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1 Introduction

The size of a hedge is affected by the sensitivity of the return of the underlying asset to the

return of the hedging instrument. This sensitivity measure β is also called the optimal hedge

ratio (OHR). The hedge ratio is deemed optimal in terms of minimizing the variability in

the value of the overall position. A dynamic hedging scheme recognizes that since the OHR

varies over time i.e. β = βt, the hedging outcome can be improved from interim rebalancing

of the hedging position. An issue addressed by the hedging literature is the incremental

performances of competing OHRs over a static hedge. If the corresponding variance and

covariance terms used to calculate the OHR can be adequately modeled and forecasted, then

hedging performance should improve.

The volatility literature contains a voluminous debate on the information content of im-

plied volatility versus historical volatility. The general consensus is that some combination of

both improves volatility forecasts. Our main objective in this paper is to formally blend the

two literatures together. We investigate if incremental information from combining implied

and historical volatilities translates into incremental hedging performance by the correspond-

ing OHR. We consider the use of the S&P 500 index futures (henceforth FI) contract to hedge

against a widely-held portfolio that tracks the S&P 500 index e.g. S&P Depository Receipts

(SPDR). In this paper, we assume the S&P 500 cash index (henceforth CI) as our physical

portfolio.1 Denote Nt as the optimal number of futures contracts to short against an existing

long position in the underlying portfolio at time t. This is calculated in equation (1).

Nt = βt ×
VCI,t
VFI,t

βt =
σCI,FI,t
σ2
FI,t

= ρCI,FI,t ×
σCI,t
σFI,t

(1)

VCI,t and VFI,t represent the value of the physical portfolio to be hedged against and

1S&P Depository Receipts are yet to exist during our sample period.
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the value covered by each futures contract respectively. This size-ratio
VCI,t

VFI,t
is adjusted by

βt, which is calculated as the covariance σCI,FI,t between the spot return rCI,t and futures

returns rFI,t divided by the variance of the futures return σ2
FI,t. As βt varies during the

hedging period, so does Nt, which implies a need to rebalance the hedging position. Since

ρCI,FI,t =
σCI,FI,t

σCI,t×σFI,t
, Nt can be expressed as ρCI,FI,t × σCI,t

σFI,t
, where σCI,t is the cash index

volatility. If we assume both VCI,t and VFI,t are exogenous, the OHR is the only parameter

to estimate to determine the optimal Nt.
2 This demonstrates the importance of modeling

σCI,FI,t and σ2
FI,t in a dynamic hedging scheme. If we assume constant perfect positive

correlation i.e. ρCI,FI,t = 1, modeling and forecasting the OHR is analogous to modeling and

forecasting σCI,t and σFI,t.

The preceding highlights an intimate link between the literatures on hedging and volatil-

ity modeling. Nonetheless, potential volatility transmission between spot, futures and options

markets are often ignored in the OHR estimation. This is despite an incumbent literature

spanning over 15 years debating the merits of implied versus historical volatility. If incre-

mental information embedded in implied volatility exists, then incorporating such volatility

transmissions should generate better volatility forecasts and improve the OHR estimation.

The S&P 500 CI and FI each possesses a well-established option market. The S&P 500 fu-

tures option (FO) trading pit is located beside the futures pits on the Chicago Mercantile

Exchange (CME) trading floor. The S&P 500 index option (IO) is traded on the Chicago

Board Options Exchange (CBOE).

Pennings and Meulenberg (1997) provide a comprehensive review of hedging performance

measures in the literature. The evaluation generally contrasts between the combined cash-

futures position versus the cash position alone. Hedging performance is measured by the

reduction in the variance of the combined position in Ederington (1979), the ratio of Sharpe

2Strictly speaking, VCI,t is not entirely exogenous in that a decision is required on the proportion of the
underlying asset’s value to hedge against. However, this is a separate issue from the OHR determination.
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ratios (cash-futures position divided by cash position only) in Howard and D’Antonio (1984),

difference in certainty equivalent returns between the combined versus cash position in Hsin,

Kuo and Lee (1994) and expected utility maximization in Kroner and Sultan (1993). Hedging

applications based on a bivariate GARCH framework include Baillie and Myers (1991) for

US commodity futures, Kroner and Sultan (1993) for foreign currency futures and Park and

Switzer (1995) for US stock index futures. In these studies, hedging performance is based on

minimizing the variance of the overall position.

Lee, Gannon and Yeh (2000) and Yeh and Gannon (2000) evaluate out-of-sample volatil-

ity estimates generated from competing volatility models in the context of a dynamic hedging

scheme. However, potential volatility transmission effects were not investigated, but transac-

tion costs were included in the analysis in the latter paper. Chng and Gannon (2003) model

contemporaneous volatility and volume effects within a framework of formalized structure

of simultaneous volatility equations proposed by Gannon (1994). The order and matrix rank

conditions for the simultaneous volatility and competing misspecified volatility models are

documented in this latter paper. While the resultant volatility forecasts statistically domi-

nate those from competing volatility models, an out-of-sample evaluation based on market

inference was not performed.

Au-Yeung and Gannon (2004, 2005) employ a M-GARCH model modified to allow for

multiple structural breaks and volatility spillovers between the HSIF cash and index fu-

tures markets and also overnight spillovers from the S&P500 index futures. Gannon (2005)

repeated this analysis but employed a Full Information Maximum Likelihood (FIML) set

of simultaneous volatility equations. Bhatacharya, Singh and Gannon (2007) employed the

Au-Yeung and Gannon M-GARCH model to test volatility spillovers between Indian stock

and share futures. Gannon and Au-Yeung (2008) repeated the early analysis of structural

breaks in their M-GARCH model and showed that inclusion of volume of trade effects led

to insignificant structural break parameters. Lee, Wang and Chen (2009) utilize four static
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and a dynamic bivariate GARCH models to find the OHR for the S&P500 and five major

Asian market index futures. Lee, Lin and Chen (2010) investigate hedge ratios in interna-

tional futures markets in the light of the cross-country linkage and interaction using a 3SLS

estimation procedure. Gannon (2010) re-visited the simultaneous volatility class of models to

test transmission and spillover effects when the intra-day sampling interval reduces. In this

paper further theoretical conditions for this class of models and systems Error Correction

terms are defined. In all of the above estimators, hedge ratios can be extracted but no out

of sample hedging performance was undertaken.

We evaluate the hedging performances of competing OHRs base on the incremental prof-

its from interim rebalancing that each OHR generates over a static hedge. We argue that

our performance measure is more consistent with the investigation on whether incorporating

incremental information from implied volatility in the OHR calculation translates into in-

cremental profits from rebalancing the futures position. We evaluate eight competing OHRs

generated from competing volatility and covariance forecasts.

Our secondary objective is to model the entire time-varying variance-covariance matrix in

a formal system of simultaneous volatility (SVL) equations. This can be seen as a competing

estimator to variants of the restricted class of bivariate GARCH estimators. However, we

consider only the constant correlation bivariate GARCH and univariate GARCH estimators

as similar applications in the published literature have report improved performance over

regression-based estimators. The true unrestricted estimator of the simultaneous multivariate

GARCH (MGARCH) hedge ratio is generated from the VEC-MGARCH form. This cannot

be readily applied to model time varying covariance due to convergence problems.3 As noted

3The unrestricted vector GARCH specification seldom leads to identifiable point estimates since doing so
requires the inversion of the variance-covariance matrix at each sample point. When off-diagonal covariance
terms are large relative to diagonal variance terms, the determinant of the matrix tends to zero, such that the
inverse matrix can be unidentified. Such cases are very likely in the context of spot and the futures returns.
This technical problem is commonly addressed by imposing a constant correlation and focus on modeling
time varying spot and futures volatility, which somewhat defeats the purpose of dynamic hedging.
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in the literature for the BEKK-GARCH and dynamic constant correlation forms of Engle

(2002) and Tse and Tsui (2002), the covariance term from these models are functions of

conditional standard deviations of equations in the system.

