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Chapter 1

Abstract

The market for credit derivatives is growing rapidly. The credit derivative market’s global size was estimated
to be $100 billion to $200 billion in 1996. The British Bankers Association estimated that the size was $1.6
trillion in 2001. Now the size is about $62 trillion [10]. The demand is strong because credit derivatives
provide varieties that can fit different clients.

The fundamental credit derivative is the defaultable bond. When pricing defaultable bonds, we need to
consider not only the face value and the coupon of the bonds but also the default risk. Bonds with high
default risk should be cheaper than bonds with low default risk.

In this paper, we derive PDE models to price credit derivatives. In Chapter 2, we will discuss the reduced
form approach, which is the popular method used in pricing a credit derivative. The reduced form approach
models the default probability without considering the value of the firm [1]. The main idea is the yield
spread, i.e. the difference between the yield of a defaultable bond and the yield of a default-free bond.
Under the approach Li [13] concludes that the yield spread is attributed to two components, the default
probability and the recovery rate, i.e. the fraction of the bond’s face value paid in case of default. The
reduced form approach is easy to calibrate because we can obtain the data of the yield spread from the
market easily. However the yield spread is not only caused by these two components in the real world.
Longstaff [15] mentions that the yield spread also may be caused by the liquidity.

In Chapter 3 we introduce the structural approach to price of defaultable bonds. The structural approach
models default risk by modeling the value of a firm directly [1]. Under the structural approach, the pricing
PDE is a 1-D PDE with a moving boundary. We assume that the interest rate is a constant in Chapter
3. But interest rates are an important factor when pricing bonds, so we introduce stochastic interest rate
models in Chapter 4.

In Chapter 5, we review the papers that price defaultable bonds with a stochastic interest rate. One derives
the fundamental PDE. There are analytic solutions for the PDEs, if the model of the interest rate is simple
enough. If the model of the interest rate is complicated, however one has to use numerical methods in solving
the PDEs.

We introduce a new method to price the most popular credit derivative in the market: the credit default
swap (CDS) in Chapter 6. The CDS is a kind of insurance that protects the buyer of the CDS when a default
event occurs. As a traditional insurance, the protection buyer makes regular premium payments quarterly
or semiannually. When the default event occurs, the protection seller pays par value of the bond to the
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buyer, the buyer physically delivers the bond to the seller, and the buyer ceases paying premiums. From the
fundamental PDE in Chapter 5, we derive the PDE in Chapter 6 with a better interest rate model to price
a CDS and discuss the issues we will face when solving it numerically.
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Chapter 2

Pricing defaultable derivatives with
the reduced form approach

In order to price defaultable bonds with the reduced form approach. Here we follow Li’s paper [13] to
construct the credit curve, which is the default probability of an firm over various time horizons. He uses
real data from the market to plot the yield spread curve. From that, the credit curve can be constructed.
Then he can price default derivatives.

The following are the steps to price the defaultable bonds by the reduced form approach: First, one defines
the survival function. Assuming the default event occurs at time τ and F (t) ≡ P (τ ≤ t) denotes the
probability of the default event occurring before time t and

f (t) = F ′ (t) , (2.1)

is the default density function. Then we can define the {survival function} as

S (t) = 1− F (t) . (2.2)

Here S (t) means the probability that there is no default event in [0, t]. Then we know that the instantaneous
marginal default probability is

P (x < τ < x+△x|τ > x) =
P (x < τ < x+△x)

P (τ > x)
(2.3)

=
F (x+△x)− F (x)

1− F (x)
=

f (x)

1− F (x)
△x. (2.4)

Here, we can define {default intensity function},

h (x) =
f (x)

1− F (x)
= −S′ (x)

S (x)
. (2.5)

We can rewrite S (t), F (t) and f (t) as functions of the default intensity function. When we integrate
both sides of (2.5),

S (t) = e−
∫ t
0
h(s)ds (2.6)

and
F (t) = 1− S (t) = 1− e−

∫ t
0
h(s)ds. (2.7)
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Taking the derivative of (2.7),
f (t) = h (t) e−

∫ t
0
h(s)ds. (2.8)

Given that there is no default event in [0, x], the probability that no default event occurs in [x, t] is
P (τ − x > t|τ > x), which is denoted by tpx. We can see that tpx is also a function of the default intensity
function

tpx =
S (x+ t)

S (x)
= e−

∫ x+t
x

h(s)ds. (2.9)

If t = 1 we have notation that
1px = px. (2.10)

In order to price a defaultable bond, Li [13] assumes it pays coupons C1, C2, ...Cn at times t1, t2, ..., tn,
and D(t0, t1) is the discount factor. Let R(ti) be the recovery rate which means the fraction of the bond’s
face value paid in case of default. In the interval [ti, ti+1], if there is no default event, the bond price is
Ci+1 + V (ti+1), where V (ti+1) is the bond price at time ti+1. If the default event occurs in the [ti, ti+1], the
bond price is R(ti) [Ci+1 + V (ti+1)]. Assume that pi is the marginal survival probability, Li have the bond
price at ti is

V (ti) =
D(t0, ti+1)

D(t0, ti)
pi (Ci+1 + V (ti+1)) + (1− pi)R(ti) [Ci+1 + V (ti+1)] (2.11)

=
D(t0, ti+1)

D(t0, ti)
{[pi + (1− pi)R(ti)] [Ci+1 + V (ti+1)]}. (2.12)

By recursion and V (tn) = 0, we have

V (t0) =

n∑
i=1

D(t0, ti)


i−1∏
j=0

[pj + (1− pj)R(tj+1)]

Ci. (2.13)

Let the credit discount factor be

DC(ti) =
i−1∏
j=0

[pj + (1− pj)R(tj+1)] (2.14)

and the credit risk adjusted discount factor be

Q(t0, t1) = D(t0, t1)DC(ti). (2.15)

Here the credit discount factor is the fraction of coupon payments attributed to the probability of default.
The credit risk adjusted discount factor is the discount factor that is adjusted by the credit discount factor.
By rewriting (2.13), the price of a defaultable bond is

V (t0) =
n∑

i=1

Q(t0, t1)Ci. (2.16)

By using (2.9) and approximating ex ≈ 1 + x, Li [13] expands the discrete time model to the following
continuous time model.

pj + (1− pj)R(tj+1) ≈ e
−(1−R(tj+1))

∫ tj+1
tj

h(s)ds
, (2.17)

so

DC(ti) =

i−1∏
j=0

[pj + (1− pj)R(tj+1)] ≈ e
−

i−1∑
j=0

(1−R(tj+1))
∫ tj+1
tj

h(s)ds

. (2.18)

If there are n partitions in (t0, ti),

lim
n→∞

DC (ti) = e−
∫ ti
t0

[1−R(tj+1)]h(s)ds, (2.19)
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In the continuous time model, the discount factor is

D (t0, ti) = e−
∫ ti
t0

r(s)ds. (2.20)

Therefore the price of the defaultable bond is

V (t0) =
n∑

i=1

Cie
−

∫ ti
t0

r(s)+(1−R(s))h(s)ds. (2.21)

Here Si = (1−R (ti))h (ti) is called the yield spread or the risk premium. After having the risk premium,
we can price default derivatives.

