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Abstract
This article theoretically integrates the three alternative models, the ordinary least squares (OLS) model, error correction model (ECM) and AutoRegressive Distributed Lag (ARDL) cointegration models through suitable assumptions of the parameters on the time series model. Moreover, we compare the estimation of hedge ratio and hedging effectiveness within the three alternative models using six index futures contracts. Furthermore, the effects of the length of hedging horizon on the optimal hedge ratio and hedging effectiveness are considered here. The empirical results show that the OLS, ECM and short-run ARDL hedge ratios are different for different hedging horizons and approach the naive hedge ratio of unity as we increase the length of hedging period. However, the estimates of the long-run ARDL hedge ratios are close to the naive hedge ratio of unity regardless of the data frequencies being used. In addition, the in-sample hedging effectiveness, in terms of portfolio variances, tends to decrease when the hedging horizon increases. Moreover, the in-sample hedging effectiveness of OLS hedge ratios is superior to the ECM, short-run ARDL and long-run ARDL hedge ratios. However, the out-of-sample hedging effectiveness of the ECM, short-run ARDL and long-run ARDL hedge ratios outperform OLS hedge ratio. In sum, we can conclude that the length of time interval has an important impact on the estimation hedge ratio and the in-sample hedging effectiveness, but the effect is minimal for the out-of-sample periods.
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1 Introduction
In the financial market, one of the best uses of derivative securities such as futures contracts is in hedging. A reliable method to find the optimal hedge ratio is therefore crucial for investors and portfolio managers. In the past, both academicians and practitioners have shown great interest in the issue of hedging with futures. There are several different ways of deriving and estimating hedge ratios. The determination of the optimal hedge ratio depends on particular objective function to be optimized. Even though there are many criteria used in the derivation of the optimal hedge ratio, the minimum-variance (MV) hedge ratio considered by Johnson (1960) has been one of the most popular choices. The MV hedge ratio is obtained by minimizing the portfolio risk, where the risk is measured by the variance of hedged portfolio. As far as the estimation of the MV hedge ratio is concerned, there are a large number of methods that have been proposed in the literature. As more is known about the statistical properties of financial time series, more sophisticated estimation methods are proposed. Many different techniques are currently being employed, ranging from simple to complex ones. 

Traditionally, ordinary least squares (OLS) regression of the spot return on the futures return is run, with the slope coefficient being the hedge ratio (e.g. Ederington, 1979; Anderson and Danthine, 1980). However, the arbitrage condition ties the spot and futures prices, they cannot drift far apart in the long run. The OLS procedure is therefore inappropriate because it ignores the existence of cointegration relationship between the spot and futures prices (e.g. Fama and French, 1987; Castelino, 1992 ; Viswanath, 1993). Lien (1996, 2004) argues that the estimate of the hedge ratio will be smaller if the cointegration relationship is not taken into account. In the cointegration literature, the error correction model (ECM) proposed by Engle and Granger (1987) has been used to estimate the hedge ratio (e.g. Chou, Fan and Lee, 1996; Ghosh, 1993; Lien and Luo, 1993). But, it must be noticed that the cointegration approach requires the variables to be integrated of the same order, typically I(1), prior to estimation. To avoid this problem, Pesaran, Shin and Smith (1999) proposed the AutoRegressive Distributed Lag (ARDL) cointegration model for a long run relationship between the variables and is applicable irrespective of whether the regressors are I(0), I(1) or mutually cointegrated. Chen, Lee and Shrestha (2004) applied the ARDL cointegration model to simultaneously obtain the long-run and short-run hedge ratio estimates. 

Although there are numerous studies which use the three alternative models to estimate the MV hedge ratio, the theoretical integration and empirical comparison are lacked. Therefore, the linkages between three alternative models, the OLS, ECM and ARDL cointegration models, are constructed by proposing suitable assumptions on the parameters of the time series model in this article. Moreover, we compare the estimation of hedge ratio and hedging effectiveness within the three alternative models using six index futures contracts.
The basic motivation for hedging is to form a portfolio that will eliminate (or reduce) fluctuations in its value. The effectiveness of a hedge becomes relevant only in the event there is a significant change in the value of the hedged item. A popular measure hedging effectiveness performance is used by Ederington (1979), which relies upon the unconditional variance of the hedged portfolio. Here, the hedging effectiveness of different models is compared by the portfolio variance. In addition, the effect of hedging horizon length on the optimal hedge ratio and hedging effectiveness is emphasized (e.g., Ederington, 1979; Malliaris and Urrutia, 1991; Benet, 1992; Geppert, 1995; Lien and Tse, 2000). In general, the hedge ratio tends to increase when the hedging horizon increases. Moreover, the performance within sample hedging effectiveness increases as the hedging horizon increases. In this article, we investigate the effect of hedging horizon length on the hedge ratios and hedging effectiveness performances of the OLS, ECM and ARDL models using six index futures contracts.

