∑
=

−

== i

m
ti

imtct

tt FFσ
βμ               (6) 

where tF is the matrix of linear factors, ))'((Diag 1−
tt FFm is the diagonal term of the matrix 

1)'( −
tt FF for the market beta, 2

,tiσ  is the disturbance variance, and tN is the number of the 

stocks at time t.  2
,tiσ can be estimated with 1)K/(J

J

1

2
, −−∑

=j
jie , and jie , , J, and K represent 

the residual term of the regression, number of observations, and number of factors, 
respectively. 
 
We estimate )](log[var b

imtc β  with )]ˆ(log[var b
imtc β , then Eq.5 can be rewritten as 

mtmtt
b
imtc H νμβ ++=)]ˆ(log[var                                         (7) 

Allow mtH  to evolve over time and we assume it follows an AR(1) process: 

                                              mtmtmt HH ηφ += −1                                                           (8) 

where ),0(~ 2
mησiidmtη . 
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The model is a standard state space model with Eq.7 as the measurement equation and Eq.8 

as the transition equation. It can be estimated with the Kalman filter, which is briefly 

introduced in Appendix II. 10  

2.2 The Calculation of Beta: A Robust Technique 

2.2.1 Robust Estimate of the Beta 

Ordinary Least Squares (OLS) estimation is the most commonly used technique in 

estimating beta. However, the OLS estimate has an obvious drawback, i.e., it can behave 

badly when the errors are not from a normal i.i.d. distribution, particularly when they are 

heavy-tailed, as revealed by the return data in real financial world. It turns out that a few 

outliers can have a very strong influence on the OLS beta, thus leading to a distorted 

perspective on the relationship between equity returns and index returns. For instance, the 

fact that a small number of exceptionally large outlier returns giving rise to a beta of 3.0 

does not justify an expectation of future return movement twice bigger than those of the 

market. Under situations like this, robust estimation of beta can provide a very good fit to 

the bulk of the equity returns versus index data (Martin and Simin, 1997). 11 

The most applied method of robust regression is M-estimate, a generalization of maximum-

likelihood estimation.  Consider the linear model:  

iii Xy εβ +=                                                         (9) 

where i =1,…n.  The fitted model is: 

iii ebXy +=                                                         (10) 

The M-estimate principle is to minimize the objective function:  

                                                 
10 For further introduction of Kalman filter, please refer to “Time series analysis by state space methods” , 
2001, by J. Durbin and S. Koopman, Oxford University Press.   
11 Despite their superior performance over least squares estimation in many situations, robust methods for 
regression are still very seldom used. One possible reason is that computation of robust estimates is much 
more demanding than least squares estimation, although this is no more a problem given today’s standard. 
Another reason for their lack of popularity may be that some popular statistical software packages failed to 
implement the methods (Stromberg, 2004). The belief of many statisticians that classical methods are robust 
(Hampel et al.,1986) also leads to the slow uptake of robust methods.  
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                  ∑∑
==

−=
n

i
ii

n

i
i bXye

11

)()( ρρ                                          (11) 

where the function )(⋅ρ  gives the contribution of each residual to the objective function.  

Define 'ρψ = as the first-order derivative of ρ . By differentiating the objective function 

with respect to b and setting the partial derivatives to 0, we obtain a system of estimating 

equations: 

0')(
1

=−∑
=

n

i
iii XbXyψ                                           (12) 

Define the weight function eeew /)()( ψ= and let )( ii eww = , then the estimating equations 

become: 

0'
1

=∑
=

n

i
iii Xew                                                        (13) 

Solving the estimating equations is a weighted least-squares problem, with the objective of 

minimizing ∑
=

n

i
ii ew

1

22 . The weights depend on the residuals, the residuals depend on the 

estimated coefficients, and the estimated coefficients depend on the weights. An iteration 

solution is required to solve the problem.  

In this paper, we apply Huber estimation, one of the most applied techniques in robust 

regression practice. See Appendix III for the comparison between the OLS estimation and 

the Huber estimation.   

2.2.2 Monte Carlo Experiments 

As an example, we perform Monte Carlo simulations for the following bivariate model to 

test whether or not the least square and Huber beta estimates are significantly different from 

each other: 

iii xy εβα ++=      i=1,…,N                                                            (14) 

where the true α and β are set to zero.  
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We try 10,000 Monte Carlo replicates of 100 observations of ),( iix ε for each of the 

following two situations. In the first situation, we use for every replicate a fixed set of 100 

ix ’s, where )1,0(~ Nxi , and 10,000 sets of 100 iε ’s, where )1,0(~ Niε . In the second 

situation, we use the same 10,000 replicate samples of ),( iix ε , but we replace one (among 

100) set of ),( iix ε with an independent pair of ),( iix ε , where )5.0,10(~),2,5(~ NNx ii ε . 

The results of the simulation are presented in Table 1 and Figure 1.  

Conditional on the value of the fixed independent variables ix , 

)0102.0,0()/,0(~ˆ 22 NxN i =∑σβ  when )1,0(~ Niε . This normal density is overlaid as a 

reference in all the panels in Figure 1.  

When both the independent variable and the error terms are normally distributed, as shown 

in the top panels in Figure 1, the histogram of the OLS estimate is very close to the 

theoretical normal distribution. The robust estimates also behave quite well, being 

reasonably normal in shape and well centered on zero, with a standard deviation slightly 

higher the OLS standard deviation. This increased standard deviation represents the 

lowered efficiency of robust regression when the errors are normal.  

When the independent variable and the error terms are normally distributed but with 

outliers (bottom panels in Figure 1), the distribution of the OLS estimate is radically shifted 

in location and in shape from the former situation when no outliers exist: The mean 

increases from 0.0015 to 0.3785, the standard error increases from 0.102 to 0.142, and the 

skewness decreases from -0.023 to -0.692. On the contrary, the distribution of the robust 

estimates is very close to that obtained when there are no outliers.  

From this simple simulation, we can tell that robust regressions achieve almost the 

efficiency of OLS with ideal data while substantially better-than-OLS efficiency in non-

ideal situations.12 

                                                 
12 The existence of outlier in our example is very obvious even to eyes. For comparison purpose, we also run 
simulations when the outlier pair ),( iix ε  is not obvious, for instance, )5.1,0(~ Nxi and )5.0,1(~ Niε . 
In this case, we do not find a significant difference among the three techniques. Even so, we still give 
credentials to the robust techniques since, for large samples such as this paper, it is not possible to identify 
outlier with eyes, although their existence might be very obvious.  
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III. The Data 

3.1 Securities, Market Index and Proxy for Risk-Free Interest Rate 

Monthly total returns (in local currencies) of equities listed in the 21 stock markets are 

obtained from Datastream, covering the period from January of 1985 (or the earliest 

available date) to December of 2005. The 1997 Asian crisis, the 1998 Russian crisis, and 

the bull market until early 2001 and subsequent bear market are covered in the sample 

period.  

We divide the 21 markets into three groups: the developed markets, the emerging Latin 

American markets, and the emerging Asian markets. Included in the developed markets are 

France, Germany, Hong Kong, Japan, United Kingdom, and the United States;  included in 

the Latin American group are Argentina, Brazil, Chile, Colombia, Peru, Mexico, and 

Venezuela; and included in the Asian group are China, India, Indonesia, Korea, Malaysia, 

Philippines, and Thailand. The selected emerging markets are those marked as major 

emerging markets in EMDB of S&P/COMPUSTAT.  