Reduced form models are characterized by strong data fitting ability, but they have poor predictive
ability in the empirical study of Arora et al. [18]. Also, reduced form models underperform structural
models across large and small firms in this empirical study. Furthermore, in reduced form models, the yield
spread only has two components, namely the default intensity function and the recovery rate, but there are
more than two components in the yield spread, like the liquidity mentioned in Longstaff’s paper [15]. For
these reasons, we are going to introduce structural models in the next chapter.
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Chapter 3

Pricing a defaultable bond with
structural approaches

In order to price a defaultable bond with structural approaches, one assumes that the value of the firm’s
assets follows a stochastic process. If the value of the firm is lower than a certain threshold, the firm would
immediately default. There are two popular structural models. One is Merton’s model [16]. Merton assumes
that the value of the firm’s assets is a stochastic process and the default event means the stochastic process
touches the default boundary. He assumes that the value of the firm’s assets follows a Geometric Brownian
motion, so that the pricing formula of defaultable bonds is the same as the pricing formula of European
options. The other is Black and Cox’s model [2]. Whereas Merton assumes that a default event can only
occur at the maturity date, Black and Cox assume that default may occur before that. For that reason,
the pricing PDE of Black and Cox’s model has a moving boundary, but Merton’s model does not. We will
discuss the details in following sections.

3.1 Black and Cox’s model

Black and Cox [2] develop a model that allows a company to default before maturity. In this case, if we
assume that the value process V is a Geometric Brownian motion, r is the constant risk-free rate, u (V, t) is
the price of the defaultable bond and L is the par value of the defaultable bond, there is a PDE that can be
used in pricing the credit risk derivatives:

ut (V, t) + (r − k)V uV (V, t) +
1

2
σ2
V V

2uV V (V, t)− ru (V, t) = 0, (3.1)

with the final condition
u (V, T ) = min� (V, L) , (3.2)

and the boundary condition

u
(
Ke−r(T−t), t

)
= βLe−r(T−t) = Ce−r(T−t), (3.3)

where β is the recovery rate and βL = C. Furthermore, k is the constant payout ratio (dividend). The
parameter K is a quantity given in the safety covenant, where K satisfies 0 < K < L. If K is large, the
bond buyer is highly protected. The bond is easy to default, but the bond buyer can receive almost as much
as L when the default occurs. The default condition is V < vt, where vt = Ke−r(T−t) for t < T and vt = L
for t = T . Here Black and Cox assume K = C.
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3.2 Solving the moving boundary problem

From the last section, we see that Black and Cox’s [2] model generates a moving boundary condition.
However the moving boundary condition is an issue when approximating the solution numerically. As the
boundary moves, there is a gap between the previous boundary and the boundary in next time step. We
have to interpolate the mesh in this gap which causes error. For that reason, we try to avoid the moving
boundary by fixing the boundary. In order to fix the boundary, we change variables from V to ε. ε here
is always between 0 and 1, so the boundary does not move in the transformed space. Additionally, after
changing variables, the coefficients become the function of τ , for

u (V, t) = u (ε, τ) (3.4)

and
A (t) = Ce−r(T−t) (3.5)

by
V = A (t) + ε (Vmax −A (t)) (3.6)

τ = T − t (Solve it backward). (3.7)
By the chain rule we have

∂u

∂V
=

∂u

∂ε

∂ε

∂V
=

∂u

∂ε

1

Vmax −A (T − τ)
(3.8)

∂u

∂t
=

∂u

∂τ

∂τ

∂t
+

∂u

∂ε

∂ε

∂t
(3.9)

= −∂u

∂τ
+

∂u

∂ε

A′ (T − τ) (V − Vmax)

(Vmax −A (T − τ))
2 (3.10)

∂2u

∂V 2
=

∂

∂V

(
∂u

∂ε

∂ε

∂V

)
=

∂2u

∂ε2

(
1

Vmax −A (T − τ)

)2

. (3.11)

So the original PDE with a moving boundary becomes

−uτ+

[
(r − k)V

Vmax −A (T − τ)
+

(V − Vmax)A
′ (T − τ)

(Vmax −A (T − τ))
2

]
uε+

1

2
σ2 [A (T − τ) + ε (Vmax −A (T − τ))]

2
uεε−ru = 0

(3.12)
with fixed boundary,

u(0, τ) = A(T − τ) and u(1, τ) = e−rτ . (3.13)

3.3 Numerical solutions

In this section, we show that the pricing PDE can be solved numerically by comparing the numerical solution
and the analytic solution. Thus, we can use the same method to solve the problem that does not have analytic
solutions in Chapter 5.

3.3.1 The method

In order to solve the PDE (3.12) numerically, we define

p (ε, τ) =
(r − k)V

Vmax −A (T − τ)
+

(V − Vmax)A
′ (T − τ)

(Vmax −A (T − τ))
2 (3.14)
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Figure 3.1: Changing variables from V to ε

q (ε, τ) =
1

2
σ2 [A (T − τ) + ε (Vmax −A (T − τ))]

2
, (3.15)

so that the PDE becomes
uτ = p (ε, τ)uε + q (ε, τ)uεε − ru. (3.16)

We can approximate the PDE (3.16) with finite difference schemes. For instance, to second order,

uε|εj =
uj+1 − uj−1

2∆ε
+O

(
∆ε2

)
(3.17)

and
uεε|εj = δ+ε δ

−
ε u (εj) +O

(
∆ε2

)
. (3.18)

Then
∂u

∂τ
|j = ajuj−1 + bjuj + cjuj+1, (3.19)

where
aj =

p (εj , τn)

2∆ε
− q (εj , τn)

∆ε2
(3.20)

bj = r +
2q (εj , τn)

∆ε2
(3.21)

cj = −p (εj , τn)

2∆ε
− q (εj , τn)

∆ε2
. (3.22)

Generic Dirichlet boundary conditions are

uo (τ) = gL (τ) (3.23)

uJ (τ) = gR (τ) . (3.24)
In order to integrate in time by the trapezoidal rule, we assume

F (τn, u
n) = aju

n
j−1 + bju

n
j + cju

n
j+1. (3.25)