Further, empirical evidence frequently indicates that the existence of serial correlation in the model. Lien and Shrestha(2005) proposed an extension of the estimation of the error-correction model based on MV hedge ratio by including the lagged spot and futures returns. This leads to the question of determining appropriate lag length. In choosing the lag structure, the Akaike information criterion (AIC) and Schwarz-Bayesian information criterion (SBC) are frequently applied to determine the lag length in econometric model. Lien and Shrestha(2005) compared the performance of the focus information criterion (FIC) proposed by Claeskens and Hjort (2003) and AIC in determining the structure of the lags. Their empirical studies suggested that if one is interested in hedging performance, one should use AIC in choosing the lag structure. Therefore, the AIC is applied to determine the lag length of the empirical model in this article. 
The remainder of the article is organized as follows. The next section presents the theory of minimum-variance (MV) hedge ratio and describes the methodologies used to estimate competing hedge ratios. Then, the empirical results are presented. The article ends with some conclusions.

2 Methodology

2.1 minimum-variance (MV) hedge ratio
The basic concept of hedging is to combine investments in the spot market and futures market to form a portfolio that will eliminate (or reduce) fluctuations in its value. Specifically, consider a portfolio consisting of Cs units of a long spot position and Cf units of a short futures position. Let St and Ft denote the spot and futures prices at time t, respectively. Since the futures contracts are used to reduce the fluctuations in spot positions, the resulting portfolio is known as the hedged portfolio. 

The price change of the hedged portfolio, 
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 is the so-called hedge ratio. The main objective of hedging is to choose the optimal hedge ratio ( h ). The most widely-used static hedge ratio is the MV hedge ratio. Johnson (1960) derives this hedge ratio by minimizing the portfolio risk, where the risk is measured by the variance of the price change of the hedged portfolio as follows:
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The MV hedge ratio is given by
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where ρ is the correlation coefficient between 
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, respectively. The attractive feature of the MV hedge ratio is that it is easy to understand and simple to compute. 
2.2 Estimation of hedge ratio

In above, we derived the optimum hedge ratio from the minimum variance hedge ratio. However, in order to apply the optimum hedge ratio in practice, we need to estimate the hedge ratio. There are various ways of estimating the minimum variance hedge ratio in Equation (1). In this subsection, we introduce three models, these are the ordinary least squares (OLS) model, error correction model (ECM) and AutoRegressive Distributed Lag (ARDL) cointegration model, to estimate the MV hedge ratio. Theoretically, we integrate three alternative models, the OLS, ECM and ARDL cointegration models, by proposing suitable assumptions on the parameters of the time series model here.
Assume that St and Ft are the spot price and futures price. Then, 
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 denotes the difference operator. According to Pesaran (1997), we consider the following simple bivariate model as follows
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and assume that 
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,respectively. In the following, we will introduce the three alternatives, OLS, ECM and ARDL models, through the suitable assumptions imposed on the parameters of bivariate model in Equation (2) and (3). 

OLS model 

The conventional approach to estimating the MV hedge ratio involves the regression of price changes of the spot on the price changes of the futures using the OLS technique. Assume that both the spot and futures prices follow a pure random walk, we can set that 
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 in Equation (2) and (3). Then the Equations (2) and (3) can be written as follows:
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ECM model

Since the arbitrage condition ties the spot and futures prices, they cannot drift far apart in the long run. Therefore, if both series follow a random walk process, then we expect the two series to be cointegrated. Suppose that both the spot price St and futures price Ft are unit-root processes and are co-integrated. Then it must be that either 
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 in Equation (2) and (3). Without loss of generality, we assume that in Equation (2) and (3). Then the Equations (2) and (3) can be written as follows:
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Under the assumptions that 
[image: image43.wmf]s

e

 and 
[image: image44.wmf]f

e

 are jointly normally distributed, we have


[image: image45.wmf]2

,,

()

stsffftt

v

esse

=+
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, we can rewrite Equation (5) and (6) as follows:
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 is referred to as the error-correction term at time t. One can apply the least squares method to this model, the estimate of 
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 in Equation (7) corresponds to the optimal hedge ratio. When the cointegration relationship is ignored, it is equivalent to setting 
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 to zero. The least squares estimator is then subjected to the omitted variable bias. 