In each market, the asset beta is calculated against commonly quoted market index in the 

market. We have examined the correlation between these market indices and Morgan 

Stanley Country Index (MSCI), which covers above 85 per cent of total market 

capitalization of each country. It turns out that the correlations are larger than 0.90 for all 

the markets except Brazil (0.761) and Peru (0.824). We can therefore conjecture that the 

results with these common market indices are not significantly different from those 

obtained with the MSCI.13   

To calculate the excess market return, we approximate the risk-free rate of return with the 

short-term treasury bill rate and alternative short-term interest rate (if treasury bill rate is 

not available), which are obtained from Datastream and Global Financial Market Database. 

Table 2 lists the descriptive statistics of the above mentioned variables. All the markets 

(except China) have an average positive monthly return on market index, ranging between 

                                                 
13 According to Shanken (1987), if the correlation between the proxy and the true market exceeds about 0.7, 
then the rejection of the CAPM with a proxy would also lead to the rejection of the CAPM with the true 
market portfolio. 
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8.14% (Brazil) and 0.32% (Japan). The general rule of “high return vs. high return” pattern 

is observed in the market index change. Similar situation happens to the interest rate.  

3.2 Fama-French Three Factors  

Since Fama-French factor values are only readily available for the United States at the 

website of Kenneth French, we calculate these factor values by our own, and form the 6 

size-BE/ME stock portfolios based on all the equities from Datastream. In forming the 

factors, we follow the method described in Fama and French (1993), with a minor 

modification: Since there are different financial reporting periods in these markets, we set 

the date of forming the portfolio in January of each year, instead of July in Fama and 

French. We conjecture this modification will not change the results significantly.   

The descriptive statistics of the SMB and HML for the sample markets are reported in Table 

3. The third column in the table indicates the number of stocks used in forming the 6 size-

BE/ME stock portfolios, which covers the majority of the stocks in each market. According 

to the table, the SMB factor earns significantly positive returns for all developed markets 

(except the United States) and less than half of the total emerging markets. HML factor 

earns significantly positive returns for France, Germany and seven emerging markets. The 

excess market returns are not significantly different from zero for most of the markets. On 

exceptional cases, we observe significantly negative returns on the market factor (for 

Colombia) and on the HML factor (for Hong Kong). In other words, the strategy of 

investing on these factor portfolios over monthly horizons earns significant positive returns 

for some of the markets, insignificant positive returns for others, but negative returns for 

the very few others.     

Figure 2 depicts the return vs. risk relationship for the three factors in all markets. A 

regression line plot is placed on top of the scatterplot. Basically, the return and the risk 

(represented by standard deviation) follow a positive linear pattern for each of the factors, 

with emerging markets on the high risk-high return end and developed markets on the low 

risk-low return end. It is interesting to point out that, for factors of excess market return and 

SMB, Brazil has a much higher average return than other countries, followed by its much 

higher standard deviation. Although we will not dwell on this, it is worth studying the 
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potentials of expanding the efficient frontier in portfolio management by taking advantage 

of global financial markets. 

IV. Empirical Results and Analysis on the Herd Behavior 

This section first reports the results on the beta estimation under CAPM and F-F model, 

respectively. Then we use the estimated betas to calculate the herding in each market. With 

the herding measure, we study the hypotheses developed in Section I, along with some 

discussions on other aspects of the herding.  

4.1 Estimated Cross-sectional Mean and Cross-sectional Variance of Betas 

Several filters are used in estimating betas of equities in these markets: First, first two 

months’ data for each security are deleted to eliminate the effect of IPO (Initial Public 

Offerings) underpricing. Second, securities with a history of less than 1.5 years are deleted. 

Third, observations with number of equities less than 10 percent of the number of equities 

at the end-period are eliminated.  

A set of monthly estimates of beta for all the equities in the sample are thus obtained for 

each market. Statistics of the betas of the CAPM and the F-F model, estimated with the 

robust Huber technique, are reported in Table 4. The large number of calculated betas 

(ranging from 2,118 in Venezuela to 953,058 in the United States) makes it possible for us 

to examine the distribution of the beta coefficients of the CAPM and the F-F model. We 

find that they are significantly different from zero in all cases, justifying the roles played by 

the markets, size and BM/MV in explaining the cross-sectional equity returns.   

Figure 3 depicts the evolution of the estimated cross-sectional mean of betas, )ˆ( b
imtcE β , and 

the estimated cross-sectional variance of betas, )ˆ( b
imtcVar β , which are calculated as 

 t

N

i

b
imt

b
imtc NE

t

∑
=

=
1

ˆ)ˆ( ββ                                                    (15) 

)1())ˆ(ˆ()ˆ( 2 −−= t
b
imtc

b
imt

b
imtc NEVar βββ                           (16) 

where tN is the number of the stock at time t.   
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Statistics about the two series are reported in Table 5. Under the CAPM, )ˆ( b
imtcE β  for these 

market ranges between 0.243 (China) and 1.365 (Colombia), with a mean value of 0.776;  

)ˆ( b
imtcVar β ranges between 0.058 (China) and 1.045 (Colombia), with a mean value of 0.301. 

Under the F-F model, )ˆ( b
imtcE β  ranges between 0.354 (China) and 1.558 (Colombia), with 

a mean value of 0.838; )ˆ( b
imtcVar β ranges between 0.044 (China) and 0.863 (Colombia), 

with a mean value of 0.320. 

The correlation between the cross-sectional variances of betas ( )ˆ( b
imtcVar β ) obtained by 

CAPM and by F-F model ranges between 0.485 (USA) and 0.983 (Philippines), with a 

mean value of 0.887. As the difference between the results with the CAPM and the F-F 

model does not seem to be large enough to change our interpretation of the herding 

measure, in the remaining of the paper, we only calculate the herding measure obtained 

with the F-F model.  

4.2 The Properties of the Estimated Herding Measures 

We use the Kalman filter to estimate the herding indicator ( 2/1 mtH
mt eh −= ) with Eq.7 and 

Eq.8. The main results are reported in Panel A of Table 6. The average herding value ranges 

from 0.004 (USA) to 0.055 (Colombia), with an average of 0.031.  

As we have mentioned, the Kalman filter algorithm provides two series, a filtered one and a 

smoothed one. Here we only report the filtered series, since the smoothed one resembles the 

filtered one in all markets and does not alter our conclusions (the average correlation 

between the two series is as high as 0.97).  

Figure 4 depicts the evolution of the herding measure in each market. A visual observation 

tells us there might be high correlation between two markets from the same group. For most 

of the markets, we see the trend from peak to trough over the period of early 1997 to early 

1999.  We will check these points in next section. 

4.3 An Examination on the Herding Behavior 
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4.3.1. Cross-Sectional Comparison 

In order to check if there is difference in the magnitude of herding towards the market 

between emerging and developed markets, we run the two sample t-test on the mean of 

herding measures, as shown in Panel B of Table 6.14 With a t-value of 11.41, we reject the 

null hypothesis that there is no difference in the mean of herding measure. In order words, 

the evidence support the hypothesis H1, and the emerging markets have a higher level of 

herding towards the market. 

4.3.2. Turning Points of the Herding Measures 

The description of a cycle always starts with the identification of turning points in the series. 

There are various methods to accomplish this. In this paper, we follow the classical Bry and 

Boschan (1971) procedure.   