The BEKK-GARCH estimator proposed by Engle and Kroner (1995) overcomes the

convergence problem by employing an estimator that guarantees a positive definite vari-

ance/covariance matrix. The base BEKK estimator is still restricted as it employs a function

of the product of the respective bivariate time varying standard deviations as estimators of

the time varying co-variance term. Various extensions of this class of estimator allow for

functions of the standard deviations to generate the covariance term. Some in sample es-

timators also allow for asymmetric positive and negative return effects (sign effect) in the

estimation process. One drawback with employing the asymmetric versions in out of sample

forecasting applications is lack of future values of the ”sign effect” to generate the forecasts.

In this paper, we utilize market data from parallel option markets to capture market

anomalies, including sign effects, because these are continuously observable variables rather

than discrete imposed indicator variables. This can also be seen as a benchmark for the

full structural volatility system estimator that incorporates market transmission effects. It

could also be seen as a benchmark for the aforementioned class of BEKK-GARCH estimators

within the comparison framework of this paper and an area for future research. Clearly the

real focus in this paper is to compare two alternative versions of the class of simultaneous

volatility estimators SVL and ESVL. Comparisons with other estimators is restricted to

those reported using similar evaluation processes.

The rest of this paper proceeds as follow. Institutional features and sampling procedures

are provided in Section 2. In Section 3, competing volatility models and various methods

of computing the OHR are discussed. Model estimation results are reported in Section 4.

Section 5 reports the out-of-sample hedging performance. Section 6 concludes.
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2 Institutional background and data sampling

The analysis in our paper requires a synchronously sampled set of intraday data for all

four contracts. We found it difficult to obtain a set from both options markets that was

satisfactory. We decided to employ the same cash index and index futures dataset for the

results reported by Miller, Muthuswamy and Whaley (1994). For this dataset, a full database

of both options transactions is available4.

The S&P 500 CI is a value-weighted broad-based market index that comprises 500 widely-

held stocks.5 It is regarded by the financial community as a barometer to gauge the perfor-

mance of the US equity market. The S&P 500 FI follows a March, June, September and

December contract cycle. In 1990, the contract multiplier was USD 500 per index point. The

tick size is 0.05 point, or USD 25. On average, the contracts are rolled over between the 6th

and 11th of the contract month. For our sample, we choose the 8th day of the delivery month

as the date to switch to the next contract.

The S&P 500 FO are American options. One futures option is written on one futures

contract and is quoted in index points. The tick size is 0.056. These contracts follow a

monthly cycle, and data is available across a range of contract months and strike prices.7

The two nearest-to-maturity option contracts (e.g. Feb and March options written on the

March futures contract) will trade at strike prices in multiples of 5. Longer maturity contracts

will trade at strike prices in multiples of 10. The option is exercised at maturity if it is in

4The data was supplied by TICKDATA Inc but for various reasons, they stopped collection of options
data streams.

5Individual stock prices are multiplied by the number of shares outstanding. The products are summed
up and standardized by a pre-determined base value. Base values for the index are adjusted to reflect changes
in capitalization due to mergers, acquisitions and rights issues etc.

6However, a trade may occur at a price of 0.025 index point if it is necessary to liquidate positions to
allow for both parties to trade.

7For the March futures contract, there are option contracts expiring at the end of Jan, Feb, March etc
up to May. Options expiring prior or during the March quarterly cycle are written on the March futures
contracts. Else, they are written on the June futures contract.
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the money. Both the S&P 500 FI and FO contracts are traded under the Index and Option

Market Division on the CME. For each trading day, the average futures price of the front

contract is used to determine the closest to money FO contract to include in our sample. The

implied volatility from the FO will be the average of the implied volatility between the call

and put. The S&P 500 IO contracts share similar contract specifications to the FO contracts.

A key difference is that the IO are cash-settled and they are European options.

From 4th Jan to 31st December 1990, we sample near-synchronous 30-minute observations

from the nearest-to-maturity contracts for each of the four markets. For all the markets, nor-

mal trading commences at 8.30am and finishes at 3.15pm. To avoid mechanically-induced

opening and closing effects, we use the 8.40am and 3pm prices to compute the 9am opening

return and 3pm closing return correspondingly.8 When extracting implied volatilities, po-

tential non-synchronous spot and option prices violate the specification of the Black-Scholes

pricing model, which dilutes the validity of subsequent implied volatility measures. However,

since both option markets are highly liquid, non-synchronicity between spot and option

prices is not a major problem for our study. We calculate an option’s term-to-maturity as

No of trading days to maturity
Trading days per annum

9. The continuously compounded 1-month Treasury bill rate is used

to proxy the risk-free rate.10 Lastly, the continuous-compounding annualized dividend yield

daily time-series of the CI is used to back out implied volatility of the IO.

8For missing observations in one market, corresponding observations from other markets are excluded.
This gives a total of 3186 out of a possible 3289 observations. There are 13 half-hourly observations per day
over 253 trading days in 1990. Details of the sampling procedure can be obtained from the authors upon
request.

9For example, an option trading on 23rd April with May as the delivery month will have 27 trading days
till maturity. Following conventions, this study uses 252 days for the denominator. Thus for that option,
term-to-maturity is calculated as 23/252=0.10714.

10This is chosen over the 30 year Treasury bond rate, which may contain term structure premium.
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3 Volatility estimators and competing hedge ratios

Denote rCI,t and rFI,t as the half-hourly continuously compounded returns of CI and FI

respectively. We construct CI and FI volatilities as absolute returns σCI,t = |rCI,t| and

σFI,t = |rFI,t|. The covariance between CI and FI is defined as σCI,FI,t = |rCI,t||rFI,t|.11

3.1 Constructing out-of-sample hedge ratios

To generate out-of-sample OHR forecasts, we divide our 1-year sample into two halves. The

first half is our estimation sample and contains 1613 observations. The second half, which

is our test sample, contains 1573 observations. Out-of-sample OHR projections into the test

period are derived by sequentially expanding the estimation period one observation at a time

to update the coefficient estimates and generate a series of 1-step ahead OHR forecasts. We

evaluate the hedging performance of eight hedge ratios that are constructed from different

volatility sources and models. These are summarized in Table 1.

INSERT TABLE 1

The first hedge ratio is obtained from a least square regression of rCI,t against rFI,t and

a dummy variable DumClose for market closing effects.12 Outlined in equation (2), this βOLS

measure is commonly used in a static hedge, where no re-balancing occurs during the hedging

period. We denote the coefficient βOLS as OHR(1).

rCI,t = β0 + β1(Dum
Close) + βOLS(rFI,t) + εt (2)

OHR(2) is constructed from the conditional volatility of univariate GARCH(1,1) estima-

tions for σCI,t and σFI,t. In equation (3), εCI,t and εFI,t are residuals obtained from the CI

11Although negative covariance is possible and should be allowed for, the spot and futures returns are
expected to move in the same direction most of the time due to cost-of-carry. An examination of the data
confirms this statement.

12DumClose=1 for the 3.00pm closing return, and 0 otherwise.
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and FI return-equations. Lastly, ρCI,FI denotes the correlation between rCI,t and rFI,t.