So
un+1 = un +

∆τ

2

(
F
(
τn+1, u

n+1
)
+ F (τn, u

n)
)
. (3.26)

Collecting un+1 on left hand side, we have

−∆t

2
aju

n+1
j−1 +

(
1− ∆t

2
bj

)
un+1
j − ∆t

2
cuj u

n+1
j+1 =

∆t

2
auj u

n
j−1 +

(
1 +

∆t

2
bj

)
un
j +

∆t

2
cju

n
j+1. (3.27)
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Rewriting, we have
M1

−−−→
un+1 = M2

−→
un +∆τ−→g =

−−−−→
RHSn

j (3.28)

and formally, −−−→
un+1 = M−1

1

−−−−→
RHSn

j (3.29)

where −→
un = (un

0 , u
n
1 , ..., u

n
J ) (3.30)

From (3.29), we can see that (3.28) problem requires a matrix system to be solved. Here we can use the
following Algorithm 1:

1 Set the initial values u0
j ; j = 0, 1, 2, . . . , Nx.

2 for n = 0 to NT do
3 M1

−−−→
un+1 = M2

−→
un +∆τ−→g =

−−−−→
RHSn

j

4 un+1 = M−1
1

−−−−→
RHSn

j .

5 end
6 v = A (t) + ε (vmax −A (t)) and t = τ

Algorithm 1: Alogrithm of Solving IBVP PDE

3.3.2 Order of accuracy

In order to prove the numerical scheme is accurate to second order, we find the local truncation error.

Definition 3.3.1. Local Truncation Error

If we approximate the PDE Pu(t, x) = f with an approximation PhU = Rhf , then the local truncation
error, τe is

τe = Ph(ϕ)−Rh(Pϕ) (3.31)

for any smooth function ϕ(t, x).

In order to derive local truncation error, here we have

Ph = δ+t + p

(
I + S+

t

2

)(
S+
t − S+

t

2△ε

)
+ q

(
I + S+

t

2

)
δ+t δ

−
t − r

(
I + S+

t

2

)
(3.32)

and

Rh =

(
I + S+

t

2

)
. (3.33)

Expanding (3.32),
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Ph =


(
I +△tDt +

△t2

2 D2
t + ...

)
− I

△t



+p

I +
(
I +△tDt +

△t2

2 D2
t + ...

)
2


(
I +△xDx + △x2

2 D2
x + ...

)
−
(
I −△xDx + △x2

2 D2
x − ...

)
2△x



+q

I +
(
I +△tDt +

△t2

2 D2
t + ...

)
2


(
I +△xDx + △x2

2 D2
x + ...

)
− I

△x

I −
(
I −△xDx + △x2

2 D2
x − ...

)
△x



−r

I +
(
I +△tDt +

△t2

2 D2
t + ...

)
2

 (3.34)

=

(
Dt +

△t

2
D2

t +
△t2

6
D3

t + ...

)
+ p

(
I +

△t

2
Dt +

△t2

4
D2

t + ...

)(
Dx +

△x2

6
D3

x + ...

)
+q

(
I +

△t

2
Dt +

△t2

4
D2

t + ...

)(
Dx +

△x

2
D2

x +
△x2

6
D3

x + ...

)(
Dx − △x

2
D2

x +
△x2

6
D3

x − ...

)
−r

(
I +

△t

2
Dt +

△t2

4
D2

t + ...

)
(3.35)

Also, we can expand (3.33),

Rh(Pϕ) =

I +
(
I +△tDt +

△t2

2 D2
t + ...

)
2

(Dt + pDx + qD2
x − rI

)
ϕ (3.36)

=

(
I +

△t

2
Dt +

△t2

4
D2

t + ...

)(
Dt + pDx + qD2

x − rI
)
ϕ. (3.37)

So

τe = Ph(ϕ)−Rh(Pϕ) =
1

12

(
△t2D3

t

)
+ p

(
△x2

6
D3

x

)
+ q

(
−△x2

4
D2

x

)
+O

(
△t3

)
+O(△x3) (3.38)

= O
(
△t2

)
+O(△x2). (3.39)

If we let △t = O(△x),
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τe = O(△x2). (3.40)

Therefore, the numerical scheme is accurate to second order.

3.3.3 Comparing the numerical solution with the analytic solution

We can compare the numerical solution with the analytic solution from Black and Cox [2]. The default-
able corporate bond price is

u (V, t) = Le−r(T−t)
[
N (z1)− y2θ−2N (z2)

]
+V e−a(T−t)

[
N (z3) + y2θN (z4) + yθ+ξea(T−t)N (z5) + yθ−ξea(T−t)N (z6)− yθ+ξN (z7)− yθ+ξN (z8)

]
(3.41)

where
y = Cer(T−t)/V (3.42)

θ =
−a+ 0.5σ2

σ2
(3.43)

δ =
(
a+ 0.5σ2

)2 (3.44)

ξ =

√
δ

σ2
(3.45)

η =

√
δ − 2σ2a

σ2
(3.46)

z1 =
log (V )− log (L) +

(
r − a− 0.5σ2

)
(T − t)√

σ2 (T − t)
(3.47)

z2 =
log (V )− log (L) + 2log (y) +

(
r − a− 0.5σ2

)
(T − t)√

σ2 (T − t)
(3.48)

z3 =
−log (V ) + log (L) +

(
r − a+ 0.5σ2

)
(T − t)√

σ2 (T − t)
(3.49)

z4 =
log (V )− log (L) + 2log (y) +

(
r − a+ 0.5σ2

)
(T − t)√

σ2 (T − t)
(3.50)

z5 =
log (y) + ξσ2 (T − t)√

σ2 (T − t)
(3.51)

z6 =
log (y)− ξσ2 (T − t)√

σ2 (T − t)
(3.52)

z7 =
log (y) + ησ2 (T − t)√

σ2 (T − t)
(3.53)

z8 =
log (y)− ησ2 (T − t)√

σ2 (T − t)
. (3.54)

Let
T = 0.5 (3.55)

r = 0.05 (3.56)
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σ = 0.2 (3.57)

k = 0.06 (3.58)

L = 10 (3.59)

C = 0.8 (3.60)

Vmax = 40 (3.61)

In Tables 3.1 and 3.2, we compare the analytic solutions and the numerical solutions with 160 mesh
points. In order to make sure the result converges with second order, we run the routine with mesh points,
Nx= 160, 320, 640, and 1280 and show the results in Table 3.2. Here we define that the error is the maximum
of error between the analytic and the numerical solutions. In Figure 3.3 We can see that the log(error) has
slope about -2 which means that it converges with order 2.