If the spot price and futures price series are found to be cointegrated, then the hedge ratio can be estimated in two steps (see Chou, Fan and Lee, 1996; Ghosh, 1993). The first step involves the estimation of the following cointegrating regression:
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The second step involves the estimation of the following error correction model:
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where 
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 is the residual series from the cointegrating regression in Equation (8). The estimate of the hedge ratio is given by the estimate of β in Equation (9).
ARDL cointegration model 

The ARDL cointegration model is proposed by Pesaran (1997). Pesaran (1997) argued that the existence of a long-run relationship between the spot price St and futures price Ft does not depend on whether Ft is I(1) (i.e.
[image: image57.wmf]1

f

r

=

). Suppose that there exists a single long-run relationship between. St and Ft. Then it must be that either 
[image: image58.wmf]||1,0,0

s

rgl

<¹=

 or 
[image: image59.wmf]||1,0,0

f

rlg

<¹=

 in Equation (2) and (3). Without loss of generality, we assume that 
[image: image60.wmf]||1,0,0

s

rgl

<¹=

. Then we can rewrite Equations (2) and (3) as follows:
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Under the assumptions that 
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Using this result in Equation (10) and (11), we now have
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. It is worth pointing out that the Equation (12) is different from the two-step method used by the Equation (9) in the sense that the estimation of Equation (12) is a single-step process. Chen, Lee and Shrestha (2004) applied the Equation (12) to simultaneously obtain the long-run hedge ratio given by the estimate of 
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. Note that Equation (12) is valid if both the spot and futures price series are stationary. It is also valid if both the series are unit-root processes and are co-integrated. 

3 Empirical Analysis

This article analyzes six different index futures contracts where the futures prices are associated with nearest-to-maturity contracts. A list of the index futures contracts, sample periods, and sample sizes are given in Table I. The data is obtained from Datastream. Here, stock returns are defined as the first difference in the price indices (both spot and futures). The basic statistics of the six stock returns are given in Table II. Table II shows that, while the means of the daily spot and futures returns of the six indices are not significantly different from zero. Moreover, the skewness and kurtosis coefficients are significantly different from those of normal distributions.  

<< INSERT TABLES I AND II >>

In this article we consider the estimation of hedge ratio and hedging effectiveness of the OLS, ECM and ARDL models described in Section 2 for all the six stock index futures contracts. In order to see the impact of the length of hedging horizon, various data frequencies (ranging from daily to 5 week) are examined. Further, the out-of-sample performances are based on last one year’s data (i.e., the last 252 days of data for the daily samples, last 52 weeks of data for the weekly samples and so on). The empirical results are presented below.

Unit root and cointegration test results

First, the standard augmented Dickey-Fuller (ADF) tests for unit roots and two-step procedure of Engle and Granger (1987) tests for cointegration are used in this article. The lag order of each model is determined by the smallest value of the Akaike’s Information Criterion (AIC). The results of the unit root tests are reported in Table III and IV. The ADF test statistics indicate that the null hypothesis of a unit root cannot be rejected for the levels of the variables. Using differenced data (return), the computed ADF test statistics suggested that the null hypothesis is rejected, at the 5% significance level. As differencing one produces stationarity, we may conclude that each series is integrated of order one, I(1), process which is necessary for testing the existence of cointegration. Here, the two-step procedure of Engle and Granger (1987) tests for cointegration is used to examine the presence of cointegration. The results of the ADF statistics of cointegration test are reported in Table V. The null hypothesis of the ADF cointegration test is that there is no cointegration present. The ADF test statistics indicate that the null hypothesis of no cointegration is rejected for each futures contract, at the 5% significance level. Use the above results, we thus conclude that for each time frequency, the logarithms of spot and futures prices are both unit-root processes and are co-integrated for each futures contract.
<<  INSERT TABLES III, IV AND V  >>
The estimates of MV hedge ratios

Next, we consider the estimation of hedge ratio. It must be noticed first that the empirical evidences frequently indicate the existence of serial correlation in the spot and futures prices. Lien and Shrestha(2005) proposed an extension of the estimation of the error-correction model based on MV hedge ratio by including the lagged spot and futures returns in the model. The model is specified as 
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This leads to the question of appropriate lag length, p and q, to include in Equation (13). Lien and Shrestha(2005)’s empirical studies suggested that if one is interested in hedging performance, one should use AIC in choosing the lag structure. Therefore, the AIC is applied to determine the lag length of the empirical model in this article. The estimates of MV hedge ratios for each index futures contract are reported in Table VI. 
It is clear from the Table VI that in general the OLS, ECM and short-run ARDL hedge ratios are different for different hedging horizons. Moreover, the hedge ratios approach the naive hedge ratio of unity as we increase the length of hedging period.  However, the estimates of the long-run ARDL hedge ratios are close to the naive hedge ratio of unity regardless of the data frequencies being used. This result is consistent with the finding in Chen, Lee and Shrestha (2004). Therefore, if the hedging horizon is long, then the naive technique can be quite effective. In addition, the ECM and short-run ARDL hedge ratios are higher than the OLS hedge ratio for each futures contract. This finding is consistent with the results in Lien (1996, 2004) who argued that the MV hedge ratio will be smaller if the cointegration relationship is not taken into account. In sum, we may conclude that the length of the time interval has an important impact on the hedge rations.