σ2
CI,t+1 = α10 + α11(ε

2
CI,t) + β11(σ

2
CI,t)

σ2
FI,t+1 = α20 + α21(ε

2
FI,t) + β21(σ

2
FI,t)

OHR(2) = ρCI,FI ×
σCI,t+1

σFI,t+1

(3)

OHR(3) is designed to be an enhanced version of OHR(2). Here, we examine the potential

incremental information provided by an array of additional variables added to the CI and

FI GARCH (1,1) variance equations. These include σ2
FI,t in the σ2

CI,t+1 equation, σ2
CI,t in the

σ2
FI,t+1 equation, σ2

IO,t and σ2
FO,t. In addition, we also allow potential volume effects to enter

the conditional variance equations. Denote CVt−1 and FVt−1 as the corresponding change in

CI and FI tick-volume.13 Lastly, we include DumOpen14 and DumClose for for market opening

and closing effects. If there exists any incremental information in the implied volatility and/or

tick volumes that can be adequately brought out through a GARCH framework, OHR(3)

should outperform OHR(2).

σ2
CI,t+1 = α10 + α11(ε

2
CI,t) + β11(σ

2
CI,t) + γ11(Dum

Open) + γ12(Dum
Close)

+ γ13σ
2
FI,t + γ14σ

2
IO,t + γ15σ

2
FO,t + γ16(CVt)

σ2
FI,t+1 = α20 + α21(ε

2
FI,t) + β21(σ

2
FI,t) + γ21(Dum

Open) + γ22(Dum
Close)

+ γ23σ
2
CI,t + γ24σ

2
IO,t + γ25σ

2
FO,t + γ26(FVt)

OHR(3) = ρCI,FI ×
σCI,t+1

σFI,t+1

(4)

13Tick volume is defined as the number of half hourly price changes. For example, CVt is the number of
half-hourly price changes between time t-1 and t.

14DumOpen=1 for the 9.00am opening return, and 0 otherwise.
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For the actual estimation, we begin with a comprehensive GARCH (1,1) specification

outlined in equation (4). This includes all volatility and tick-volume variables from related

markets. First, we exclude non-estimable variables from the weighting series of the variance

equations. Next, we use both the Wald test statistics and Akaike Information Criterion (AIC)

to guide us as to which variables to exclude in an effort to systematically exclude variables

from the comprehensive model. The trimmed down GARCH(1,1) specification is then used

to generate out-of-sample projections for OHR(3).

Implied volatility is regarded by option traders as a forward-looking estimate. Accord-

ingly, a hedge ratio can be constructed simply with σIO,t and σFO,t. We term this as the

implied hedge ratio (IHR), which is a novel alternative to compute hedge ratios by substi-

tuting σCI,t with σIO,t and σFI,t with σFO,t. Since both σIO,t and σFO,t vary over time, IHR

is applicable to a dynamic hedging scheme. In equation (5), we label IHR as OHR(4).

OHR(4) = IHR = ρCI,FI × (
σIO,t
σFO,t

) (5)

Since we consider only nearest to money put and call options of the front contract, and

since both option markets are liquid, non-synchronicity between spot and option prices should

not be a major concern. The Black-Scholes model adjusted for continuously compounded

dividend yield is used to compute σIO,t from the observed premium of the European index

options, assuming dividends are non-stochastic. However, Black’s (1976) model for pricing

futures options cannot be readily applied to back out σFO,t, as these are American options. If

the premium for early exercise is non-trivial, then this should be acknowledged.15 However,

Whaley (1986) finds that early exercise premium exists only for in-the-money S&P 500

futures put options. Since σFO,t is computed as the average of nearest-to-maturity call and

put options, we postulate that any potential upward biases in σFO,t from not explicitly

15While it can be shown that early exercise is never optimal for a futures option if the premium is subjected
to futures-style margining, the premiums for FO are paid up front. With positive interest rates, early exercise
remains a possibility.
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adjusting for early exercise premium should be trivial.

OHR(5) is generated from a 4-equation extended simultaneous volatility (ESVL) frame-

work that incorporates cross-market volatility transmissions across all four S&P 500 markets.

The ESVL system is based on the 3-equation SVL model proposed in Gannon (1994). Since

OHR(5) requires forecasts for both σCI,t and σFI,t, two separate ESVL systems are consid-

ered, where σCI,t and σFI,t is each specified as the variable to be forecasted. We refer to these

as ESVL(CI) and ESVL(FI) respectively. In specifying the structure of both ESVL systems,

we assume that the FO possesses the greatest informational efficiency, followed concurrently

by IO and FI. The cash index ranks last in terms of efficiency ranking. This is confirmed

from pairwise Granger-causality tests on the volatility time series. ESVL(CI) is presented

in equation (6). Diagnostic tests indicate a significant opening effect for the cash index. As

such, an opening dummy DumOpen is included in the estimation of ESVL(CI).

σCI,t = α10 + α11Dum
Open + β11(σFI,t) + β12(σIO,t) + γ11(σCI,t−1) + γ12(σFI,t−1)

+ γ13(CVt−1) + εCI,t

σFI,t = α20 + α21Dum
Open + β21(σCI,t) + β22(σFO,t) + γ21(σCI,t−1) + γ22(σFI,t−1)

+ γ23(σFO,t−1) + εFI,t

σIO,t = α30 + α31Dum
Open + β31(σCI,t) + β32(σFO,t) + γ31(σCI,t−1) + γ32(σIO,t−1)

+ γ33(σFO,t−1) + εIO,t

σFO,t = α40 + α41Dum
Open + β41(σCI,t) + β42(σFI,t) + γ41(σCI,t−1) + γ42(σFI,t−1)

+ γ43(σFO,t−1) + εFO,t (6)

Since σCI,t is the variable to be forecasted, it is present in all 4 equations of ESVL(CI) to

ensure that a reduced-form can be obtained for generating out-of-sample forecasts. Lagged

tick-volume CVt−1 is included in the σCI,t equation to overcome a singularity estimation
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problem. The futures market leads the spot market due to lower execution costs, higher

liquidity and more informed trading. As such, σFI,t is specified to enter the σCI,t equation.

Similarly, σFO,t is specified to enter both the σFI,t and σIO,t equations. σCI,t−1 and σFI,t−1

are included in the σIO,t and σFO,t equations to account for possible volatility feedback from

the underlying assets back to the corresponding option market.

The derivation of the reduced-form ESVL(CI) is provided in the appendix. The coef-

ficients of the reduced-form σCI,t equation are functions of the structural coefficients from

ESVL(CI). These are estimated using the estimation sample. Together with time t volatility

variables, we can generate a 1-step ahead forecast σCI,t+1 according to the specification of the

reduced-form σCI,t equation.16 Conducting 1-step ahead forecasts based on the reduced-form

σCI,t equation allows inherent volatility transmission effects inherent among all four S&P 500

markets to be incorporated into σCI,t+1. After each forecast, the coefficients are sequentially

updated 1 observation at a time. This recursive process generates a time-series of σCI,t+1.
17

ESVL(FI) is presented in equation (7). A closing dummy DumClose is included as the FI

market displays a significant closing effect. The series of 1-step ahead forecasts σFI,t+1 from

16An alternative way to view the mapping of reduced form parameters back to the structural form pa-
rameters is to think about the systems in terms of the normalized matrix rank condition rather than the
unnormalized matrix rank condition. In the former, there is an implied unity restriction imposed on en-
dogenous variables in own structural equations. Then substitution between the structural and reduced forms
is straightforward and in an identifiable system all structural parameters in every structural equation are
identified. As such, the reduced-form equations provide unique projections of endogenous variables in the
systems. However, there can be cases where alternative structural parameterizations provide non-nested
competing sets of structural systems. In this case, artificial nested testing procedures need be employed to
select between competing systems. In our paper, there are competing identifiable 3 and 4 equation systems.
These are compared in terms of out of sample hedge ratio estimation and subsequently in terms of trade
re-balancing performance.