In conclusion, we can price a defaultable bond analytically and numerically under Black and Cox’s
model. Thus, we can use the same method in solving PDE of more complex model that does not have
analytic solution in Chapter 5.

Table 3.1: The analytic and numerical solutions of Black and Cox’s PDE with 160 mesh points.

v Analytic Solutions Numerical Solutions
2 1.94089 1.94089
4 3.88178 3.88178
6 5.82264 5.82263
8 7.73589 7.73544
10 9.18000 9.18011
12 9.67760 9.67707
14 9.74787 9.74763
16 9.75287 9.75284
: : :

38 9.75310 9.75310
40 9.75310 9.75310

Max error 5.27E-04

Table 3.2: The max error versus the number of mesh points for the solution of Black and Cox’s PDE.

Mesh points Error of numerical solutions
160 5.2660E-04
320 1.5535E-04
640 5.6595E-05
1280 1.6595E-05
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Figure 3.2: The analytic and the numerical solutions of Black and Cox’s PDE with 160 mesh points.

Figure 3.3: Logarithm of the max error versus logarithm of the number of mesh points for the solution of
Black and Cox’s PDE.
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Chapter 4

Models of the interest rate

The interest rate is a constant under Black and Cox’s model which may be not true when the length of
time until the maturity date is long. In order to be closer to the real world, we would like to involve the
stochastic interest rate. Thus, we discuss the popular stochastic interest rate models in this chapter. A good
interest rate model should have following properties: First, it can be calibrated to describe the current term
structure of interest rate. Second, it can fit the term structure of the volatilities. Four popular interest rate
models are mentioned in Brigo’s book [5]:

1. Vasicek’s model [21]

2. Cox, Ingersoll, and Ross’ model [8] (the CIR model)

3. Hull-White’s model [11]

4. Black, Derman and Toy’s model [3] (the BDT model)

We will review those models in this chapter, and we will find that not all of these four models have the
desired properties.

4.1 The Vasicek model

In Vasicek’s model [21], the interest rate is a stochastic process driven by only one factor, ω̃t. Here {ω̃t, t > 0}
is a standard Brownian motion.
Definition 4.1.1. Standard Brownian motion

1. ω̃0 = 0.

2. ω̃t is continuous almost surely.

3. ω̃t has independent increments with ω̃t − ω̃s ∼ N (0, t− s) (for 0 ≤ s < t).
Definition 4.1.2. Vasicek’s model [21]
The short rate follows the process

drt = (α− βrt) dt+ ηdω̃t (4.1)
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The short rate, rt, used here is the (annualized) interest rate for an infinitesimally short period of time from
time t. It is important, because after we know the model of the short rate, we can price a default-free zero
coupon bond, B (t, T ), at t with maturity date T , as

B (t, T ) = E

{
exp

(
−
∫ T

t

rudu

)}
. (4.2)

The advantages:

• The model is famous for capturing the mean reversion of interest rate data, an essential characteristic
of the interest rate that sets interest rate data apart from other financial prices.

• rt’s Probability Density Function (PDF) has closed form solution,

rt = e−αt

r0 + β
(
eαt − 1

)
η

t∫
0

eαndωp
n

 (Ornstein− Uhlenbeck process) ; (4.3)

The disadvantages:

• rt could be negative.

• It cannot capture the term structure well .

4.2 The Cox, Ingersoll and Ross (CIR) model

In the Cox-Ingersoll-Ross (CIR) model [8], the coefficient of dω̃t is not constant. That change is made to
guarantee that rt is positive, which is the main characteristic of the CIR model.

Definition 4.2.1. The CIR model [8]
The short rate follows

drt = (α− βrt) dt+ η
√
rtdω̃t. (4.4)

The advantages:

• The rt has to be positive.

• rt’s PDF is a noncentral Chi-square distribution, i.e. rt can be found in closed form.

The disadvantages:

• It cannot capture the term structure well.
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4.3 The Hull and White model

Hull and White’s model [11] is also called the extended Vasicek model. The constant coefficients in the
Vasicek model become functions of t. In other words, α, β and η are time-dependent.

Definition 4.3.1. The Hull-White model [11]
The short rate follows

drt = (αt − βtrt) dt+ ηtdω̃t (4.5)

The advantages:

• It can capture term structure well, because they extend the α, β and η to be functions of t.

The disadvantages:

• It does not exclude negative interest rates.

4.4 The Black, Derman and Toy (BDT) model

Black, Derman and Toy’s model [3] is one of most popular interest rate models in the industry because it is
easy in calibrating. Under the BDT model, by using binomial trees, it can capture both the term structure
of the interest rate and the term structure of the volatility of the interest rate caps. So the BDT model
is useful when pricing more complex interest-rate sensitive securities. Black and Karasinski [4] extend the
BDT model to continuous-time.

Definition 4.4.1. The Black-Derman-Toy (BDT) model
The short rate follows

dln(rt) = at (bt − ln(rt)) dt+ ηtdω̃t. (4.6)

The advantages:

• It can capture term structure well.

• rt can not be negative.

The disadvantages:

• There is no analytic solution for the price of bonds.

After review the stochastic interest rate models, we can see the advantages and disadvantages of the models.
So we can involve the stochastic interest rate when pricing credit derivatives in next Chapter.
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Chapter 5

Pricing credit derivatives with a
stochastic interest rate by PDE
methods

In Chapter 4, we can see the advantages and disadvantages of the interest rate models. Furthermore,
all models can be written in the form of drt = µr (rt, t) dt+ σr (rt, t) dω̃t. In this chapter we will derive the
fundamental PDE with stochastic interest rate for all credit derivatives and review papers which involved
the stochastic interest rate models.

5.1 Derivation of the fundamental PDE

In order to derive the PDE, Bielecki and Rutkowski [1] make the following assumptions:

1. The risk-neutral dynamics of the short-term interest rate processes rt, t > 0, are given as

drt = µr (rt, t) dt+ σr (rt, t) dω̃t (5.1)

where ω̃t is standard Brownian motion defined in Def. 4.1.1.

2. By Assumption (5.1), Musiela and Rutkowski [17] find that a unit default-free zero coupon bond,
B(t,T), should follow

dB (t, T ) = B (t, T ) [rtdt+ σB (rt, t, T ) dω̃t] . (5.2)

3. Vt is the total value of the firm’s asset at time t, and is given as

dVt

Vt
= [rt − k (Vt, rt, t)] dt+ σV (Vt, t) dω

∗
t , (5.3)

where k is the constant payout ratio (dividend).

4. The promised contingent claim, X, representing the firm’s liabilities is to be redeemed at the maturity
date T .
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5. The recovery claim is X̃, which represents the recovery payoff received at τ if default occurs prior to
or at T .