<< INSERT TABLE VI >>

In-Sample Hedging Effectiveness using Portfolio Variance

Further, the hedging performance is measured with the percentage reduction of hedged portfolio variance from the spot variance. The variance of the estimated hedged portfolio can be characterized as 
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 is the estimated hedge ratio according to the different method from Section 2. Table VII compares the hedging effectiveness of three alternative models using the percentage reduction of hedged portfolio variance from the spot variance. In terms of the percentage reduction in variance, the appropriate method for estimating optimal hedge ratios is OLS model for each index futures contract. This finding is consistent with the results in Moosa (2003) who argued that the OLS hedge ratio which minimizes the unconditional variance perform better than the ECM hedge ratio in terms of hedged portfolio variance. Moreover, the difference of hedging effectiveness between ECM and the short-run ARDL hedge ratios is minimal. In addition, for each index futures contract, the long-run ARDL hedge ratio is not really appropriate regardless of the data frequencies being used. It is also important to note that, for each futures contract, the hedging effectiveness changes as the length of the hedging period changes. In general, the hedging effectiveness tends to decrease when the hedging horizon increases. This finding indicates that the length of time interval has an important impact on the hedging effectiveness. 
<< INSERT TABLE VII >> 
Out-of-sample performance
So far we have discussed the results based on the in-sample analysis. However, the more reliable measure of hedging effectiveness is the hedging performance for the out-of-sample periods. It will be interesting to see the out-of-sample performance of the different hedge ratios as we increase the hedging horizon. So, we collect last one year’s data (i.e., last 52 weeks of data for the weekly samples and the last 252 days of data for the daily samples). The performance of the different hedge ratios are evaluated by the percentage reduction in variance and reported in Table VIII.  As for CAC40 futures contract, in regard to the percentage reduction in variance, the long-run ARDL hedge ratio performs better than OLS, ECM and short-run ARDL hedge ratios. However, the difference of performance is minimal. In general, all hedge ratios which considering the existence of cointegration, ECM, short-run ARDL and long-run ARDL hedge ratios, are superior to OLS hedge ratio , except for TSE35. This finding is consistent with Chou, Fan and Lee (1996). Overall, the difference of hedging effectiveness within ECM, short-run ARDL and long-run ARDL hedge ratios hedge ratios is minimal. It is also important to note that, contrary to in-sample results, the effect of hedging horizon on hedging effectiveness of out-of-sample periods for each futures contract is relatively smaller.
<< INSERT TABLE VIII >>
4 Conclusions

In the financial market, a reliable method to find the optimal hedge ratio is crucial for investors and portfolio managers. The minimum-variance (MV) hedge ratio considered by Johnson (1960) has been the one of the most popular choices. This article estimates the minimum variance hedge ratio by applying three alternative models: the ordinary least squares (OLS) model, error correction model (ECM) model, and AutoRegressive Distributed Lag (ARDL) cointegration models using six index futures contracts. Furthermore, we analyzed the effects of the length of hedging horizon on the optimal hedge ratio and hedging effectiveness. The empirical results of this article can be summarized as follows. 

First, we apply the standard augmented Dickey-Fuller (ADF) tests for unit roots and two-step procedure of Engle and Granger (1987) tests for cointegration. The results indicate that for each time frequency, the logarithms of spot and futures prices are both unit-root processes and are co-integrated for each futures contract. 

Next, the hedge ratio estimation results show that the OLS, ECM and short-run ARDL hedge ratios are different for different hedging horizons and approach to one as we increase the length of hedging period. However, the estimates of the long-run ARDL hedge ratios are close to the naive hedge ratio of unity regardless of the data frequencies being used. The length of time interval has an important impact on the estimates of hedge ratio, except the long-run ARDL hedge ratios. 
Finally, the in-sample hedging effectiveness, measured by the portfolio variance, tends to decrease when the hedging horizon increases. Moreover, the OLS hedge ratio outperforms ECM, short-run ARDL and long-run ARDL hedge ratios. However, the hedge ratios which considering the existence of cointegration, ECM, short-run ARDL and long-run ARDL hedge ratios, are superior to OLS hedge ratio for out-of-sample periods. It is also important to note that, contrary to in-sample results, the effect of hedging horizon on hedging effectiveness of out-of-sample periods for each futures contract is relatively smaller.
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TABLE I Summary of 6 Index Futures Contracts 
	
	Commodity
	Sample Period
	Sample Size

	1
	S&P500
	June 1, 1982–December 31, 2002
	5109

	2
	TSE35
	March 1, 1991–December 31, 2002
	2044

	3
	Nikkei 225
	September 5, 1988–December 31, 2002
	3475

	4
	TOPIX
	September 5, 1988–December 31, 2002
	3475

	5
	FTSE100
	May 3, 1984–December 31, 2002
	4607

	6
	CAC40
	March 1, 1989–December 31, 2002
	3348


Note. This table lists the commodities, sample periods, and sample sizes for the 6 different index futures contracts used for empirical analyses in this study. The data are obtained from Datastream.