17To note, utilizing ESVL-based hedge ratios may seem computationally tedious. However, as the forecasts
are made 1-step at a time, the majority of coefficients are stable when we sequentially expand the estimation
period. Once the initial coefficient estimates are recorded, subsequent updating is computationally easy.
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ESVL(FI) are obtained in a similar fashion to σCI,t+1. OHR(5) is presented in equation (8).

σFI,t = α10 + α11Dum
Close + β11(σCI,t) + β12(σIO,t) + γ11(σFI,t−1) + γ12(σFO,t−1)

+ γ13(FVt−1) + εCI,t

σCI,t = α20 + α21Dum
Close + β21(σFI,t) + β22(σIO,t) + γ21(σFI,t−1) + γ22(σCI,t−1)

+ γ23(σIO,t−1) + εFI,t

σIO,t = α30 + α31Dum
Close + β31(σFI,t) + β32(σFO,t) + γ31(σFI,t−1) + γ32(σIO,t−1)

+ γ33(σFO,t−1) + εIO,t

σFO,t = α40 + α41Dum
Close + β41(σFI,t) + β42(σCI,t) + γ41(σFI,t−1) + γ42(σCI,t−1)

+ γ43(σFO,t−1) + εFO,t (7)

OHR(5) = ρCI,FI × (
σESV L(CI),t+1

σESLV (FI),t+1

) (8)

OHR(6) is based on the modeling of a time-varying variance-covariance matrix of the spot

and futures markets based on the SVL system in equation (9). Two separate reduced-form

equations with σFI,t and σCI,FI,t as the variable to be forecasted are derived from (9). These

are used to generate a series of 1-step ahead forecasts for σFI,t and σCI,FI,t.
18 The presence

of σCI,FI,t in the σFI,t equation is driven by the fact that during non-volatile trading periods,

the basis is expected to be small, reflecting cost-of-carry. But during volatile trading periods,

the futures market is expected to experience a greater increase in trading activity relative

to the spot market, causing a transitory deviation between the two. This implies both a

18The derivations are available upon request.
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decrease in σCI,FI,t and an increase in σFI,t.

σFI,t = α10 + α11Dum
Close + β11(σCI,FI,t) + γ11(σFI,t−1) + γ12(σCI,FI,t−1) + γ13(FVt−1) + εFI,t

σCI,t = α20 + α21Dum
Close + β21(σFI,t) + γ21(σFI,t−1) + γ22(σCI,t−1) + γ23(σFI,CI,t−1) + εCI,t

σCI,FI,t = α30 + α31Dum
Close + β31(σFI,t) + γ31(σFI,t−1) + γ32(σCI,t−1) + γ23(σFI,CI,t−1) + εFI,CI,t

(9)

OHR(6) =
σCI,FI,t+1

σ2
FI,t+1

(10)

As our preceding argument does not imply anything about the direction of causality, we

allow σFI,t to enter the σCI,FI,t equation. OHR(6) is presented in equation (10). Compared

to other hedge ratios, OHR(6) does not incorporate any volatility transmissions from related

options markets. However, it does consider time-varying covariance.

OHR(7) =
σCI,FI,t+1

σ2
FO,t+1

(11)

OHR(8) =
σCI,FI,t+1

σ2
ESV L,FI,t+1

(12)

The last two hedge ratios are based on hybrids projections from ESVL and/or SVL.

Outlined in equation (11), OHR(7) combines time-varying covariance forecasts generated

from equation (9) with potential incremental information from the implied variance of the FO

market. OHR(8) is presented in equation (12). Here, we combine σCI,FI,t forecasts generated

from the SVL with σFI,t forecasts generated from ESVL(FI). As such, OHR(8) is the only

hedge ratio in this paper that incorporates both spot-futures time-varying covariance and

volatility transmission from related option markets.
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4 Empirical results

4.1 Descriptive statistics and preliminary results

In Table 2, descriptive statistic for rCI,t and rFI,t are presented in Panel 1, the autocorrelation

of key variables in Panel 2, the correlation matrix of volatility and volume variables in Panel

3 and stationarity test statistics in Panel 4.

INSERT TABLE 2

To note, rFI,t is highly significant at the 13th lag. Since our sample consists of 13 half-

hourly return observations per trading day, the significant 13th lag could reflect time of the

day effect that is evident in most index futures markets. The strong correlation between σCI,t

and σFI,t is expected. Both σCI,t and σFI,t are also correlated with CVt and FVt respectively.

In contrast, the correlations between σCI,t and σIO,t as well as between σFI,t and σFO,t are

comparatively weaker. Lastly, σIO,t and σFO,t are not strongly correlated with each other,

suggesting that the two option markets are not necessarily close substitutes. Augmented

Dickey Fuller (ADF) test statistics indicate that cash index, futures prices and their tick

volumes are integrated of order one I(1), such that rCI,t, rFI,t, CVt and FVt are all stationary.

The volatility time series of the four S&P markets are also tested and found to be stationary.

4.2 Results from model estimates

First, we report GARCH estimation results. Potential higher-order GARCH-effects are in-

vestigated using nested tests, but additional parameters are found to be insignificant for

both σCI,t and σFI,t. The final GARCH specification for the CI and FI are determined from

a ’top-down’ approach based on Wald tests statistics and the AIC to systematically exclude

variables from the weighting series in the GARCH variance equation. As such, the specifi-
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cation of σCI,t is slightly different from σFI,t. Both are presented below with the coefficient

estimates and significance levels.

σ2
CI,t = 0.000a∗∗ + 0.1065∗∗(ε2

CI,t−1) + 0.7989∗∗(σ2
CI,t−1) + 0.000∗∗(DumOpen)

+ 0.0001∗∗(CVt−1) + 0.0001∗∗(FVt−1)

σ2
FI,t = 0.000 + 0.0389(ε2

FI,t−1) + 0.8857∗∗(σ2
FI,t−1) + 0.000∗(DumClose)

+ 0.021(σ2
IO,t−1) + 0.0001(CVt−1) + 0.0001∗∗(FVt−1)

a: * indicate significance at 5% level; ** indicate significance at 1% level.

Next, we discuss results from ESVL and SVL estimations. We perform two diagnostic

tests to improve the validity of the ESVL specifications. First, we test for significant au-

tocorrelations in the residuals, which is indicative of omission of other relevant variables.

Our preliminary analysis reveals significant auto-correlation in the residuals up to the sec-

ond order, which generates inefficient coefficient estimates. Accordingly, the estimation of

ESVL(CI) involves a two-step procedure. First, estimate ESVL(CI) according to equation

(6). This generates a series of residuals ui,t for each of the four equations. Next, include

ui,t−1 and ui,t−2 in their corresponding equations as additional variables to proxy for other

variables that are not explicitly considered. Table 3 reports an improvement in model fitting

from an increase in the log-likelihood function.

INSERT TABLE 3

Second, we test where the order in which volatility variables enter the various equations of

the system based on our assumed informational pecking-order is appropriate. We benchmark

each of the two ESVL models against two corresponding ESVL systems whether the order

of efficiency is intentionally specified to be in stark contrast with ESLV(CI) and ESVL(FI).