In essence, the Bry-Boschan procedure is to isolate “true” turning points from some “false” 

turning points which are either short lived or of insufficient amplitude. It starts with a 

highly smoothed series to find initial estimates of local peak (trough) at time t, which is 

defined as the local maximum (minimum) over an interval from t-k to t+k, where k is 

generally set to five. These peaks and troughs must alternate. With these initial estimates, a 

less smoothed curve is investigated to refine the dates of the turning points. This process is 

then repeated with a short-term (3 to 5 months) moving average. Final turning points are 

determined using the unsmoothed series, with a set of predefined restrictions, for instance, 

the cycle must be no less than 15 months in length and all phases must be over 5 months in 

duration. Interested readers are referred to King and Plosser (1989) for detailed description 

of the procedure.   

We apply the Bry-Boschan procedure to the herding measures, with a minor modification 

of removing the minimum length requirement on the cycle and the phase. Panel A of Table 

7 lists the months of peak and trough for each market. These turning points scatter without 

easily identifiable rules. Even though, we can tell that the majority of the markets have 

turning points between early 1997 and late 1998 when the 1997-1998 financial crisis broke 

out starting from Southeast Asia.  
                                                 
14 Here we ignore the existence of autocorrelation in each series of herding measures, since we believe this 
will not affect our test result significantly. 
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According to the table, developed markets have more turning points than emerging markets. 

We think it is due to the fact that the former has a longer sample history. We report the 

average length of cycle, calculated as twice of the arithmetic mean of monthly intervals 

from peak to trough, or trough to peak. Results show that the length ranges from 19 months 

(China) to 69 months (Thailand), with an average of 42 months.  

Panel B of Table 7 tests the null hypothesis that there are no differences among the average 

length of the cycles of the three groups. With an F-value of 2.21, we do not reject the null 

hypothesis at conventional levels.   

In a nutshell, the evidence supports the hypothesis H2 that herding follows a pattern of 

cycles, and sudden events such as the financial turmoil can be identified as turning points of 

the cycles. 

4.3.3 The Volatility of the Herding Measures   

Figure 5 depicts the volatility of the herding measures ( 2
hσ ) in the developed group, Asian 

group, and Latin American group. Most of the time, 2
hσ  fluctuates within a small range 

between 0 and 0.01. There are several huge leptokurtic with peak value over 0.02 in the 

following markets: Australia (early 1990), Hong Kong (late 1999), Japan (early 1990), 

United States (early 1990), Korea (early 1999), Thailand (early 2000), Malaysia (early 

2001), Chile (early 1996), Colombia (mid-1998), and Venezuela (mid-1998).  No general 

trend can be observed within each group from the figure. Thus, we do not find evidence to 

support hypothesis H3 that the volatility of the herding decreases over time.   

Panel A of Table 8 reports the first two moments of the volatility of the herding measures. 

In panel B of the table, we test the null hypothesis that the means of the volatility of the 

herding of the three groups are equal ( canLatinAmeriAsiandeveloped

hhh
222 σσσ

μμμ == ). With an F-value of 

2.69, we do not reject the null hypothesis at 5% level of significance, although it is weakly 

rejected at 10% level.    

4.3.4 The Comovement of the Herding Measures   

The correlation coefficients of herding measures between various markets are shown in 

Table 9. Among the 210 pair wise correlation coefficients, 94 (46%) are significantly 
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positive, 61 (29%) are significantly negative, while the remaining 55 (26%) are 

insignificant. A closer look at the table reveals that most of the correlations between two 

countries from the same groups (e.g., Australia and France, Indonesia and India) are 

significantly positive, while the signs of the correlations between two countries from 

different groups  (for instance, between China and Australia) are mixed. It is worth noting 

that, in the developed group, Japan, as the only case, has significant negative correlations 

with all the other markets. Similar situation happens to Brazil in the Latin American group.  

Panel A of Table 10 tests the equality between herding correlation within the groups (i.e., 

between countries in the same group) and those across the groups (i.e., between countries 

from different groups). The null hypothesis is that the mean of the correlation coefficients 

within the group is equal to those across the groups. With a t-value of 3.60, we reject the 

null hypothesis.   

Panel B of Table 10 tests the equality of the means of the herding correlation of the groups, 

with a null hypothesis of equal mean. With an F-value of 1.33, we do not reject the null 

hypothesis at any conventional level of significance.    

To check whether the above correlation is spurious, we calculate the correlation of the first 

difference of the herding measures, )( 1−−=Δ mtmtmt hhh . The result is reported in Table 11. 

Now, among the 210 pair wise correlation coefficients, 43 are significantly positive, 16 are 

significantly negative, while the remaining 151 are insignificant. The highlighted values in 

the table (all of them are insignificant) indicate that their counterpart in Table 9 is 

significant at 5% level. From the table, a majority of the correlations in the developed 

group keep its original level of significance at Table 9, so it is highly unlikely that the 

correlations of the original series within this group are spurious. On the other hand, since 

most of the correlations between markets from different group are no longer significant, we 

cast doubt on the significance of correlations between two markets from different groups.   

In sum, we find support for the hypothesis H4, i.e., the correlation of herding between 

markets from the same group is higher that that between markets from different groups.  

VI. Conclusions  
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In this paper, we use the cross-sectional variance of the betas to study herd behavior 

towards market index in major developed and emerging financial markets. We propose the 

robust regression technique to calculate the betas of the CAPM and those of the Fama-

French three factor model, with an intention to diminish the impact of multivariate outliers 

in return data. Through the estimated values obtained from a state space model, we examine 

the evolution and cross-sectional relationship of the herding measures, especially their 

pattern around sudden events such as the 1997-1998 financial crises. 

As a result, we find a higher level of herding in emerging markets than in developed 

markets. Additionally, the herding measure, like some macroeconomics aggregate variables, 

follows a pattern of cycles. And some sudden events, such as the 1997-1998 financial 

turmoil, can be identified as turning points of the cycles. Furthermore, we do not observe 

any trend in the magnitude and the volatility of the herding measure over time. Finally, we 

witness a higher correlation of herding between two markets from the same group than 

those from different groups. 

One direct question related to this paper is: What are the possible factors influencing the 

herd behavior towards the market? To answer this question, future research is suggested on 

the robustness check of this paper’s conclusion, in the presence of variables reflecting 

either the state of the market, for instance, the market volatility and macroeconomic 

fundamentals, or the history and cultural ingredients.  

Given the fragility of emerging financial markets, it is imperative to study the effect of 

policy change in capital markets on herd behavior in these markets. For instance, what is 

the impact of financial market liberalization on the herd behavior of investors? Had the 

herd behavior been weakened or strengthened upon the liberalization? 

Other interesting questions include: Why in the developed group, Japan has negative 

herding correlations with all the other developed markets? Do professional investors like 

mutual funds show different herding pattern from individual investors?  
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 Appendix I. The Distribution of Cross-Sectional Dispersion of Betas 
 

According to the APT, the excess return of asset i follows the linear factor model:   

ti
k

tik ,

K

1
, εβ += ∑

=
tk,ti, FR ,                      i=1,...,Nt and t=1,…,T.       (A-1) 

where factor kF  is assumed to be uncorrelated (k=1,…,K), and iε is uncorrelated across 

assets.  

One factor used actually in all models is tm,R , the excess market portfolio return, and Eq.A-

1 can be written as:  

 i,t
k

tiktim ε++= ∑
−

=

1K

1
,, tk,tm,ti, FRR ββ .                                           (A-2) 

Taking cross-sectional expectation on both sides:  

                        )(E)(E)(E)(E
1K

1
,C,CC i,tC

k
tiktim ε++= ∑

−

=
tk,tm,ti, FRR ββ .         (A-3) 

 

Since tm,ti, RR =)(EC , and tm,R and tk,F are uncorrelated,  

1)(E ,C =timβ .                                                                (A-4) 

 

This is consistent with the intuition that beta of the whole market is always one. 