6. The default triggering barrier process v equals

vt = v̄ (Vt, rt, t) . (5.4)

7. The default time is
τ = inf{t > 0;Vt < vt}. (5.5)

8. The price process of the defaultable claim is

Xd (T ) = X1{τ>T} + X̃1{τ6T}. (5.6)

9. B (t, T ) is the price of a unit default-free zero-coupon bond maturing at T .

10. The savings account St follows

St = exp
(∫ t

0

rudu

)
. (5.7)

In order to derive the fundamental PDE, one examines a self-financing trading strategy with a portfolio.
Assume we have weights,

ϕt =
(
ϕ0
t , ϕ

1
t , ϕ

2
t , ϕ

3
t

)
, (5.8)

which generate the portfolio Ut (ϕ)

Ut (ϕ) = ϕ0
tX

d (t, T ) + ϕ1
tVt + ϕ2

tB (t, T ) + ϕ3
tSt. (5.9)

A portfolio is self-financing if there is no money withdrawn from or deposited to it. Mathematically,

dUt (ϕ) = ϕ0
t

[
dXd (t, T ) + c (Vt, rt, t) dt

]
+ ϕ1

t [dVt + k (Vt, rt, t)Vtdt] + ϕ2
tdB (t, T ) + ϕ3

tdSt, (5.10)

where c (Vt, rt, t) is the coupon rate and the firm is assumed to pay cash flows continuously at the rate
k (Vt, rt, t).

In order to replicate Xd by Vt, B (t, T ) and St, Ut (ϕ) should be zero. After solving for ϕ3
t ,

ϕ3
t = −S−1

t

[
ϕ0
tX

d (t, T ) + ϕ1
tVt + ϕ2

tB (t, T )
]
. (5.11)

By substituting (5.14) for ϕ3
t into (5.10) and using dSt = rtStdt, we obtain

ϕ0
t [dX

d (t, T ) + c (Vt, rt, t) dt] + ϕ1
t [dVt + k (Vt, rt, t)Vtdt]

+ϕ2
tdB (t, T )− rt

[
ϕ0
tX

d (t, T ) + ϕ1
tVt + ϕ2

tB (t, T )
]
dt = 0. (5.12)

Bielecki and Rutkowski [1] prove that Xd is a function of Vt, rt and t. So we let Xd = u (Vt, rt, t), then

dXd (t, T ) = du (Vt, rt, t) (5.13)

= µx (t) dt+ σx,v (t) dω
∗
t + σx,r (t) dω̃t. (5.14)

By Itô’s lemma,
µx (t) = uV (rt − k (Vt, rt, t))Vt + urµ (rt, t) +

1

2
uV V σ

2
V (Vt, t)V

2
t

+
1

2
urrσ

2
r (rt, t) + uV rσV (Vt, t)σr (rt, t) ρVt + ut, (5.15)
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where ρ is correlation coefficient between ω∗ and ω̃,

σx,V (t) = uV σV (Vt, t)Vt and (5.16)

σx,r (t) = urσr (rt, t) . (5.17)

By assumption (5.3), we also have that

dVt + k (Vt, rt, t)Vtdt = Vt [rtdt+ σV (Vt, t) dω
∗
t ] . (5.18)

We then take ϕ0 = −1, because we wish to replicate just one default claim, and substitute (5.2), (5.14) and
(5.18) into (5.12) to obtain

−ux (t) dt− σx,v (t) dω
∗
t − σx,r (t) dω̃t − c (Vt, rt, t) dt+ ϕ1

tVt [rtdt+ σV (Vt, t) dω
∗
t ]

+ϕ2
tB (t, T ) [rtdt+ σB (rt, t, T ) dω̃t]− rt

[
−Xd (t, T ) + ϕ1

tVt + ϕ2
tB (t, T )

]
dt = 0, (5.19)

because we replicate the default claim in (5.9), in (5.10) dUt should be zero without any uncertainty, which
means the martingale components and the dt term should be zero. The martingale components, dω∗

t and
dω̃t, vanish, so

−σx,v (t) + ϕ1
tV σV (Vt, t) = 0 (5.20)

−σx,r (t) + ϕ2
tB (t, T )σB (rt, t, T ) = 0, (5.21)

and
ϕ1
tV σV (Vt, t) = σx,v (t) = uvσv (Vt, t)Vt (5.22)

ϕ2
tB (t, T )σB (rt, t, T ) = σx,r (t) = urσr (rt, t) . (5.23)

The dt term should also be zero, so

[ux (t) + c (Vt, rt, t)− rtu (Vt, rt, t)] dt = 0 (5.24)

Substituting (5.15) into (5.24), we have the fundamental PDE,

ut + (rt − k (Vt, rt, t))Vtuv + µr (rt, t)ur +
1

2
σ2
v (Vt, t)V

2
t uvv

+
1

2
σ2
r (rt, t)urr + σv (Vt, t)σr (rt, t) ρVtuvr + c (Vt, rt, t)− rtu = 0. (5.25)

5.2 Pricing defaultable bond with stochastic interest rate models

After deriving the fundamental PDE, we review the previous study of defaultable bonds with a stochastic
interest rate.

5.2.1 The model of Kim et al.(1993)

Kim et al. [12] price defaultable bonds with the assumption

drt = (a− brt) dt+ σr
√
rtdw̃t (the CIR model in Sec. (4.2)) . (5.26)

dVt = Vt [(r − k) dt+ σV dw
∗
t ] (5.27)
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They also assume that the bond’s indenture provisions prohibit the company from selling the firm’s assets
to pay dividends. If we let c be the coupon and k be the payout ratio, then Vtk should always greater than
c, because Vtk is the net cash outflow of optimal decisions from the firm. In other words, v̄ = c

k is the
breakeven point. If Vt = v̄ or Vtk = c, the dividends match the coupon payment due exactly. If Vt < v̄, the
dividends are insufficient to cover the coupon payment due. By (5.25), Kim et. al. have the PDE

ut + (rt − k)V uV + (a− br)ur +
1

2
σ2
V V

2uV V (5.28)

+
1

2
σ2
rrurr + σV σr

√
rV ρuV r + c− ru = 0, (5.29)

with boundary conditions,
u (v̄, r, t) = min (v̄, δ (T − t)B (t, T, r)) , (5.30)

where δ represents time varying recovery rate.

lim
V→∞

u (V, r, t) = B (t, T, r) , (5.31)

and terminal condition,
u (V, r, t) = min (V,L) . (5.32)

Kim et al. only discuss the case when v̄ is constant. They solve the PDE with an alternating direction
implicit method. In their conclusion, the analysis indicates that their model implies that the credit spreads
are close to zero for bonds of short maturities.