Table 4 reveals a huge difference in the log-likehood functions e.g. the log-likehood function
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for ESVL(CI) is 2138.01, whereas for its mis-specified counterpart, the value dropped to

1209.78. This suggests the importance of specifying the ESVL according to an appropriate

order of volatility transmission.

INSERT TABLE 4

ESVL(CI) and ESVL(FI) estimation results are reported in Table 5 and Table 6 re-

spectively. For ESVL(CI), σFI,t is significant in the σCI,t equation. DumOpen is significant

in all except the σFO,t equation. Lastly, all lag-1 volatility variables are significant in their

corresponding equations.

INSERT TABLES 5 and 6

Cross-market volatility transmission effects are more evident in ESVL(FI). Both σCI,t

and σFO,t are significant in the σFI,t equation. Both σFI,t and σIO,t are significant in the

σCI,t equation. Contemporaneous and lagged volatility from both CI and FI are significant

in the σFO,t equation. This may be indicative of volatility feedback from the underlying asset

to the futures index, and then from there back to the futures option market. Lagged residuals

are all significant in their corresponding equations.

INSERT TABLE 7

Lastly, we report SVL estimation results in Table 7. All own-market lag-1 volatilities are

significant. All lagged residuals are significant as well. Lagged futures tick volume is also

significant in the σFI,t equation. To note, σFI,t is significant and negative in the σCI,FI,t

equation. This result is consistent with our argument of an inverse relation between σFI,t

and σCI,FI,t since the futures market experiences more trading activity than the underlying

asset market in response to (say) unexpected macroeconomics news.
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5 Out-of-sample hedging performances

In this section, we evaluate the incremental profits from rebalancing the futures position

that competing OHRs generate over a static hedge. Indeed, given that true volatility is

unobservable, an economic evaluation in the context of an out-of-sample dynamic hedging

scheme is more meaningful than a statistical evaluation. To reiterate, our focus on incremen-

tal profits from rebalancing the futures position rather than the standard risk minimization

as our hedging performance criterion stems from the focus of our paper. We are interested

in whether incremental information in implied volatility translates into incremental profits

from rebalancing the futures position

5.1 Details of the hedging scheme

We consider hedging against the exposure of a long position in a widely-held index-tracking

portfolio with short positions in index futures contracts. We refer to the combined cash and

futures positions as our net position. A static hedge involves no interim re-balancing during

the hedging period. In contrast, a dynamic hedge involves interim re-balancing of the futures

position during the hedging period, thereby accumulating interim profits or losses. In our

dynamic hedging scheme, we consider the following scenario. An institutional trader owns a

USD 5 million (m) widely-held equity portfolio that is very highly correlated with the S&P

500 index.19 The objective is to protect the portfolio against market downside risk, and S&P

500 futures contracts is the only hedging instrument that will be considered.

The size of the futures position is also affected by VCI,t and VFI,t. The latter is calculated

as VFI,t = pFI,t × 500 i.e. the time t futures price times the contract multiplier of USD

500 per index point. Note that VCI,t=0= USD 5m. Let VCI,t=1 = 5m × (1 + rCI,t=1) and

VCI,t=2 = VCI,t=1×(1+rCI,t=2) etc. Accordingly, the half-hourly profit/loss from the physical

19As mentioned in the introduction, we assume the S&P 500 index as our physical portfolio.
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portfolio at time t is VCI,t − VCI,t−1. The change in value of a futures contract at time t is

(pFI,t−pFI,t−1)×500. Since these are short positions, a profit arises when (pFI,t−pFI,t−1) < 0.

The interim profit from re-balancing the futures position at time t is calculated as (VFI,t−1−

VFI,t)× (Nt−1 −Nt−2), where (Nt−1 −Nt−2) is the ‘Number of contracts rebalanced at time

t-1’.20 To elaborate, if (Nt−1 −Nt−2) = +4, this implies that an additional 4 contracts were

shorted at time t − 1. Subsequently, if the value of the futures contract decreases between

time t− 1 and time t e.g. VFI,t−1− VFI,t=+1000, then the interim profit at time t generated

from the rebalancing at time t− 1 is $4,000. If Nt−1 −Nt−2 = 0, this implies no rebalancing

is required at time t− 1, such that the interim profit for time t is zero.

Time series plots reveal that ESVL-based OHRs exhibit more intraday variability relative

to both GARCH-based OHR and IHR. Accordingly, in the hedging exercise, we allow interim

rebalancing as frequently as every half-hour, which implies that rebalancing will occur more

often for ESVL-based OHRs. However, this does not necessarily imply that that ESVL-

based OHRs will be more profitable given the presence of transaction costs and the fact that

some rebalancing transactions will generate interim losses. Intraday rebalancing does occur

for certain OHRs on some days during the test period. However, consecutive half-hourly

rebalancing seldom occurs. As our test sample covers the second half of 1990, we conduct

our hedging exercise separately on the September and December contracts. We assume that

the institutional investor rolled over from the September to December contract after the 8th

trading day in September 1990, which is consistent with our sampling procedure.

5.2 Incremental profit results

The incremental profits generated by competing OHRs are reported in Table 8. In the

September quarter of 1990, the US equity market experienced a sharp downturn. This is

20Note that ‘N’, which represents the number of futures contracts, is always positive. The ‘No. of contracts
rebalanced at time t-1’ is defined as (Nt−1 − Nt−2). As such, if Nt−1 = 5 and Nt−2 = 3, then the ‘No. of
contracts rebalanced at time t-1’ is +2, which implies shorting an additional two futures contracts.
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followed by a moderate recovery in the December quarter. The value of the physical portfo-

lio decreased by $771,716 or 15.43% in the September quarter. While it gained back $150,458

by the end of the December quarter, what transpired is an overall half-year loss of 12.43%

on the initial investment value of $5m. The static hedge in OHR(1), which is ranked third

overall, performed surprisingly well. By construction, OHR(1) is the only hedge ratio that

counter-balances any profit (loss) from the the physical portfolio. However, OHR(1) is unable

to completely preserve the value of the physical portfolio, and resulted in an overall loss of

$165,858. However, this is still better than having an unhedged position .

INSERT TABLE 8

Next, the table shows that OHR(5) and OHR(8), which are generated from ESVL(CI)

and ESVL(FI), clearly outperform all other OHRs considered in this paper. In addition to

being the only two hedge ratios that outperform the static hedge OHR(1), these ESVL-

based OHRs are also the only OHRs that manage to generate sufficient profits from interim

rebalancing to cover the overall loss of $621,258 incurred by the physical portfolio during the

test period. The enhanced GARCH-based OHR(3) is ranked fourth overall. It performs well

in that it is able to generate interim profits of $52,325 and $15,775 from both the September

and December contracts, although its overall profit of $68,100 is lower than that of the static

hedge. Despite incorporating additional volatility variables in the weighting series, OHR(3) is

overshadowed by the ESVL-based OHRs. Similar comments apply to OHR(4) and OHR(7),

the two OHRs based on implied volatilities from the IO and FO markets.

OHR(6), which focuses on modeling time-varying covariance between the spot and futures

prices, performed poorly. It improves the unhedged position by a modest $20,125. The latter

consists of a loss of $39,175 in the September contract and a profit of $59,300 in the December

contract. To note, the gain and loss in the futures position generated by OHR(6) are in the

same direction as that of the underlying portfolio. This implies that OHR(6) exacerbates
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the variability of the overall position, rather than reducing it. OHR(2), which is based on

the standard GARCH(1,1), is ranked last. It generates losses from both contracts, with an

accumulated loss of $313,050 in the futures position alone.