In estimating the above model, we assume that market betas of each stock are constant over 

a fixed interval, e.g. 60 months, but are variable under a longer time period. In addition, we 

assume that the first moment of time-varying beta of each stock is one.  

Imagine we have J observations (over the above mentioned fixed interval) to estimate tim,β  

under OLS framework. Then the OLS estimator ))))'(((Diag,(~ 12
,,,

−Ν tt FFm
titimtimb σβ , and  

))))'(((Diag),1((~)1b( 12
,,tim,

−−Ν− tt FFm
titim σβ                         (A-5) 
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where ))'((Diag 1−
tt FFm is the diagonal term of the 1)'( −

tt FF  for the market beta, 2
,tiσ is the 

disturbance variance. 2
,tiσ  can be estimated with )1)K(J/(

J

1

2
, −−∑

=j
jie , where jie , is the 

residual term of the regression. 15 

Assume the expectation of the beta of each stock is one, then   

))))'((Diag(,0(~)1b( 12
,tim,

−Ν− tt FFm
tiσ .                                    (A-6) 

At time t, let 
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1)(b
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X ~ ( )Φ,0Ν , thenΦ , the covariance matrix, is positive-definite, 

with diagonal terms )))'((Diag( 12
,

−
tt FFm

tiσ  (i=1,…,Nt).  

Define Y as a quadratic polynomial of X:  

XXY t )N/(' I= ,                                     (A-7) 

where I is identity matrix.  

Let z be the Cholesky matrix of Φ , and define u as a square matrix whose rows comprise 

orthonormal eigenvectors of ( zIz )N/(' t ). By construction, u is orthogonal.  

Define the change of variables:  

XZ 1−= uz .                                            (A-8) 

Then Z is multivariate normal with mean vector  

    0)E()E()E( 11 === −− XXZ uzuz                             (A-9) 

And covariance matrix  

IuIuuzΦuzuzΦuz ==== −−−− '')'()()'()()Cov( 1111Z                     (A-10)  

So ),0(N~ I
tNZ . 

Then  tt
1

t
1 N/)'()')N/('('))(N/()'()N/(' ZZZZZZXXY t czuIuzzuIzuI ==== −−            (A-11) 

where zzc '= . 

                                                 
15 For the robust M-estimation, the estimated coefficients are asymptotically normal, i.e., 

))))'(((Diag,(N 12
,,,

−
tt FFm

titimtim
ab σβ , where ti,σ can be estimated with the larger of robust estimate of sigma and 

a weighted average of OLS estimate of sigma and robust estimate of sigma. Here we only show the case of 
OLS estimation, and the conclusion applies to the robust M-estimation asymptotically. 
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Since we define u as a matrix whose rows comprise orthonormal eigenvectors of 

zIz )N/(' t , by the Spectral Theorem of linear algebra, the matrix ')N/(' t zuIuz  is 

diagonal with diagonal elements equal to the eigenvalues of zIz )N/(' t . Then, Y depends 

on only diagonal terms of the form 2
, Zc ii , and can be written as:  
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ii ZcY                                    (A-12) 

When tN  is large, we have simulated the distribution of variable Y with different 

combinations of eigenvalues of zIz )N/(' t , finding that only in one case, when one of the 

eigenvalues is extremely larger than the others, Y deviates from normal distribution with 

large skewness and kurtosis; otherwise, Y is very close to normal distribution.  

We then go through the real data in various markets for the eigenvalues of 

matrix zIz )N/(' t , and observe that the exceptional case of one large eigenvalue rarely 

happens in reality. So we suggest approximating Y with normal distribution.  

Since Φ='zz , the sum of eigenvalues of zz' equal to the sum of diagonal terms of Φ , i.e., 
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Define the variance of Y as Var(Y),  
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We check the relative magnitude of )E(Y and )Var(Y , and observe that, in all the markets,  

)E()Var( YY << . Thus, we suggest approximating the distribution of log(Y) by a normal 
distribution with mean m and variance 2s , where 
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Appendix II. The Kalman Filter 

In general, a state space model can be defined with two equations: 

teS ++= tt XcY                                                           (A-16) 

tzH ++= −1tt XdX                                                      (A-17) 

where tX is the hidden vector at time t, tY  is the observation vector at time t, c and d are  

vectors with constants, e is the measurement error, and z is the state error. e and z are both 

multivariate normally distributed, with mean zero and covariance matrices of R and Q, 

respectively.   

The Kalman filter is an algorithm to perform filtering on this state-space model. The goal is 

to minimize the difference between the observation tY and the prediction based on the 

previous observations [ ]11,..., −= tttt YYYPY . This can be accomplished by recursive 

maximum likelihood estimation. The estimation of the state equation by the Kalman filter 

algorithm also offers a smoothed time series, by performing fixed-interval smoothing, i.e. 

computing [ ]11,... −= Tttt YYYPY , for Tt ≤ .  

The Kalman filter can be regarded as an online estimation procedure, which is used to 

estimate the parameters online when new observations are coming in only after they have 

been estimated. In contrast, the Kalman smoother can be thought of as an offline procedure, 

which is only used when the total series have been observed. The Kalman filter results in 

approximations of the maximum likelihood estimates, while the smoother results in exact 

maximum likelihood estimates.  
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Appendix III. Comparison of Ordinary Least Square and Robust Regression 
 

Table A1 shows the objective functions and weight functions for the ordinary least squares 

estimator and the Huber estimator. Both of them increase without bound as the residual 

departs from 0, but the Huber objective function increases more slowly. Least squares 

assigns equal weight to each observation; the weights of the Huber estimator decline 

for ke > , where e is the residual term, and k is called a tuning constant for the Huber 

estimator.   

A smaller k provides more resistance to outliers, but at the expense of lower efficiency 

when the errors are normally distributed. In general, σ345.1=k for the Huber (where σ  is 

the conventional standard deviation), producing 95% efficiency when the errors are normal, 

and still offering protection against outliers.  

 
Table A1. Objective function and weight function of least squares and Huber estimations. 
  

Method Objective Function (ρ) Weight Function ( iw ) 

Ordinary Least Squares 
 
2e  

 
1 
 

Huber Robust 
2e /2           (when ke ≤ ) 

2kek − /2  (when ke > ) 

1         (when ke ≤ ) 

ek /      (when ke > ) 
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Table 1. Monte Carlo Simulated Betas with OLS and Robust Regression 
 

Sample Method Mean Std. Dev. Skewness Kurtosis 

OLS 0.0015 0.102 -0.023 3.09 
without outliers 

Huber -0.0013 0.104 -0.024 3.07 

OLS 0.3785 0.142 -0.692* 3.86* 
with outliers 

Huber 0.0723 0.108 0.002 3.10 
 
* represents significance at 5% level.
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Table 2. Descriptive Statistics of Equities on Sample Markets 
 

Monthly Market Index Change Risk-Free Interest Rate Market Time Period 

Name Mean Std. 
Dev. 

Correlation with 
MSCI Index 

 
Type Mean Std.Dev. 