5.2.2 The model of Longstaff and Schwartz (1995)

Like Kim et al. [12], Longstaff and Schwartz [14] also price defaultable bonds, but they have different
assumptions:

drt = (α− βrt) dt+ ηdω̃t (the V asicek model in Sec. (4.1)) (5.33)
dVt = Vt [rtdt+ σV dω

∗
t ] . (5.34)

They assume that the default occurs when the firm’s value is lower than a constant threshold v̄. Thus, by
(5.25) we have

ut + (rt − k)V uV + (α− βr)ur +
1

2
σ2
V V

2uV V

+
1

2
η2urr + σV ηρV uV r + c− ru = 0 (5.35)

with boundary conditions
u (v̄, r, t) = (1− w)B (t, T, r)L (5.36)

where (1− w) is the recovery rate and

lim
V→∞

u (V, r, t) = LB (t, T, r) , (5.37)

Longstaff and Schwartz [14] do not solve the PDE (5.35). They focus on the probabilistic representation
of the price of the defaultable bond. If the value of a risky discount bond is u (X, r, T ), then

u (X, r, T ) = B (r, T ) [1− wQ (X, r, T )] , (5.38)

where X = V
K and K is the default threshold, B (r, T ) is the price of default-free zero-coupon bond, and

Q=Pr{τ < T |Ft}=Pr{The first passage time of lnX to zero is less than T}. By Vasicek’s model,

B (r, T ) = exp (A (T )−D (T ) r) (5.39)
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where
A (T ) =

(
η2

2β2
− α

β

)
T +

(
η2

β3
− α

β2

)
(exp (−βT )− 1) (5.40)

−
(

η2

4β3

)
(exp (−2βT )− 1) (5.41)

D (T ) =
1− exp (−βT )

β
(5.42)

Also, by the PDE (5.35), (5.38) and differentiation, Q(X, r, T ) is the solution to

σ2
V

2
X2QXX + ρσV ηXQXr +

η2

2
Qrr

+(r − ρσV ηD(T ))XQX +
(
α− βr − η2D(T )

)
Qr −QT = 0. (5.43)

Using the result in Friedman [9], we know

d lnX = r − σ2

2
− ρσηD (T − t) dt+ σdω1 (5.44)

dr =
(
α− βr − η2D (T − t)

)
dt+ ηdω2 (5.45)

Integrating the dynamics for r from zero to τ , gives

rτ = r exp (−βτ) +

(
α

β
− η2

β2

)
(1− exp (βτ))

+
η2

2β2
exp (−βT ) (exp (βτ)− exp (−βτ)) + η exp (−βτ)

τ∫
0

exp (βs) dω2 (5.46)

Integrating for ln (X), substituting for the value of r from (5.46), and by applying Fubini’s Theorem, we
have

lnXT = lnX +M (T, T ) +
η

β

τ∫
0

1− exp (−β (T − t)) dω2 + σ

τ∫
0

dω1, (5.47)

where
M (t, T ) =

(
α− ρση

β
− η2

β
− σ2

2

)
t+

(
ρση

β2
− η2

2β3

)
exp (−βT ) (exp (βt)− 1)

+

(
r

β
− α

β2
+

η2

β3

)
(1− exp (−βt))− η2

2β3
exp (−βT ) (1− exp (βt)) (5.48)

and
S (t) =

(
ρση

β
+

η2

β2
+ σ2

)
t−

(
ρση

β2
− 2η2

β3

)
(1− exp (−βt)) +

η2

2β3
(1− exp (−2βt)) (5.49)

By (5.47), lnXT is normally distributed with mean lnX +M (T, T ), the variance S (T ) is similar, so

lnXT | lnXt = 0 ∼ N (M (T, T )−M (t, T ) , S (T )− S (t)) . (5.50)

Let q (0, τ | lnX, 0) be the first passage density of lnX at time zero. By Buonocore et al. [7],

N

(
− lnX −M (t, T )√

S (t)

)
=

t∫
0

q (0, τ | lnX, 0)N

(
M (τ, T )−M (t, T )√

S (t)− S (τ)

)
dτ. (5.51)
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Longstaff and Schwartz [14] assume that q (0, τ | lnX, 0) is a constant on each time interval [(i− 1)T/n, iT/n],
and so they rewrite (5.51) by

N (ai) =
i∑

j=1

qiN (bij) (5.52)

where
qi = q

(
0,

iT

n
| lnX, 0

)
T

n
, (5.53)

ai =
− lnX −M

(
iT
n , T

)√
S
(
iT
n

) , (5.54)

bij =
M
(

jT
n , T

)
−M

(
iT
n , T

)√
S
(

iT
n − jT

n

) . (5.55)

and
Q (X, r, T, n) =

n∑
i=1

qi (5.56)

where
q1 = N(a1) (5.57)

qi = N (ai)−
i−1∑
j=1

qjN (bij) , (5.58)

and
lim
n→∞

Q (X, r, T, n) = Q (X, r, T ) . (5.59)

Longstaff and Schwartz’s model [14] has following good features:

1. The correlation of a firm’s assets with changes in the level of the interest rate can have significant
effects on the price of defaultable bonds.

2. The term structure of credit spreads can fit a variety of data.

3. The model implies that credit spreads are negatively related to the level of the interest rate. In other
words, the credit spread is larger when the interest rate is at a lower level.

5.2.3 The model of Briys and de Varenne (1997)

Briys and de Varenne [6] assume that

drt = a (t) (b (t)− rt) dt+ σ (t) dω̃t (the Hull −White model) (5.60)

dVt = Vt

[
rtdt+ σV

(
ρdω̃t +

√
1− ρ2dω∗

t

)]
(5.61)

with the default threshold
vt = L when t = T, (5.62)

vt = KB (t, T ) when t < T, (5.63)

and boundary conditions
u (V, T ) = β1L when t = T and K < V < L, (5.64)
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u (vt, t) = β2vt when t < T and V = vt. (5.65)

The parameters satisfy 0 < K < L, 0 < β2 < 1 and 0 < β2 < 1, where K is a quantity given in the safety
covenant. If K is large, the bond buyer is highly protected. The bond is easy to default, but the bond buyer
can receive almost as much as L when the default occurs. The β1 and β2 are the recovery rate for time t = T
and t < T respectively. B (t, T ) is a default-free bond price.

Briys and de Varenne’s model [6] is Black and Cox’s model [2] with a stochastic interest rate, and they allow
the value of the firm’s assets and interest rate to be correlated. Here, the default threshold is not a constant
anymore; it is a function of t instead. For that reason, the location of the left boundary is also a function of
t, which means this model has a moving boundary.