We draw two implications from the preceding results. First, the findings support our

proposition that incorporating incremental information from implied volatilities to generate

the OHR projections translates into incremental profits from interim balancing the futures

position. OHRs based solely on cash-futures data or options data, have all under-perform

OHRs derived from a combination of cash, futures and options data, with the exception of the

static hedge. The enhanced GARCH-based OHR(3) is superior to OHR(4), which is based

solely on implied volatilities. It also outperforms OHR(6) and OHR(2), although OHR(3)

itself failed to outperform the static hedge. Second, the profit dominance of ESVL-based

OHR(5) and OHR(8) over OHR(3) suggests that the ESVL framework is more suitable than

GARCH (1,1) at modeling intraday volatility transmission across the four S&P markets for

the purpose of making out-of-sample OHR projections.

In general, the consideration of transaction costs offers a realistic balance of the incremen-

tal costs and benefits from interim rebalancing when bench-marked against a static hedge.

However, we argue that transaction cost is a moot consideration for our paper. This is be-

cause most of the OHRs we consider, including GARCH, SVL and implied volatility, are

already ranked below the static hedge OHR(1) based on gross profit. On the other hand, the

ESVL-based OHR(5) and OHR(8) do instigate very frequent re-balancing of large numbers of

futures contracts throughout the test period. It is obvious that any interim rebalancing based

on either OHR(5) or OHR(8) will accumulate the most transaction costs. However, note the

extravagant incremental profits from OHR(5) and OHR(8) of $1,591,700 and $1,545,225

correspondingly from rebalancing the September contract, and $145,450 and $150,100 from

rebalancing the December contract. For the combined September and December futures po-

sitions, each of OHR(5) and OHR(8) generated interim profits that is approximately 2.5
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times the loss incurred by the physical portfolio. The presence of transaction cost is unlikely

to alter the extreme dominance of the ESVL-based OHRs over the static OHR(1).

6 Conclusion

If option markets contribute incremental information to their underlying asset markets, then

incorporating implied volatility into modeling and forecasting dynamic hedge ratios should

translate into incremental profits from interim rebalancing. Our results support this proposi-

tion. In addition, we show that such cross-market volatility transmission effects are captured

by a system of simultaneous volatility equations. Hedge ratios generated from extended

volatility systems ESVL, which incorporate intraday volatility transmissions across all four

S&P 500 cash, futures, index option and futures option markets, significantly outperform all

other competing OHRs considered in this paper.

Furthermore, the ESVL-based OHRs are the only hedge ratios that manage to gener-

ate profit from rebalancing the futures positions across both the September and December

contracts in excess of the losses incurred by the physical portfolio. In fact, the extravagant

profit results reported in Table 8 should attract considerable attention not only from hedgers.

Since institutional speculators do not hold the physical portfolio, their focus is solely on the

profit/loss generated from actively rebalancing the futures position based on a time-varying

measure of the cash-futures sensitivity. The out-of-sample OHR projections can be easily

applied in a trading strategy using index futures.
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Appendix: Deriving the reduced-form of ESVL(CI)

The appendix provides details on a time-series of σCI,t+1 is generated from equation (6) for
constructing hedge ratios. To note, a similar methodology applies for generating a time-series
of σFI,t+1. The key step involves deriving the reduced-form σCI,t equation corresponding to
equation (6). We show that the reduced-form σCI,t equation contains only lagged volatility
variables, which is required to be able to generate 1-step ahead forecasts of σCI,t+1. The
coefficients of the reduced-form σCI,t are functions of coefficients from the structural system.
These coefficients are derived by fitting the structural system with sample over the estimation
period. These, together with time t volatility variables, allows us to obtain σCI,t+1. After each
forecast, the estimation period is expanded by 1 observation; the coefficients are updated and
σCI,t+1 is calculated as per normal. This recursive process generates a time-series of σCI,t+1.
To note, while generating such hedge ratios may seem computationally tedious, but since
the projections are made 1-step at a time, the coefficients are stable even as we sequentially
move across the test period. Thus updating the coefficient estimates is fairly easy.

The following describes the substitution process based on equation (6) to obtain the
reduced-form σCI,t. The discussion emphasizes only on the contemporaneous volatility vari-
ables. Denote the individual equations in the system below as A1, A2, A3 and A4.

σCI,t = α10 + α11Dum
Open + β11(σFI,t) + β12(σIO,t) + γ11(σCI,t−1) + γ12(σFI,t−1) + γ13(CVt−1) + εCI,t

σFI,t = α20 + α21Dum
Open + β21(σCI,t) + β22(σFO,t) + γ21(σCI,t−1) + γ22(σFI,t−1) + γ23(σFO,t−1) + εFI,t

σIO,t = α30 + α31Dum
Open + β31(σCI,t) + β32(σFO,t) + γ31(σCI,t−1) + γ32(σIO,t−1) + γ33(σFO,t−1) + εIO,t

σFO,t = α40 + α41Dum
Open + β41(σCI,t) + β42(σFI,t) + γ41(σCI,t−1) + γ42(σFI,t−1) + γ43(σFO,t−1) + εFO,t

First, note that the σFO,t equation contains (σCI,t, σFI,t) and the σFI,t equation contains
(σCI,t, σFO,t). Accordingly, substituting σFO,t into σFI,t allows us to express σFI,t in terms
of σCI,t. Second, substitute σFI,t in terms of σCI,t into σFO,t, such that σFO,t can also be
expressed entirely in terms of σCI,t. Third, substitute σFO,t in terms of σCI,t into σIO,t, such
that σIO,t can also be expressed entirely in terms of σCI,t. Lastly, substitute σFI,t and σIO,t
in terms of σCI,t into σCI,t, thereby obtaining the reduced-form σCI,t, which is expressed
entirely in terms of lagged volatility variables.
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From equation A4:

β22σFO,t =β22β41σCI,t + β22β42σFI,t

+β22[α40 + α41Dum
Open + γ41(σCI,t−1) + γ42(σFI,t−1) + γ43(σFO,t−1) + εFO,t]

Substitute preceding into equation A2 and label as equation A5:

σFI,t =α20 + α21Dum
Open + β21(σCI,t) + β22β41σCI,t + β22β42σFI,t

+β22[α40 + α41Dum
Open + γ41(σCI,t−1) + γ42(σFI,t−1) + γ43(σFO,t−1) + εFO,t]

+γ21(σCI,t−1) + γ22(σFI,t−1) + γ23(σFO,t−1) + εFI,t

σFI,t =
β21 + β22β41

1− β22β42

σCI,t +
1

1− β22β42

[α20 + α21Dum
Open + (γ21 + β22γ41)σCI,t−1

+ (γ22 + β22γ41)σFI,t−1 + (γ23 + β22γ43)σFO,t−1 + β22εFO,t + εFI,t]

Substitute equation A5 into A4 and label as equation A6:

σFO,t =β41σCI,t +
β42

1− β22β42

[(β21 + β22β42)σCI,t + (α20 + β22α40) + (α21 + β22α41)Dum
Open

+(γ21 + β22γ41)σCI,t−1 + (γ22 + β22γ42)σFI,t−1 + (γ23 + β22γ43)σFO,t−1 + β22εFO,t + εFI,t]