Australia (AUS) Jan-85 to Dec-05 MSCI 0.0092 0.0491 1.000 3M-T-Bill 0.0066 0.0033 
France (FRA) Jan-85 to Dec-05 MSCI 0.0101 0.0592 1.000 3M-T- Bill  0.0048 0.0024 
Germany (GER) Jan-85 to Dec-05 FAZ General 0.0075 0.0561 0.986 3M-Benchmark Bond 0.0036 0.0016 
Hong Kong (HK) Jan-85 to Dec-05 Hang Seng Index 0.0134 0.0803 0.978 1M-Deposit 0.0040 0.0021 
Japan (JAP) Jan-85 to Dec-05 NIKKEI 225 0.0032 0.0613 0.907 3M-T-Bill 0.0019 0.0020 
United Kingdom (UK) Jan-85 to Dec-05 FTSE All Share 0.0073 0.0461 0.992 1M-T-Bill 0.0060 0.0024 
United States(USA) Jan-85 to Dec-05 S&P 500 Composite 0.0111 0.0446 0.999 3M-T-Bill 0.0039 0.0016 
China (CHI) Jan-94 to Dec-05 MSCI -0.0046 0.1113 1.000 3M- Deposit 0.0025 0.0015 
India (IND) Jan-91 to Dec-05 BSE National 0.0169 0.0964 0.986 3M-T-Bill 0.0071 0.002 
Indonesia (INDO) Jan-91 to Dec-05 Jakarta SE Composite 0.0095 0.0868 0.956 1M-Deposit 0.0120 0.0069 
Korea (KOR) Jan-86 to Dec-05 Korea SE Composite  0.0131 0.0932 0.974 1M-Deposit 0.0067 0.0021 
Malaysia (MAL) Jan-86 to Dec-05 KLCI Composite 0.0094 0.0852 0.992 1M-Deposit 0.0038 0.0015 
Philippines (PHI) Jan-90 to Dec-05 SE Composite 0.0078 0.0919 0.949 3M-T-Bill 0.0094 0.0039 
Thailand (THA) Jan-89 to Dec-05 Bangkok S.E.T. 0.0080 0.1007 0.972 3M-Deposit 0.0057 0.0034 
Argentina (ARG) Jan-92 to Dec-05 Merval 0.0122 0.1181 0.940 1M-Deposit 0.0087 0.007 
Brazil (BRA) Jan-92to Dec-05 Bovespa 0.0814 0.186 0.761 3M-Deposit 0.0093 0.0084 
Chile (CHL)  Jan-90 to Dec-05  IGPA 0.0148 0.0584 0.961 1M-CD 0.0045 0.0017 
Colombia (COL) Jan-92 to Dec-05 CSE 0.0076 0.0385 0.913 3M -Deposit 0.0150 0.0071 
Mexico (MEX) Jan-91 to Dec-05 IPC (BOLSA) 0.0223 0.0836 0.982 1M-CetesYield 0.0133 0.0078 
Peru (PER) Jan-92 to Dec-05 Lima SE General (IGBL) 0.0288 0.1110 0.824 1M-Deposit 0.0074 0.0043 
Venezuela (VEN) Jan-93 to Dec-05 S&P/IFCG 0.0244 0.1187 0.952 1M-Deposit 0.0179 0.0092 
  Average 0.0149 0.0846 0.954 0.0073 0.0039

 



 35

Table 3. Descriptive Statistics of Fama-French Three Factors 
 

Rm-Rb RSMB RHML Market Time Period No. of 
Stocks Mean Std. 

Dev. 
Mean Std. 

Dev. 
Mean Std. 

Dev. 

AUS Jan-85 to Dec-05 1442 0.0026 0.0490 0.0217** 0.0620 0.0001 0.0544 
FRA Jan-85 to Dec-05 770 0.0052 0.0593 0.0091** 0.0416 0.0081** 0.0486 
GER Jan-85 to Dec-05 1041 0.0040 0.0621 0.0103** 0.0499 0.0060† 0.0561 
HK Jan-85 to Dec-05 961 0.0096† 0.0805 0.0196** 0.0828 -0.0104* 0.0702 
JAP Jan-85 to Dec-05 3659 0.0013 0.0614 0.0077** 0.0463 0.0011 0.0378 
UK Jan-85 to Dec-05 1723 0.0013 0.0461 0.0172** 0.0537 0.0032 0.0306 
USA Jan-85 to Dec-05 N/A 0.0072* 0.0445 0.0011 0.0315 0.0020 0.0359 
CHI Jan-94 to Dec-05 1557 -0.0071 0.1114 -0.0008 0.0999 0.0083 0.1377 
IND Jan-91 to Dec-05 490 0.0098 0.0967 0.0100* 0.0677 0.0109 0.0886 
INDO Jan-91 to Dec-05 319 -0.0025 0.0876 0.0108 0.1179 0.0387** 0.1447 
KOR Jan-86 to Dec-05 851 0.0064 0.0934 0.0108* 0.0740 0.0084† 0.0748 
MAL Jan-86 to Dec-05 984 0.0055 0.0853 0.0063 0.0628 0.0060 0.0696 
PHI Jan-90 to Dec-05 241 -0.0016 0.0919 0.0228** 0.1004 0.0298** 0.1158 
THA Jan-89 to Dec-05 498 0.0023 0.1010 0.0113 0.0988 0.0106 0.1153 
ARG Jan-92 to Dec-05 70 0.0036 0.1189 0.0056 0.0915 0.0169* 0.1011 
BRA Jan-92to Dec-05 478 0.0722** 0.1810 0.0424** 0.1512 0.0162 0.173 
CHL  Jan-90 to Dec-05 196 0.0103* 0.0585 0.0053 0.055 0.0174** 0.0724 
COL Jan-92 to Dec-05 35 -0.008** 0.0392 -0.0019 0.074 0.0198* 0.1118 
MEX Jan-91 to Dec-05 129 0.0089 0.0837 0.0063 0.0812 0.0017 0.1176 
PER Jan-92 to Dec-05 94 0.0214* 0.1102 0.0165 0.1313 0.0384** 0.1827 
VEN Jan-93 to Dec-05 39 0.0065 0.1191 -0.0023 0.1147 0.0054 0.1313 

  Average 0.0076 0.0848 0.0105 0.0804 0.0118 0.0938 
 

The factor values for the U.S. are from French’s website. In other markets, we use the market index and risk-
free rate described in Table 2 to obtain the excess market returns (Rm-Rb). For the SMB and HML factors, we 
form the 6 size-BE/ME portfolios based on the equities from Datastream (the number of equities used are 
indicated in the third column). **, *and  † represent significance at 1%, 5% and 10% level, respectively. 



 36

Table 4.  Properties of the Robust Regression Betas   
 

The CAPM The F-F model 

mβ  mβ   
smbβ   

hmlβ   Sample Period No. of 
betas 

mean std.dev. mean std.dev.      mean std.dev.     mean std.dev. 