For the interest rate Briys and de Varenne use the generalized Vasicek model, not the CIR model [8], because
under the generalized Vasicek model the volatility of the default-free bond price is just a deterministic
function. Thus, there is an analytic solution for the forward price FD (t, T ) = D(t,T )

B(t,T ) , where D (t, T ) is a
defaultable bond price.

FD (t, T ) = L−D1 (t, T ) +D2 (t, T )− (1− β2) [FtN (d4) +KN (d3)] (5.66)

− (1− β1)Ft [N (d2)−N (d4)]− (1− β1)K [N (d5)−N (d3)] (5.67)

where
Ft =

Vt

B(t, T )
(5.68)

D1 (t, T ) = LN (d1)− FtN (d2) (5.69)

D2 (t, T ) = KN (d5)−
FtL

K
N (d6) (5.70)

d1 =
ln
(

L
Ft

)
+ 1

2σ
2 (t, T )

σ (t, T )
= d2 + σ (t, T ) (5.71)

d3 =
ln
(

K
Ft

)
+ 1

2σ
2 (t, T )

σ (t, T )
= d4 + σ (t, T ) (5.72)

σ2 (t, T ) =

T∫
t

[ρσV − b (u, T )]
2
+
(
1− ρ2

)
σ2
V du. (5.73)

This model can fit quite diverse data in the term structure of the credit spread. (Recall that the credit
spread is the difference between the default-free interest rate and the yield of the defaultable bond.) However
there is a drawback. Under Briys and Varenne’s assumption, the coupon payment c to the holder of the
bonds could be greater than the firm’s value before the default occurs, since in the model, the coupon
payment is independent of the stochastic barrier and of the firm’s value. If the Vt and the B (t, T ) both drop
to the extremely low levels such that Vt < LB (t, T ), Vt may be less than c.

5.2.4 The model of Saa-Requejo et al.(1999)

Saa-Requejo et al.[20] assume that
drt = µrdt+ σrdω̃t (5.74)

dVt = Vt [(rt − k) dt+ σV dω
∗
t ] (5.75)
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ω∗
t = ρω̃t +

√
1− ρ2ω̂t (5.76)

dvt = vt [(rt − ζ) dt+ σ̃vdω̃t + σ̂vdω̂t] . (5.77)
We can see that in this model, the value of each liability of the firm is a stochastic process. Saa-Requejo
et al. derive a general 3-D PDE for this model. However they can not find the probabilistic representation
of the price of the defaultable bond anymore. Saa-Requejo et al. only discuss some special cases that are
solvable.

In order to derive the 3-D PDE, one considers a self-financing trading strategy,
ϕt =

(
ϕ0
t , ϕ

1
t , ϕ

2
t , ϕ

3
t

)
, (5.78)

Ut (ϕ) = ϕ0
tu (Vt, vt, B (t, T ) , t) + ϕ1

tVt + ϕ2
t vt + ϕ3

tB (t, T ) (5.79)
dUt (ϕ) = ϕ0

t [du (Vt, vt, B (t, T ) , t) + c (Vt, vt, B (t, T )) dt]

+ϕ1
t [dVt + kVtdt] + ϕ2

t [dvt + ζvtdt] + ϕ3
tdB (t, T ) . (5.80)

The Itô differential du (Vt, vt, B (t, T ) , t) is
du = utdt+ uV dVt + uvdvt + uBdB (t, T ) + uV vd < V, v >t

+uV Bd < V,B >t +uBvd < B, v >t +
1

2
uV V d < V, V >t

+
1

2
uvvd < v, v >t +

1

2
uBBd < B,B >t (5.81)

where
d < V, V >t= σ2

V V
2
t dt, (5.82)

d < v, v >t=
(
σ̃2
v + σ̂2

v

)
dt, (5.83)

d < B,B >t= b2 (t, T )B2 (t, T ) dt, (5.84)

d < V, v >t= σV

(
ρσ̃v +

√
1− ρ2σ̂v

)
vtVtdt, (5.85)

d < V,B >t= σV ρVtb (t, T )B (t, T ) dt, (5.86)
d < B, v >t= σ̃V vtb (t, T )B (t, T ) dt. (5.87)

Because dUt should be zero without any uncertainty, the martingale compenents vanish, in (5.80), the
coefficients of dω̃t, dω̂t and dω∗

t should be zeros, and
ϕ1
t = uV , ϕ

2
t = uv, ϕ

3
t = uB . (5.88)

Substituting (5.88) into (5.80),
du = ϕ1

t [dVt + kVtdt] + ϕ2
t [dvt + ζvtdt] + ϕ3

tdB (t, T )− cdt (5.89)
= uV [dVt + kVtdt] + uv [dvt + ζvtdt] + uBdB (t, T )− cdt. (5.90)

Then the coefficient of dt leads to the PDE,

ut + kV uV + ζvuv + σV

(
ρσ̃v +

√
1− ρ2σ̂v

)
vV uV v + σV ρbV BuV B + σ̃vvbBuBv

+
1

2
σ2
V V

2uV V +
1

2
v2
(
σ̃2
v + σ̂2

v

)
uvv +

1

2
b2B2uBB = 0. (5.91)

Saa-Requejo et al.[20] compare solutions of (5.91) with empirical literature, and error of pricing is low
under their model. In addition, the results do not suffer from the pricing biases observed by contemporary
empirical studies on Longstaff and Schwartz’s model [14]. The reason is that the solvency ratio, X = V

v ,
follows

dX (t) = µxdt+ σxdωx, (5.92)
where the drift term, µx, is not a function of interest rate r under Saa-Requejo’s model. When X < 1
we say that the default event occurs. Thus, under Saa-Requejo’s model the probability of default and the
interest rate are independent. In the other hand, in Longstaff and Schwartz’s model the default threshold,
v, is constant, so the drift term of X is a increasing function of r. Thus, under Longstaff and Schwartz’s
model, when r goes up, the probability of default goes down which does not fit empirical studies.
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Chapter 6

Pricing CDS and Future work

In Chapter 5 we showed how to price defaultable bonds. In this chapter we introduce a new method to price
the most popular credit derivative in the market, credit default swap (CDS) in the same framework. The
only difference new in the framework is that we use the BDT model [3] for the interest rate, which has the
advantage mentioned in Sec. 4.4. There is no analytic solution for the PDE with the BDT model however.
For that reason, we will have to solve the PDE with numerical methods. We discuss how to derive the new
pricing PDE form the fundamental PDE (5.25) and the numerical issues of the new method in following
sections.