+α40 + α41Dum
Open + γ41σCI,t−1 + γ42σFI,t−1 + γ43σFO,t−1 + εFO,t

σFO,t =
β41 + β21β22

1− β22β42

σCI,t +
1

1− β22β42

[(α40 + α20β42)Dum
Open

+(γ41 + γ21β42)σCI,t−1 + (γ42 + γ22β42)σFI,t−1 + (γ43 + γ23β42)σFO,t−1 + β42εFI,t + εFO,t

Substitute equation A6 into A3 and label as equation A7:

σIO,t =β31σCI,t + β32
β41 + β21β22

1− β22β42

σCI,t +
β32

1− β22β42

[(α40 + α20β42)Dum
Open

+(γ41 + γ21β42)σCI,t−1 + (γ42 + γ22β42)σFI,t−1 + (γ43 + γ23β42)σFO,t−1 + β42εFI,t + εFO,t]

+α30 + α31Dum
Open + γ31(σCI,t−1) + γ32(σFI,t−1) + γ33(σFO,t−1) + εIO,t

σIO,t =
β31 + β32β41 + β21β22β32 − β22β31β42

1− β22

σCI,t +
1

1− β22β42

[(β30 + β40β32 + α20β32β42 − α30β22β42)

+(α31 + α41β32 + α21β32β42 − γ31β22β42)(Dum
Open + σCI,t−1)

+(α32 + γ42β32 + γ22β32β42 − γ32β22β42)σFI,t−1 + (γ33 + γ43β32 + γ23β32β42 − γ33β22β42)(σFO,t−1)

+β32(εFO,t−1 + β42εFI−t) + εIO,t]
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Substitute equations A5 & A7 into A1 to obttain the reduced-form.

σCI,t =β11
β21 + β22β41

1− β22β42

σCI,t +
β11

1− β22β42

[(α20 + α40β22) + (α21 + α41β22)Dum
Open

+(γ21 + β22γ41)σCI,t−1 + (γ22 + β22γ42)σFI,t−1 + (γ23 + β22γ43)σFO,t−1 + β22εFO,t + εFI,t]

+β12
β31 + β32β41 + β21β22β32 − β22β31β42

1− β22β42

σCI,t

+
β12

1− β22β42

[(α30 + α40β32 + α20β32β42 − α30β22β42) + (α31 + α41β32

+α21β32β42 − γ31β22β42)Dum
Open

+(α31 + α40β32 + α21β32β42 − γ31β22β42)σCI,t−1 + (α32 + γ42β32 + γ22β32β42 − γ32β22β42)σFI,t−1

+(γ33 + γ43β32 + γ23β32β42 − γ33β22β42)σFO,t−1

+β32(εFO,t + β42εFI,t) + εIO,t]

σCI,t =
β11

A
[(α20 + α40β21) + (α21 + α41β22)Dum

Open

+(γ21 + γ41β22)σCI,t−1 + (γ22 + γ42β22)σFI,t−1 + (γ23 + γ43β22)σFO,t−1 + εFI,t

+
β12

A
[(α30 + α40β32 + α20β32β42 − α30β22β42) + (α31 + α41β32 + α21β32β42 − α31β22β42)Dum

Open

+(α31 + α41β32 + α21β32β42 − α31β22β42)σCI,t−1 + (α32 + γ42β32 + γ22β32β42 − γ32β22β42)σFI,t−1

+(γ33 + γ43β32 + γ23β32β42 − γ33β22β42)σFO,t−1 + β32(εFO,t + β42εFI,t) + εIO,t]

where A = (1−β22β42 +β11β21 +β11β22β41 +β12β31 +β12β32β41 +β12β21β22β32−β12β22β31β42)

The preceding demonstrates that equation (6) can be ‘collapsed’ to express σCI,t in terms
of lag-1 volatility variables.
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Table 1: The list of competing hedge ratios 

OHR (1)  Naïve Hedge 

OHR (2)  Constant Covariance Bivariate GARCH(1,1) 

OHR (3)  Constant Covariance Bivariate (Enhanced) GARCH(1,1) 

OHR (4)  Constant Covariance IHR 

OHR (5)  Constant Covariance ESVL(CI) and ESVL(FI) 

OHR (6)  SVL 

OHR (7)  Time Varying Covariance IHR 

OHR (8)  Time Varying Covariance SVL, ESVL(CI) and ESVL(FI) 

 

 

 

 
Table 3: Log-likelihood function of the ESVL models and their augmented counterparts 

 ESVL(CI) with 
lagged residuals ESVL(CI) ESVL(FI) with 

lagged residuals ESVL(FI) 

Log-likelihood 
function 2138.01 2094.51 1872.68 1647.87 

 
Note: Strictly speaking, evaluation on improved model fitting where competing models are of different dimension has to 
be made based of other information criteria like the Schwartz-Bayesian Information Criteria (SBIC), or the Akaike 
Information Criterion (AIC). However, the vast improvement in parameter significance and the removal of auto-
correlation in the disturbance terms of the augmented ESVL models are adequate justification to favor applying the 
augmented versions of the ESVL models. 
 

 

 

 
Table 4: Log-likelihood of ESVL models and mis-specified-ESVL models 

 ESVL 
(CI) Mis-specified ESVL(CI)  ESVL (FI) Mis-specified 

ESVL(FI)  
Log-likelihood 

function 2138.01 1209.78 1872.68 1650.41 

 
Note: Here, model evaluation can be made based solely on the log-likelihood function since the corresponding 
competing models are of identical dimensions. 
 



Table 2: Descriptive statistics of return, volatility and volume 

 

Panel A: Descriptive statistics 
 Mean Min Max Median Std dev Skewness Excess 

kurtosis 
,C I tr  0.0000058 -0.02057 0.030119 0.000058 0.002156 -0.29727 15.27724 

,F I tr  0.0019101 -0.037979 0.10251 0.000148 0.009579 5.31734 33.55719 
 

Panel B: Autocorrelation features 
Lag PACF 

,C I tr  
Q(k) of 

DXb 
PACF 

,F I tr  
Q(k) of 

DX2 
PACF 

,C I tσ  
Q(k) of 

DX 
Q(k) of 

DX 
PACF 

,F I tσ  
1 0.0978* 60.2* -0.0476 14.2* 0.184* 213* -0.0132 1.09 
2 0.0171 64.6* -0.0277 18.3* 0.113* 342* -0.0153 2.54 

5 0.0197 67.2* -0.0500* 48.3* 0.0277* 508* -
0.0421* 25.9* 

10 0.0362* 83.3* -0.0589* 96.7* 0.0395* 615* 0.0415* 74.9* 
13 0.0117 85.8* 0.929* 5580* 0.0644* 827* 0.959* 5890* 
26 0.0086 105* 0.437* 11100* 0.1011* 1380* 0.386* 11700* 

 

Panel C: Correlation matrix 
 2

,C I tσ  2
,F I tσ  2

,F O tσ  2
,IO tσ  

tC V  tF V  td C V  td F V  
2

,C I tσ  1        
2

,F I tσ  0.2280 1       
2

,F O tσ  -0.0233 -0.0054 1      
2

,IO tσ  0.0722 -0.0009 -0.0414 1     

tC V  0.3113 0.1738 -0.0490 0.0682 1    

tF V  0.3803 0.2938 -0.0451 0.0287 0.3944 1   

td C V  0.1665 0.0313 -0.0023 0.0042 0.4905 0.1236 1  

td F V  0.2379 0.2451 -0.0112 0.0023 0.1084 0.3912 0.2685 1 
 

Panel D: ADF statistics 
ADF 

Test 2 ,CI tp  ,FI tp  2
,C I tσ  2

,F I tσ  2
,F O tσ  2

,IO tσ  
tC V  tF V  

Test 
statistics -0.2464 -1.9394 -13.53* -3.973* -12.195* -10.14* -1.49 -1.89 

Max lag 1 18 13 13 15 9 12 13 
* indicates significant at 5% level. 
a If the Autocorrelation coefficient (Partial Autocorrelation Function or PACF) lies within the 95% confidence interval range, 
it is not significant. The 95% confidence interval for the PACF is (-0.0247, 0.0247). 
b Q(k) is the Ljung-Box test-statistics of joint significance for first to kth order Autocorrelation, and is χ2-distributed. 