TABLE II Summary Statistics of Futures and Spot Returns 
	Commodity
	
	Sample Size
	Mean
	Standard Deviation
	Skewness
	Kurtosis

	CAC40 Spot
	Daily
	3348
	0.000322
	0.012359
	-0.227412
	5.737328

	
	Weekly
	669
	0.001573
	0.0275
	-0.370976
	3.644559

	Future
	Daily
	3348
	0.000327
	0.013087
	-0.130605
	5.917855

	
	Weekly
	669
	0.001593
	0.028171
	-0.351049
	3.685323

	FTSE100 Spot
	Daily
	4607
	0.00033
	0.009971
	-0.953722
	15.84364

	
	Weekly
	920
	0.001674
	0.02202
	-1.007576
	10.78439

	Future
	Daily
	4607
	0.000329
	0.011208
	-0.983985
	17.56151

	
	Weekly
	920
	0.001692
	0.023885
	-1.057729
	11.44138

	Nikke225 Spot
	Daily
	3475
	-0.000274
	0.014355
	0.244635
	7.312279

	
	Weekly
	694
	-0.00143
	0.029854
	-0.07207
	4.597043

	Future
	Daily
	3475
	-0.00028
	0.014479
	0.183123
	6.052089

	
	Weekly
	694
	-0.001454
	0.030024
	-0.04403
	4.446201

	S&P500 Spot
	Daily
	5109
	0.000456
	0.010339
	-2.343297
	54.85372

	
	Weekly
	1021
	0.00228
	0.021959
	-0.731393
	7.601152

	Future
	Daily
	5109
	0.000457
	0.012104
	-3.896556
	133.4776

	
	Weekly
	1021
	0.002287
	0.022877
	-0.675103
	7.124179

	TOPIX Spot
	Daily
	3475
	-0.000206
	0.012163
	0.167942
	7.700642

	
	Weekly
	694
	-0.001095
	0.027522
	0.056463
	5.083722

	TOPIX 
	Daily
	3475
	-0.000211
	0.013806
	0.007623
	7.464067

	
	Weekly
	694
	-0.001109
	0.028704
	0.020251
	5.368932

	TSE35 Spot
	Daily
	2044
	0.0003
	0.008362
	-0.84095
	12.35417

	
	Weekly
	408
	0.001412
	0.019053
	-0.6851
	5.553299

	TSE35 Future
	Daily
	2044
	0.000299
	0.009158
	-0.79703
	14.21569

	
	Weekly
	408
	0.001414
	0.019381
	-0.46365
	4.499456


TABLE III Results of the Unit-Root Tests on Spot and Futures Prices
	Commodity
	
	Daily
	1 Week
	2 Week
	3 Week
	4 Week
	5 Week

	CAC40
	Spot
	-1.143
	-1.177
	-1.151
	-1.123
	-1.879
	-1.753

	
	Futures
	-1.161
	-1.172
	-1.164
	-1.133
	-1.910
	-1.752

	FTSE100
	Spot
	-1.410
	-1.358
	-1.429
	-1.410
	-1.380
	-1.506

	
	Futures
	-1.420
	-1.401
	-1.407
	-1.436
	-1.393
	-1.532

	Nikke225
	Spot
	-1.147
	-1.110
	-1.951
	-1.844
	-1.571
	-1.300

	
	Futures
	-1.144
	-1.107
	-1.919
	-1.790
	-1.631
	-1.318

	S&P500
	Spot
	-0.937
	-0.892
	-0.877
	-0.918
	-1.735
	-1.638

	
	Futures
	-0.947
	-0.905
	-0.895
	-0.916
	-1.735
	-1.674

	TOPIX
	Spot
	-1.400
	-1.225
	-1.270
	-1.415
	-1.577
	-2.556

	
	Futures
	-1.352
	-1.110
	-1.242
	-1.395
	-1.998
	-1.710

	TSE35
	Spot
	0.783
	0.726
	0.714
	0.220
	0.309
	1.194

	
	Futures
	0.620
	0.705
	0.732
	0.180
	0.259
	0.812


Note. This table lists the results of the Augmented Dickey-Fuller(ADF) unit-root tests on the spot and futures prices. The critical values at the 10% and 5% significance levels are -2.57 and -2.87, respectively. 

TABLE IV Results of the Unit-Root Tests on the Price Changes of Spot and Futures Positions