AUS Jan-90 to Dec-05 109475 0.816 0.844 0.815 0.851 0.620 0.832 0.178 0.706
FRA Jan-90 to Dec-05 76829 0.614 0.664 0.818 0.664 0.535 0.685 0.105 0.541
GER Jan-90 to Dec-05 112701 0.591 0.586 0.783 0.712 0.492 0.721 -0.027 0.560
HK Jan-90 to Dec-05 92655 0.785 0.459 0.844 0.471 0.586 0.537 -0.193 0.564
JAP Jan-90 to Dec-05 452902 0.764 0.449 0.734 0.437 0.692 0.618 0.426 0.733
UK Jan-90 to Dec-05 148710 0.857 0.659 0.895 0.651 0.537 0.624 0.106 0.743
USA Jan-90 to Dec-05 953058 0.835 0.840 0.781 0.769 0.680 0.985 0.244 0.957
CHI Jan-00 to Dec-05 85922 0.243 0.242 0.340 0.235 0.637 0.655 -0.142 0.492
IND Jan-96 to Dec-05 89584 0.862 0.464 0.916 0.461 0.560 0.630 -0.210 0.430
INDO Jan-96 to Dec-05 27397 0.926 0.555 0.920 0.54 0.331 0.456 0.203 0.350
KOR Jan-93 to Dec-05 137852 0.816 0.412 0.973 0.433 0.639 0.539 0.062 0.538
MAL Jan-93 to Dec-05 87680 1.164 0.425 0.983 0.355 0.734 0.540 0.394 0.504
PHI Jan-95 to Dec-05 23206 0.831 0.584 0.900 0.587 0.371 0.485 0.152 0.393
THA Jan-94 to Dec-05 46136 0.728 0.545 0.878 0.591 0.340 0.540 0.234 0.504
ARG Jan-97 to Dec-05 6484 0.665 0.340 0.673 0.347 0.347 0.536 0.117 0.397
BRA Jan-97 to Dec-05 31776 0.546 0.444 0.614 0.468 0.203 0.487 0.049 0.350
CHL Jan-96 to Dec-05 18650 0.730 0.564 0.828 0.594 0.264 0.515 0.104 0.416
COL Jan-97 to Dec-05 3389 1.352 0.957 1.530 0.959 0.130 0.415 0.055 0.310
MEX Jan-96 to Dec-05 11508 0.612 0.438 0.669 0.455 0.269 0.466 0.124 0.334
PER Oct-97 to Dec-05 8970 0.695 0.574 0.676 0.580 0.173 0.495 0.046 0.391
VEN Dec-97 to Dec-05 2118 0.780 0.409 0.800 0.426 0.335 0.409 0.086 0.402
  Average 0.772 0.545 0.827 0.552 0.451 0.580 0.101 0.505
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Table 5. Properties of the Cross-sectional Mean and Variance of the Betas  
 

 
CAPM

b
imt )ˆ(Ec β  
(a) 

FF
b
imt −)ˆ(Ec β  
(b) 

CAPM
b
imt )ˆ(Varc β

(c) 
FF

b
imt −)ˆ(Varc β  

(d) 
 Mean Std. 

Dev. Mean Std. 
Dev. 

Correlation 
between 

(a) and (b) Mean Std. 
Dev. Mean Std. 

Dev. 

Correlation 
between 

(c) and (d) 

AUS 0.816 0.058 0.869 0.119 0.345 0.626 0.180 0.653 0.134 0.824 
FRA 0.621 0.135 0.818 0.070 0.563 0.283 0.150 0.350 0.188 0.916 
GER 0.569 0.095 0.756 0.124 0.895 0.278 0.165 0.393 0.241 0.910 
HK 0.823 0.155 0.890 0.114 0.609 0.173 0.061 0.186 0.060 0.947 
JAP 0.786 0.105 0.764 0.115 0.897 0.179 0.053 0.168 0.048 0.969 
UK 0.840 0.119 0.901 0.062 0.405 0.367 0.160 0.377 0.148 0.954 
USA 0.859 0.081 0.867 0.101 0.829 0.626 0.210 0.793 0.077 0.485 
CHI 0.243 0.039 0.354 0.117 0.456 0.058 0.012 0.044 0.012 0.672 
IND 0.863 0.115 0.913 0.088 0.903 0.195 0.062 0.198 0.053 0.985 
INDO 0.907 0.133 0.911 0.056 0.956 0.285 0.057 0.286 0.058 0.886 
KOR 0.808 0.055 0.958 0.076 0.514 0.153 0.051 0.159 0.072 0.948 
MAL 1.177 0.092 0.979 0.038 0.428 0.173 0.028 0.124 0.030 0.829 
PHI 0.814 0.108 0.885 0.085 0.867 0.320 0.156 0.328 0.138 0.983 
THA 0.727 0.044 0.872 0.074 0.786 0.285 0.092 0.330 0.128 0.962 
ARG 0.665 0.045 0.673 0.035 0.753 0.116 0.023 0.122 0.029 0.925 
BRA 0.558 0.126 0.627 0.103 0.991 0.179 0.040 0.204 0.053 0.966 
CHL  0.730 0.038 0.828 0.027 0.517 0.319 0.076 0.350 0.100 0.946 
COL 1.365 0.184 1.558 0.242 0.926 1.045 0.268 0.863 0.288 0.817 
MEX 0.624 0.077 0.675 0.045 0.882 0.185 0.046 0.203 0.061 0.953 
PER 0.696 0.027 0.677 0.048 0.265 0.332 0.068 0.338 0.080 0.933 
VEN 0.797 0.113 0.813 0.094 0.895 0.145 0.099 0.159 0.121 0.815 

Average 0.776 0.093 0.838 0.087 0.699 0.301 0.098 0.320 0.101 0.887 
 

This table reports the first two moments of )ˆ(Ec
b
imtβ , the cross-sectional mean of the betas, and 

)ˆ(Varc
b
imtβ , cross-sectional variance of the betas in each market, both under the CAPM and the F-F 

model. Column 6 and 11 show the correlation between the series calculated under the CAPM and 

the F-F model. The underlined values represent the minimum one in the series, and the italicized 

values represent the maximum one in the series.
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Table 6. Properties of the Herding Measure Estimated under the F-F model 

Panel A. Properties of Herding Measure in the Markets  
 

 

 
Panel B. t test on the difference of the mean of herding between developed and emerging markets 
 
Source Observations Mean Std. Dev. 

developed
mth  1344 0.027 0.015 
emerging
mth  1659 0.034 0.018 

H0:  )()( emerging
mt

developed
mt hmeanhmean =  

Ha:   )()( emerging
mt

developed
mt hmeanhmean <  

Result:  t-value=11.41,  p=0.00 
 
 
Panel A reports the Kalman filtered state space model of Eq.7 & Eq.8.  Column 6 lists the correlation between 
the Kalman filtered series and Kalman smoothed series. Panel B tests the difference of the mean of herding 
between developed markets ( developed

mth ) and emerging markets ( emerging
mth ).  

 
 
 

2/1 mtH
mt eh −=   

Mean Std. Dev. 
φ  

Maximum 
likelihood 

values 

Correlation between 
filtered series and 
smoothed series 

      
AUS 0.010 0.011 0.997 5.29 0.976 
FRA 0.032 0.015 0.992 5.30 0.973 
GER 0.030 0.021 0.993 4.52 0.981 
HK 0.029 0.018 0.995 5.29 0.985 
JAP 0.051 0.019 0.998 4.30 0.991 
UK 0.036 0.011 0.993 5.79 0.983 

USA 0.004 0.025 0.999 5.85 0.997 
CHI 0.015 0.007 0.983 4.33 0.964 
IND 0.035 0.010 0.997 4.88 0.983 

INDO 0.033 0.011 0.986 4.83 0.965 
KOR 0.032 0.017 0.998 5.30 0.962 
MAL 0.041 0.027 0.994 5.10 0.984 
PHI 0.032 0.015 0.990 4.93 0.976 
THA 0.038 0.015 0.994 5.01 0.983 
ARG 0.020 0.025 0.994 4.72 0.978 
BRA 0.013 0.005 0.954 4.73 0.885 
CHL 0.040 0.019 0.995 4.84 0.981 
COL 0.055 0.028 0.995 4.72 0.987 
MEX 0.053 0.009 0.977 4.83 0.927 
PER 0.021 0.011 0.977 4.83 0.944 
VEN 0.041 0.021 0.988 4.61 0.968 

Average 0.031 0.016 0.990 4.95 0.970 
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Table 7. Turning Points of the Herding Measure 
 