 



Table 5: Results from the FIML estimation on the ESVL(CI) 

 ,CI tσ  ,FI tσ  ,IO tσ  ,FO tσ  

Constant -0.0751 0.0581 0.0157 -2.9534 
(0.150)a (0.003)** (0.340) (0.809) 

openDum  -2.3323 1.3919 -0.0162 -102.173 
(0.007)** (0.000)** (0.008)** (0.754) 

,CI tσ  ~ 0.3875 0.0418 -48.1824 
(0.159) (0.8580) (0.739) 

,FI tσ  1.6797 ~ ~ 73.5818 
(0.007)**     (0.754) 

,IO tσ  0.01124 
~ ~ ~ (0.535) 

,FO tσ  
~ 

-0.0002 -0.0013 
~ (0.966) (0.874) 

, 1CI tσ −  -0.0691 0.0582 -0.0104 -1.1531 
(0.378) (0.061) (0.780) (0.948) 

, 1FI tσ −  -0.0012 0.0034 
~ 

-0.0627 
(0.909) (0.587) (0.969) 

, 1IO tσ −  
~ ~ 

0.8584 
~ (0.000)** 

, 1FO tσ −  
~ 

0.0001 0.0011 0.9183 
(0.983) (0.886) (0.000)** 

1tCV −  -0.0001 
~ ~ ~ (0.310) 

, 1C I tu −  -0.0069 
~ ~ ~ (0.880) 

, 2C I tu −  0.0484 
~ ~ ~ (0.228) 

, 1FI tu −  
~ 

0.0157 
~ ~ (0.707) 

, 2FI tu −  
~ 

0.0380 
~ ~ (0.247) 

, 1IO tu −  
~ ~ 

-0.0238 
~ (0.054) 

, 2IO tu −  
~ ~ 

0.0364 
~ (0.043)* 

, 1FO tu −  
~ ~ ~ 

-0.2283 
(0.000)** 

, 2F O tu −  
~ ~ ~ 

-0.0196 
(0.702) 

a p-values in parentheses 
** significant at 1% level 
*   significant at 5% level 
 



Table 6: Results from the FIML estimation on the ESVL(FI) 

 ,CI tσ  ,FI tσ  ,IO tσ  ,FO tσ  

Constant 0.4352 -162.222 -0.0114 -133.240 
(0.000)a** (0.027)* (0.995) (0.000)** 

closeDum  0.3031 -50.0409 0.1591 -82.7965 
(0.000)** (0.287) (0.982) (0.000)** 

,CI tσ  
~ 

129.865 -0.0610 4.1211 
(0.023)* (0.875) (0.038)* 

,FI tσ  -0.6375 
~ ~ 

1740.69 
(0.000)** (0.000)** 

,IO tσ  
~ 

10646.3 
~ ~ (0.006)** 

,FO tσ  0.1646 
~ 

0.3556 
~ (0.019)* (0.088) 

, 1CI tσ −  0.1908 156.525 -0.1647 -40.9111 
(0.001)** (0.053) (0.840) (0.001)** 

, 1FI tσ −  
~ 

63.9502 
~ 

-118.136 
(0.842) (0.000)** 

, 1IO tσ −  
~ 

-9762.23 0.9682 
~ (0.004)** (0.000)** 

, 1FO tσ −  -0.1659 
~ 

-0.2979 1.5648 
(0.127) (0.102) (0.644) 

1tFV −  -4029 
~ ~ ~ (0.567) 

, 1C I tu −  378.8470 
~ ~ ~ (0.000)** 

, 2C I tu −  -203.605 
~ ~ ~ (0.000)** 

, 1F I tu −  
~ 

1.2902 
~ ~ (0.003)** 

, 2FI tu −  
~ 

0.2994 
~ ~ (0.022)* 

, 1IO tu −  
~ ~ 

-0.2888 
~ (0.000)** 

, 2IO tu −  
~ ~ 

-0.1597 
~ (0.002)** 

, 1F O tu −  
~ ~ ~ 

-0.9268 
(0.000)** 

, 2F O tu −  
~ ~ ~ 

0.3531 
(0.000)** 

a p-values in parentheses 
** significant at 1% level 
*   significant at 5% level 
 

 



Table 7: Results from the FIML estimation on SVL 

 ,FI tσ  ,CI tσ  , ,CI FI tσ  

Constant -7.5256 -1.0675 -46.3706 
(0.000)** (0.573) (0.000)** 

closeDum  0.3108 -1.1309 -0.7649 
(0.093) (0.001)** (0.000)** 

,FI tσ  
~ 

-0.0414 -0.2503 
(0.669) (0.049)* 

,CI tσ  ~ ~ ~ 

, 1FI tσ −  -1.3060 
~ ~ (0.000)** 

, 1CI tσ −  
~ 

1.0742 0.3628 
(0.000)** (0.000)** 

σ t
CI FI
−1

,  0.0667 0.2191 5.6177 
(0.197) (0.153) (0.000)** 

1tFV −  0.0117 
~ ~ (0.005)** 

, 1F I tu −  -0.4869 
~ ~ (0.001)** 

, 2FI tu −  -0.0794 
~ ~ (0.000)** 

, 1C I tu −  
~ 

-1.1272 
~ (0.000)** 

, 2C I tu −  
~ 

-0.1377 
~ (0.000)** 

, , 1C I F I tu −  
~ ~ 

-5.6253 
(0.000)** 

, , 2C I FI tu −  
~ ~ 

-0.8211 
(0.000)** 

a p-values in parentheses 
** significant at 1% level 
*   significant at 5% level 



Table 8: Out-of-sample incremental profits generated by competing hedge ratios 

OHR 

ranking 
 

Profit from 
Sep 

contract 

Profit from 
Dec 

contract 

Profit from 
both contracts 

Combined 
cash & 
futures 
position 

1st place 
OHR (5) 

Constant covariance 
ESVL(CI) & ESVL(FI) $1,591,700 $145450 $1,737,150 $1,115,892 

2nd place 
OHR (8) 

Time varying covariance 
SVL, ESVL(CI) & 

ESVL(FI) 
$1,545,225 $150,100 $1,695,325 $1,074,067 

3rd place 
OHR (1) Static hedge $478,800 $(23,400) $455,400 $(165,858) 

4th place 
OHR (3) Enhanced GARCH (1,1) $52,325 $15,775 $68,100 $(553,158) 

5th place 
OHR (7) 

Time varying covariance 
IHR $13,025 $19,225 $32,250 $(589,008) 

6th place 
OHR (4) Constant covariance IHR $12,400 $18,300 $30,700 $(590,558) 

7th place 
OHR (6) SVL $(39,175) $59,300 $20,125 $(601,133) 

8th place 
OHR (2) GARCH (1,1) $(239,425) $(73,625) $(313,050) $(934,308) 

Profit/Loss from the physical portfolio $(771,716) $150,458 $(621,258) $(621,258) 
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