	Commodity
	
	Daily
	1 Week
	2 Week
	3 Week
	4 Week
	5 Week

	CAC40
	Spot
	-11.578**
	-14.256**
	-18.897**
	-14.754**
	-2.46
	-2.125

	
	Future
	-10.474**
	-14.431**
	-19.25**
	-15.098**
	-2.51
	-2.138

	FTSE100
	Spot
	-16.618**
	-7.458**
	-9.382**
	-18.578**
	-17.508**
	-2.367

	
	Future
	-16.953**
	-34.569**
	-18.179**
	-19.149**
	-17.942**
	-2.290

	Nikke225
	Spot
	-12.603**
	-16.841**
	-16.332**
	-4.655**
	-6.177**
	-9.482**

	
	Future
	-11.372**
	-17.032**
	-16.025**
	-4.664**
	-6.055**
	-9.436**

	S&P500
	Spot
	-14.028**
	-9.526**
	-10.852**
	-14.199**
	-2.123
	-1.385

	
	Future
	-14.231**
	-9.523**
	-10.592**
	-18.166**
	-2.099
	-1.372

	TOPIX
	Spot
	-10.439**
	-17.652**
	-16.575**
	-13.11**
	-10.533**
	-4.721**

	
	Future
	-10.741**
	-26.963**
	-17.165**
	-13.297**
	-5.856**
	-9.026**

	TSE35
	Spot
	-10.42**
	-7.2056**
	-7.006**
	-11.02**
	-12.935**
	-5.998**

	
	Future
	-11.521**
	-7.5355**
	-16.599**
	-10.894**
	-13.214**
	-6.497**


Note. This table lists the results of the Augmented Dickey-Fuller(ADF) unit-root tests on the price change of futures and spot positions. The critical values at the 10% and 5% significance levels are -2.57 and -2.87, respectively. Double asterisks and asterisks represent 5% and 10% significance levels, respectively.
TABLE V Augmented Dickey-Fuller(ADF) Test for Cointegration

	Commodity
	
	Daily
	1 Week
	2 Week
	3 Week
	4 Week
	5 Week

	CAC40
	ADF
	-26.3343** 
	-9.3667**
	-7.4020** 
	-7.2795** 
	-6.1312** 
	-3.6186** 

	
	Lag
	12
	12
	12
	12
	12
	12

	FTSE100
	ADF
	-34.1349** 
	-9.84829**
	-7.7835** 
	-5.9419** 
	-5.5589** 
	-8.5499** 

	
	Lag
	12
	12
	12
	12
	12
	12

	Nikke225
	ADF
	-18.1789** 
	-16.8668**
	-6.6134** 
	-6.6984** 
	-5.0518** 
	-5.8159** 

	
	Lag
	12
	12
	12
	12
	12
	12

	S&P500
	ADF
	-28.4489** 
	-16.9986**
	-11.8547** 
	-5.5387** 
	-4.4150** 
	-3.6893** 

	
	Lag
	12
	12
	12
	12
	12
	12

	TOPIX
	ADF
	-17.6633** 
	-10.5907**
	-6.3607** 
	-6.5679** 
	-6.0452** 
	-4.1874** 

	
	Lag
	12
	12
	12
	12
	12
	12

	TSE35
	ADF
	-13.7957** 
	-10.4292**
	-6.7680** 
	-13.1974** 
	-7.1508** 
	-8.5446** 

	
	Lag
	12
	12
	12
	12
	12
	12


Note. This table lists the results of the Augmented Dickey-Fuller(ADF) for cointegration on the spot and futures prices. The critical values at the 10% and 5% significance levels are -3.07 and -3.37, respectively. Double asterisks and asterisks represent 5% and 10% significance levels, respectively.
TABLE VI The Estimates of MV Hedge Ratios for Different Index Futures Contracts 
	Commodity
	
	Daily
	1 Week
	2 Week
	3 Week
	4 Week
	5 Week

	CAC40
	
[image: image76.wmf]OLS

b


	0.9421
	0.9805
	0.9785
	0.9832
	0.9912
	0.9865

	
	
[image: image77.wmf]ECM

b


	0.9492
	0.9861
	0.9861
	0.9895
	0.9989
	0.9974

	
	
[image: image78.wmf]ARDL

short

b


	0.9492
	0.9861
	0.9861
	0.9895
	0.9989
	0.9964

	
	
[image: image79.wmf]ARDL

long

b


	0.9985
	0.9988
	0.9990
	0.9988
	0.9983
	0.9981

	FTSE100
	
[image: image80.wmf]OLS

b


	0.8726
	0.9189
	0.9428
	0.9525
	0.9544
	0.9797

	
	
[image: image81.wmf]ECM

b


	0.8777
	0.9311
	0.9522
	0.9606
	0.9671
	0.9802

	
	
[image: image82.wmf]ARDL

short

b


	0.8777
	0.9312
	0.9523
	0.9603
	0.9673
	0.9803

	
	
[image: image83.wmf]ARDL

long

b


	0.9964
	0.9966
	0.9966
	0.9969
	0.9962
	0.9972

	Nikke225
	
[image: image84.wmf]OLS

b


	0.9181
	0.9625
	0.9491
	0.9660
	0.9688
	0.9873

	
	
[image: image85.wmf]ECM

b


	0.9242
	0.9684
	0.9569
	0.9761
	0.9758
	0.9926

	
	
[image: image86.wmf]ARDL

short

b


	0.9242
	0.9684
	0.9568
	0.9697
	0.9757
	0.9921

	
	
[image: image87.wmf]ARDL

long

b


	0.9792
	0.9795
	0.9788
	0.9792
	0.9804
	0.9773


TABLE VI The Estimates of MV Hedge Ratios for Different Index Futures Contracts (Continued)