Panel A. Turning Points  
 

 Peak* Trough* 
Average length of the 

cycles ( Lμ ,month) 
 
AUS 

 
Feb90,Apr95,Oct97,Jun00,Apr04 

 
Mar91, Apr97, Sep98,Mar02 

 
41 

FRA Jan92,Aug97,Apr00,Feb02,Apr04 Sep92,Jul98,Aug01,Jun03,Nov04 37 
GER Oct91,Jul98,Dec04 Jan90,Jun92,Feb02 68 
HK Dec92,Jan98,Jun01,Jun04 Apr96, Apr99,Jun03,Mar05 42 
JAP Aug00,Jun04 Aug95,Jul03,Apr05 58 
UK Mar96,Oct99,May04 Aug91,Jul97,Dec02 61 
USA Feb94,Jun96,May98 Oct90,Mar95,Jul97,Dec98 33 
CHI Apr03,Nov04 May04 19 
IND Jun98,May00,Apr04 Dec96,Jul99,May03,Nov04 32 
INDO Apr97,Jul03 Oct00,Jun04 57 
KOR Dec96,Jul00,May04 Dec98,Nov02 45 
MAL Apr94,May97,Dec02 Nov95,Jul01,May03 44 
PHI Sep95,Jul97,Sep00,Aug04 Dec96,Oct98,Jun03 36 
THA Feb96,Jun97 Oct99,Sep04 69 
ARG Sep98,Dec00 Nov99,Sep02 32 
BRA Jul99,Jul03 Jul98,Nov01,Sep04 37 
CHL Feb00,Jun02,Apr05 Jul99,Feb01,Jul03 28 
COL Apr98,Jun00,Aug03 Jan00,Sep02,Oct04 31 
MEX Aug96, Feb01,Jul03 Feb99,Apr02,Aug04 38 
PER Jul00,Nov03 Jan00,Oct01 31 
VEN Nov04 Jan03 44 
  Average 42 

 
Panel B. One-way ANOVA F test for equality of the average length of herding cycle of each group 
 
Source Observations Mean Std. Dev. 

Developed
L

μ  7 48 13.5 
Asian
L

μ  7 43 16.4 
canLatinAmeri

L
μ  7 34 5.5 
H0:  Mean( Developed

L
μ )= Mean( Asian

L
μ )=Mean( canLatinAmeri

L
μ ) 

Ha:   Not H0 
 
Result:  F-value=2.21,  p-value=0.14 
 
 
Panel A lists the Bry-Boschan turning points of herding measures. Lμ represents the average length of the 
cycles, calculated as twice of the arithmetic mean of monthly intervals from peak to trough, or trough to peak. 
Panel B tests the null hypothesis that there are no differences among the mean length of the cycles of the three 
groups. Developed

L
μ , Asian

L
μ , canLatinAmeri

L
μ  represent the average length of the cycles of the developed group, the 

Asian group, and the Latin American group, respectively. 
* The first three digits represent the month and the last two digits represent the year. For instance, Feb90 
means February, 1990.   
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Table 8. Volatility of Herding Measures 
 
Panel A.  Descriptive Statistics of Herding Measure Volatility )( 2

,thσ  
 

 

 
Panel B. One-way ANOVA F test for equality of the mean of herding volatility of each group 
 
Source Observations Mean Std. Dev. 

2
,Developedhσ  1344 0.0051 0.0084 

2
,Asianhσ  900 0.0053 0.0092 

2
, canLatinAmerihσ    759 0.0060 0.0093 

           
H0:  

canLatinAmeriAsiandeveloped

hhh
222 σσσ

μμμ ==  

Ha:   Not H0 

 
Result:  F-value=2.69,  p-value=0.07 
 
 
Panel A lists the mean and standard deviation for the variance of herding measure. Panel B tests the null 
hypothesis that there are no differences among the means of herding volatility for the three groups. 

 Mean Std. 
Dev.  Mean Std. 

Dev.  Mean Std. 
Dev. 

AUS 0.0018 0.0061 CHI 0.0011 0.0014 ARG 0.0117 0.0146 

FRA 0.0040 0.0056 IND 0.0027 0.0033 BRA 0.0005 0.0008 

GER 0.0064 0.0031 INDO 0.0019 0.0021 CHL 0.0058 0.0060 

HK 0.0061 0.0097 KOR 0.0045 0.0078 COL 0.0127 0.0122 

JAP 0.0049 0.0084 MAL 0.0146 0.0150 MEX 0.0013 0.0015 

UK 0.0020 0.0022 PHI 0.0039 0.0052 PER 0.0028 0.0037 

USA 0.0104 0.0141 THA 0.0047 0.0075 VEN 0.0078 0.0077 

Average 0.0051 0.0070 Average 0.0048 0.0060 Average 0.0061 0.0066 
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Table 9. Correlation Coefficient of Herding Measures 
 

 AUS FRA GER HK JAP UK USA CHI IND INDO KOR MAL PHI THA ARG BRA CHL COL MEX PER VEN 

                      
AUS 1.00                     

FRA 0.71* 1.00                    

GER 0.37* 0.73* 1.00                   

HK 0.36* -0.04 -0.11 1.00                  

JAP -0.38* -0.29* -0.23* -0.06 1.00                 

UK 0.66* 0.80* 0.74* -0.16* -0.03 1.00                

USA 0.90* 0.53* 0.19* 0.46* -0.15* 0.49* 1.00               

CHI -0.35* -0.85* -0.53* -0.02 -0.81* -0.60* 0.51* 1.00              

IND -0.60* 0.84* 0.88* -0.31* -0.22 0.56* -0.70* -0.84* 1.00             

INDO -0.13 -0.17 -0.13 0.15 -0.73* -0.67* 0.21* 0.79* -0.13 1.00            

KOR 0.54* -0.09* -0.28* 0.33* -0.14 -0.50* 0.41* 0.19 -0.16 0.58* 1.00           

MAL -0.45* 0.23* 0.49* 0.05 -0.67* -0.11 -0.51* 0.09 0.58* 0.58* 0.09 1.00          

PHI -0.48* 0.50* 0.53* 0.01 -0.69* -0.03 -0.55* -0.31* 0.40* 0.36* 0.23* 0.75* 1.00         

THA 0.24* -0.50* -0.40* 0.46* -0.64* -0.77* 0.10 0.81* 0.80* 0.80* 0.56* 0.45* 0.33* 1.00        

ARG 0.20* -0.53* 0.07 0.51* 0.08 -0.26* 0.59* 0.32* -0.10 0.33* 0.30* 0.36* 0.01 0.46* 1.00       

BRA 0.12 0.19 0.05 -0.48* 0.08 0.22* -0.15 -0.38* 0.03 -0.09 -0.00 -0.14 -0.35* -0.35* -0.21* 1.00      

CHL -0.22* 0.04 0.22* 0.24* -0.56* -0.37* 0.16 0.35* 0.32* 0.67* 0.49* 0.74* 0.62* 0.61* 0.63* -0.47* 1.00     

COL -0.79* 0.74* 0.84* -0.16 -0.30* 0.49* -0.78* -0.85* 0.84* -0.07 -0.42* 0.62* 0.76* -0.37* -0.17 -0.05 0.08 1.00    

MEX 0.49* -0.33* -0.31* 0.37* -0.13 -0.57* 0.47* -0.16 -0.20* 0.38* 0.67* -0.07 0.01 0.50* 0.37* 0.15 0.20* -0.30* 1.00   

PER -0.21* -0.42* 0.06 0.32* -0.63* -0.31* 0.13 0.66* -0.16 0.49* -0.01 0.26* 0.43* 0.47* 0.44* -0.28* 0.31* 0.22* 0.26* 1.00  