	Commodity
	
	Daily
	1 Week
	2 Week
	3 Week
	4 Week
	5 Week

	S&P500
	
[image: image88.wmf]OLS

b


	0.8951
	0.9544
	0.9557
	0.9578
	0.9561
	0.9600

	
	
[image: image89.wmf]ECM

b


	0.9030
	0.9608
	0.9663
	0.9634
	0.9628
	0.9760

	
	
[image: image90.wmf]ARDL

short

b


	0.9030
	0.9609
	0.9664
	0.9634
	0.9629
	0.9760

	
	
[image: image91.wmf]ARDL

long

b


	0.9923
	0.9926
	0.9928
	0.9926
	0.9922
	0.9918

	TOPIX
	
[image: image92.wmf]OLS

b


	0.7831
	0.9349
	0.9479
	0.9621
	0.9740
	0.9799

	
	
[image: image93.wmf]ECM

b


	0.8035
	0.9385
	0.9539
	0.9656
	0.9726
	0.9771

	
	
[image: image94.wmf]ARDL

short

b


	0.8035
	0.9385
	0.9538
	0.9656
	0.9727
	0.9765

	
	
[image: image95.wmf]ARDL

long

b


	0.9769
	0.9776
	0.9773
	0.9767
	0.9788
	0.9767

	TSE35
	
[image: image96.wmf]OLS

b


	0.8352
	0.9430
	0.9650
	0.9971
	0.9493
	0.9527

	
	
[image: image97.wmf]ECM

b


	0.8586
	0.9500
	0.9662
	0.9980
	0.9482
	0.9511

	
	
[image: image98.wmf]ARDL

short

b


	0.8586
	0.9501
	0.9664
	0.9980
	0.9485
	0.9518

	
	
[image: image99.wmf]ARDL

long

b


	0.9987
	1.0002
	1.0019
	0.9974
	1.0015
	1.0032


TABLE VII Comparisons of In-Sample Hedging Effectiveness using Portfolio Variance 
	Commodity
	
	Daily
	1 Week
	2 Week
	3 Week
	4 Week
	5 Week

	CAC40
	
[image: image100.wmf]OLS

b


	95.662%
	98.657%
	99.040%
	99.077%
	99.256%
	99.312%

	
	
[image: image101.wmf]ECM

b


	95.657%
	98.654%
	99.035%
	99.073%
	99.250%
	99.300%

	
	
[image: image102.wmf]ARDL

short

b


	95.657%
	98.654%
	99.035%
	99.073%
	99.250%
	99.302%

	
	
[image: image103.wmf]ARDL

long

b


	95.319%
	98.623%
	98.998%
	99.053%
	99.250%
	99.298%

	FTSE100
	
[image: image104.wmf]OLS

b


	91.757%
	96.147%
	97.363%
	97.527%
	98.031%
	97.770%

	
	
[image: image105.wmf]ECM

b


	91.754%
	96.198%
	97.353%
	97.531%
	98.013%
	97.770%

	
	
[image: image106.wmf]ARDL

short

b


	87.045%
	96.198%
	97.353%
	97.531%
	98.013%
	97.770%

	
	
[image: image107.wmf]ARDL

long

b


	89.763%
	95.707%
	97.047%
	97.326%
	97.843%
	97.739%

	Nikke225
	
[image: image108.wmf]OLS

b


	84.987%
	94.632%
	96.197%
	97.413%
	97.965%
	98.063%

	
	
[image: image109.wmf]ECM

b


	84.983%
	94.684%
	96.191%
	97.403%
	97.959%
	98.073%

	
	
[image: image110.wmf]ARDL

short

b


	84.862%
	94.339%
	96.191%
	97.412%
	97.960%
	98.074%

	
	
[image: image111.wmf]ARDL

long

b


	84.576%
	94.708%
	96.103%
	97.395%
	97.950%
	98.066%


TABLE VII Comparisons of In-Sample Hedging Effectiveness using Portfolio Variance (Continued)

	Commodity
	
	Daily
	1 Week
	2 Week
	3 Week
	4 Week
	5 Week

	S&P500
	
[image: image112.wmf]OLS

b


	91.713%
	97.171%
	97.908%
	97.723%
	97.984%
	98.218%

	
	
[image: image113.wmf]ECM

b


	92.066%
	96.890%
	97.896%
	97.720%
	97.979%
	98.191%

	
	
[image: image114.wmf]ARDL

short

b


	92.066%
	96.890%
	97.907%
	97.720%
	97.979%
	98.191%

	
	
[image: image115.wmf]ARDL

long

b


	90.987%
	97.018%
	97.760%
	97.594%
	97.844%
	98.110%

	TOPIX
	
[image: image116.wmf]OLS

b


	77.988%
	91.791%
	95.882%
	96.996%
	97.759%
	97.958%

	
	
[image: image117.wmf]ECM

b


	77.935%
	92.414%
	95.879%
	96.995%
	97.759%
	97.957%

	
	
[image: image118.wmf]ARDL

short

b


	77.935%
	92.414%
	93.657%
	96.995%
	97.692%
	97.957%

	
	
[image: image119.wmf]ARDL

long

b


	73.213%
	94.087%
	95.790%
	96.973%
	97.756%
	97.957%

	TSE35
	
[image: image120.wmf]OLS

b


	80.467%
	90.017%
	98.329%
	96.315%
	96.606%
	96.285%

	
	
[image: image121.wmf]ECM

b


	80.404%
	90.478%
	98.330%
	96.313%
	96.604%
	96.291%

	
	
[image: image122.wmf]ARDL

short

b


	80.404%
	90.478%
	98.330%
	96.313%
	96.605%
	96.288%

	
	
[image: image123.wmf]ARDL

long

b


	77.384%
	90.890%
	98.317%
	96.315%
	96.596%
	95.782%


TABLE VIII Comparisons of Out-of-Sample Hedging Effectiveness using Portfolio Variance
	Commodity
	
	Daily
	1 Week
	2 Week
	3 Week
	4 Week
	5 Week

	CAC40
	
[image: image124.wmf]OLS

b


	96.351%
	99.704%
	99.609%
	99.630%
	99.480%
	99.630%

	
	
[image: image125.wmf]ECM

b


	96.414%
	99.728%
	99.649%
	99.655%
	99.527%
	99.672%

	
	
[image: image126.wmf]ARDL

short

b


	96.414%
	99.728%
	99.649%
	99.655%
	99.527%
	99.670%

	
	
[image: image127.wmf]ARDL

long

b


	96.581%
	99.761%
	99.692%
	99.679%
	99.524%
	99.674%

	FTSE100
	
[image: image128.wmf]OLS

b


	96.507%
	98.751%
	99.525%
	99.676%
	98.918%
	99.759%

	
	
[image: image129.wmf]ECM

b


	96.623%
	98.844%
	99.538%
	99.656%
	98.856%
	99.756%

	
	
[image: image130.wmf]ARDL

short

b


	96.624%
	98.844%
	99.538%
	99.657%
	98.855%
	99.756%

	
	
[image: image131.wmf]ARDL

long

b


	97.864%
	99.434%
	99.340%
	99.397%
	98.578%
	99.631%

	Nikke225
	
[image: image132.wmf]OLS

b


	89.030%
	97.715%
	98.903%
	99.170%
	99.410%
	99.500%

	
	
[image: image133.wmf]ECM

b


	89.113%
	97.788%
	98.967%
	99.202%
	99.454%
	99.524%

	
	
[image: image134.wmf]ARDL

short

b


	90.528%
	97.460%
	98.966%
	99.184%
	99.454%
	99.522%

	
	
[image: image135.wmf]ARDL

long

b


	89.952%
	98.008%
	99.079%
	99.208%
	99.478%
	99.441%


TABLE VIIIComparisons of Out-of-Sample Hedging Effectiveness using Portfolio Variance (Continued)

	Commodity
	
	Daily
	1 Week
	2 Week
	3 Week
	4 Week
	5 Week

	S&P500
	
[image: image136.wmf]OLS

b


	97.025%
	99.023%
	99.113%
	99.464%
	99.357%
	99.687%

	
	
[image: image137.wmf]ECM

b


	96.615%
	98.428%
	99.189%
	99.524%
	99.432%
	99.808%

	
	
[image: image138.wmf]ARDL

short

b


	96.615%
	98.428%
	99.097%
	99.524%
	99.433%
	99.808%

	
	
[image: image139.wmf]ARDL

long

b


	96.996%
	99.161%
	99.282%
	99.734%
	99.658%
	99.878%

	TOPIX
	
[image: image140.wmf]OLS

b


	89.030%
	93.546%
	98.018%
	97.983%
	98.626%
	98.539%

	
	
[image: image141.wmf]ECM

b


	89.463%
	94.345%
	98.098%
	97.991%
	98.608%
	98.534%

	
	
[image: image142.wmf]ARDL

short

b


	89.463%
	94.345%
	94.044%
	97.991%
	98.244%
	98.533%

	
	
[image: image143.wmf]ARDL

long

b


	89.280%
	97.777%
	98.345%
	98.002%
	98.685%
	98.533%

	TSE35
	
[image: image144.wmf]OLS

b


	9.217%
	44.704%
	98.739%
	97.778%
	98.076%
	-2.071%

	
	
[image: image145.wmf]ECM

b


	4.805%
	40.693%
	98.748%
	97.774%
	98.060%
	-1.586%

	
	
[image: image146.wmf]ARDL

short

b


	4.805%
	40.693%
	98.749%
	97.774%
	98.064%
	-1.798%

	
	
[image: image147.wmf]ARDL

long

b


	-26.940%
	10.677%
	98.874%
	97.777%
	98.349%
	-18.212%
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