VEN -0.63* 0.19 0.65* 0.11 -0.06 0.42* -0.25* 0.29* 0.52* -0.11 -0.41* 0.74* 0.64* -0.06 0.39* -0.50* 0.48* 0.57* 0.47* 0.22* 1.00 

                      

 
This table shows the correlation coefficients of herding measures from the Fama-French three factor model. * represents significance at 5% level. 
Among them, values in bold indicate significantly positive, and italicized values indicate significantly negative. 
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Table 10. Test of Correlation Coefficients of Herding Measures among Various Groups 
 
Panel A. Two-sample t test for correlation coefficients within single group and between groups 
 
Source Observations Mean Std. Dev. 95% Confidence Interval 
Corr_within-group 63 0.24 0.340 [0.14, 0.34] 
Corr_between-group 147 0.02 0.447 [-0.06, 0.09] 

      
H0: Mean(Corr_within-group)= Mean(Corr_between-groups) 
Ha: Mean(Corr_within-group) > Mean(Corr_between-groups) 

 
Result: t-value = 3.60,  p-value= 0.0002 
 
 
Panel B. One-way ANOVA F test for equality of the mean of herding correlation in each group 
 
Source Observations Mean Std. Dev.  
Corr_Developed 21 0.26 0.413  
Corr_Asian 21 0.33 0.430  
Corr_Latin American   21 0.13 0.341  

           
H0:  Mean(Corr_Developed)= Mean(Corr_Asian)=Mean(Corr_Latin American) 
Ha:   Not H0 

 
Result:  F-value=1.33,  p-value=0.27 
 
 
In Panel A, we tests the null hypothesis that the mean of pair wise herding correlation between countries from 
the same groups (i.e., for instance, Australia and France, China and India) is the same as the mean of pair wise 
correlation between countries from different groups (for instance, China and Australia). Panel B is to test the 
null hypothesis that there are no differences among the means of the herding correlation between countries 
from the Developed group, from the Asian group, and from the Latin American group. 
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Table 11. Correlation Coefficient of the First Difference of Herding Measures 
 

 AUS FRA GER HK JAP UK USA CHI IND INDO KOR MAL PHI THA ARG BRA CHL COL MEX PER VEN 

                      
AUS 1.00                     

FRA 0.33* 1.00                    

GER 0.19* 0.11 1.00                   

HK 0.27* 0.06 0.19* 1.00                  

JAP 0.12 0.20* 0.16* 0.23* 1.00                 

UK 0.32* 0.20* 0.15* -0.16* 0.32* 1.00                

USA 0.53* 0.11 0.28* 0.26* 0.10 0.06 1.00               

CHI -0.32* -0.17 -0.15 -0.36* -0.23 0.34 -0.39* 1.00              

IND 0.01 0.03 0.15 0.03 0.13 -0.08 0.11 -0.38* 1.00             

INDO -0.17 0.05 -0.17 -0.13 -0.39* -0.32* -0.05 0.15 0.03 1.00            

KOR 0.35* 0.28* 0.05 0.13 0.11 -0.01 0.13 -0.15 0.05 0.22* 1.00           

MAL 0.24* 0.24* 0.07 0.17* -0.10 -0.05 -0.13 0.03 0.06 0.38* 0.18* 1.00          

PHI 0.07 0.05 0.13 0.34* 0.05 -0.04 0.15 -0.09 0.09 -0.05 0.21* 0.01 1.00         

THA 0.04 0.02 -0.13 0.27* -0.19* -0.12 0.03 0.08 -0.10 0.23* 0.04 0.27* 0.19* 1.00        

ARG 0.03 -0.27* 0.41* 0.22* 0.07 0.05 0.03 -0.09 0.15 -0.04 -0.02 0.04 0.04 0.07 1.00       

BRA 0.17 0.15 -0.09 -0.09 -0.14 0.16 -0.07 -0.12 0.02 0.15 0.06 0.01 -0.27* -0.04 0.02 1.00      

CHL 0.06 0.16 0.01 0.19* -0.04 -0.15 0.08 0.12 0.37* -0.01 0.19 0.16 0.35* 0.03 0.00 -0.28* 1.00     

COL -0.13 -0.13 0.10 0.20* 0.07 -0.04 -0.01 -0.05 0.21 -0.02 -0.03 0.09 0.15 0.01 -0.09 -0.10 0.03 1.00    

MEX 0.15 -0.16 -0.01 0.23* -0.03 -0.17 0.23* -0.33* 0.13 -0.04 0.15 -0.10 -0.11 0.15 0.31* 0.19 -0.23* 0.18 1.00   

PER 0.15 -0.18 0.17 0.16 0.17 0.01 -0.04 0.04 0.07 -0.23 -0.06 -0.06 0.20* -0.03 0.19 -0.23* 0.14 0.29* 0.14 1.00  

VEN -0.31* -0.03 0.08 0.09 0.08 0.22* 0.13 0.33* 0.09 -0.10 -0.35* -0.09 0.11 0.21* 0.15 -0.10 0.09 0.12 -0.15 -0.12 1.00 

                      

 
This table shows the correlation coefficients of the first difference of herding measures from the Fama-French three factor model.  
 
* represents significant at 5% level. Among them, values in bold indicate significantly positive, and italicized values indicate significantly negative. 
The highlighted values (all of them are insignificant) indicate that their counterpart in Table 9 is significant at 5% level.  
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Figure 1. Monte Carlo Simulation for OLS and Robust Beta Estimates 
 
 OLS estimate Huber robust estimate 

 
 
 
 
 
 

without 
outliers 

 

 
 

    

    

 
 
 
 
 

with 
outliers 

  

 
The thick lines in the top two panels represent the histogram profile (10,000 replicates) of the distribution of 
the OLS, and Huber robust estimated beta when both the independent variable and the error terms are 
standard normally distributed. The bottom two panels show histogram profiles of the distribution when both 
the same data is used with the exception that there is one percent probability of an ( ox , oε ) outlier, where 

ox ~ N(5, 2), and oε ~ N(10, 0.5). The overlaid density (thin line) is the “true” distribution of N(0,0.0102). 
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Figure2.  Fama-French Three Factor in Global Markets 
 

 
 

 
 

 
 

The figures depict the scatterplot of the return vs. risk relationship for three factors in Fama-French model (a 
for excess market return, b for SMB, and c for HML), with each point representing one of the 21 markets. A 
regression line plot is placed on top of each scatterplot. 
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Figure 3. Evolution of Cross-Sectional Mean and Variance of Betas 
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This figure shows the evolution of the cross-sectional mean and variance of the betas for the developed 
groups, Asian group and Latin American group, under the CAPM and the F-F model respectively. In each 
combinations of the graph, the top one is for the cross-sectional mean of the betas, and the bottom one for the 
cross-sectional variance of the betas.    
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Figure 4. Evolution of Herding Measures  
 

(a) Developed Markets 
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(b) Asian Markets 
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(c) Latin American Markets 
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The figures depict the evolution of herding measure, obtained through the market betas of the F-F model, for 
the developed group, Asian group, and Latin American group. 
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Figure 5. Evolution of Volatility of Herding Measures 

(a) Developed Markets 
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(b) Asian Markets 
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(c) Latin American Markets 
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The figures depict the evolution of the volatility of the herding measures ( 2

hσ ) for the developed group, Asian 
group, and Latin American group.  