6.1 Pricing CDS with PDE methods

The CDS is a kind of insurance that protects the buyer of the CDS when a default event occurs. As a
traditional insurance, the protection buyer makes regular premium payments quarterly or semiannually.
When the default event occurs, the protection seller pays par value, L, of the bond to the buyer, and the
buyer physically delivers the bond to the seller. The buyer would then cease paying premiums. Thus, to
the protection seller’s point of view, the price of a CDS, u (Vt, rr, t), is the same as a defaultable bond with
coupon payment c which is the premium payment, and the defaultable bond has face value that equals zero.
When the default event occurs, the protection seller pays par value minus the rest value of the defaultable
bond.

For our CDS model we take the default threshold to be the same as in Black and Cox’s model [2],

vt = KB (t, T ) when t < T (6.1)

vt = L when t = T. (6.2)

The boundary conditions become

u (vt, rr, t) = vt − L, (6.3)

lim
Vt→∞

u (Vt, rr, t) = 0. (6.4)

The default-free bond price B (t, T ) in the boundary condition (6.1) also follows a PDE when rt is
stochastic. It is the price of the default-free zero coupon bond. In order to derive the general PDE, Neftci
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[19] assumes that

drt = µ (rt, t) dt+ σ (rt, t) dωt. (6.5)

By Itô’s lemma,

dB =

(
∂B

∂t
+

∂B

∂r
µ+

1

2

∂2B

∂r2
σ2

)
dt+

∂B

∂r
σdωt. (6.6)

We let µB (t, T ) = ∂B
∂t + ∂B

∂r µ+ 1
2
∂2B
∂r2 σ

2 and νB (t, T ) = ∂B
∂r σ. We can only use a zero coupon bond with a

different maturity to create a hedge portfolio, so

πt = −B (t, T ) +△B (t, T ∗) T ∗ > T (6.7)

and

dπt = −dB (t, T ) +△dB (t, T ∗) (6.8)

= (△µB (t, T ∗)− µB (t, T )) dt+

(
−∂B (t, T )

∂r
σ +△∂B (t, T ∗)

∂r
σ

)
dωt. (6.9)

Because πt is risk-free, the coefficient of dωt should be zero,

−∂B (t, T )

∂r
σ +△∂B (t, T ∗)

∂r
σ = 0. (6.10)

Solving for △, we have

△ =
∂B(t,T )

∂r σ
∂B(t,T∗)

∂r σ
=

νB (t, T )

νB (t, T ∗)
. (6.11)

Substituting (6.11) and dπt = rtπtdt into (6.9),(
νB (t, T )

νB (t, T ∗)
µB (t, T ∗)− µB (t, T )

)
dt = rtπtdt (6.12)

= rt

(
−B (t, T ) +

νB (t, T )

νB (t, T ∗)
B (t, T ∗)

)
dt. (6.13)

Thus,

νB (t, T )

νB (t, T ∗)
µB (t, T ∗)− µB (t, T ) = rt

(
−B (t, T ) +

νB (t, T )

νB (t, T ∗)
B (t, T ∗)

)
. (6.14)

We can rewrite (6.14) with notation λt,

µB (t, T )− rtB (t, T )

νB (t, T )
=

µB (t, T ∗)− rtB (t, T ∗)

νB (t, T ∗)
≡ λt. (6.15)

Eq. (6.15) means that market price of risk does not depend on maturity date.

By solving for µB (t, T ) from (6.15),

µB (t, T ) = rtB (t, T ) + λtνB (t, T ) , (6.16)

and by definition of µB (t, T ),

∂B

∂t
+

∂B

∂r
µ+

1

2

∂2B

∂r2
σ2 = rtB (t, T ) + λtνB (t, T ) = rtB + λt

∂B

∂r
σ. (6.17)
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For the BDT model [3], we just substitute µ = rt
(
a (t) (b (t)− ln (rt)) +

1
2η

2
t

)
and σ = ηtrt into (6.17).

Thus, our PDE for B (t, T ) under BDT model is

∂B

∂t
+

∂B

∂r

[
r

(
a (t) (b (t)− ln (r)) +

1

2
η2t

)
− λtηtr

]
+

1

2

∂2B

∂r2
(ηtr)

2
= rB. (6.18)

In order to have the CDS pricing PDE, we substitute the coefficients of the BDT model [3] in (4.6) into
the fundamental PDE (5.25), we have the new CDS pricing PDE,

ut + (rt − k)V uv + rt

(
a (t) (b (t)− lnrt) +

1

2
η2t

)
ur +

1

2
σ2
vV

2uvv

+
1

2
r2t η

2
t urr + σvηtrtρV uvr + c− rtu = 0. (6.19)

The terminal conditions are

u (Vt, rr, t) = 0 when Vt > L, (6.20)

and

u (Vt, rr, t) = βVt − L when K < Vt < L, (6.21)

where β is the recovery rate.

The boundary conditions are

u (vt, rr, t) = vt − L, (6.22)

lim
Vt→∞

u (Vt, rr, t) = 0, (6.23)

where

vt = KB (t, T ) when t < T (6.24)

vt = L when t = T, (6.25)

and B (t, T ) follows 6.18.

6.2 Numerical issues and future work

After involving the stochastic interest rate, we can not only price a defaultable bond but also a CDS. In Sec.
6.1, we derived the PDE for pricing a CDS. It is difficult to find the analytic solution for the PDE, so we
have to solve it numerically. By the discussion in Sec. 6.1, we can see that there are some numerical issues
which we will face when solving it.

First, the payoff of CDS at the maturity date may not be continuous. Recalling the definition of CDS, the
protection buyer receives nothing if no default event occurs; the protection buyer receives face value of the
bond and physically delivers the bond to the protection seller if a default event occurs. From the protection
seller’s point of view, if V > L at maturity date, the payoff is L; if K < V < L at maturity date, the payoff
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Figure 6.1: The initial condition of the CDS pricing PDE with L = 10, K = 5 and β = 0.5.

is βVt − L. For that reason, we can see that the payoff is not continuous at V = L at the maturity date
when β is less than 1 in Fig. 6.1.

Another issue is how to choose the maximum value of rt, rmax. In the models of the interest rate, rt could
be large with small probability. In order to solve the problem, we need to choose the maximum value of
rt. The maximum value of rt maybe influence the price of bond when we approximate the solution. If the
advection term is negative, the solution moves to left (the direction of r decreasing). In other words, the
large maximum value of rt is, the faster the speed of advection; the large maximum value of rt is, the more
mesh we need, because we only care about the price when rt is small. It is a trade-off.

Furthermore, the right boundary condition in (6.18) is another issue. We can easily set B(rmax, t) = 0 and
set rmax to be extremely high, but there are several disadvantages we discuss in last paragraph. Another
choice is B(rmax, t) = e−rmax(T−t), but if rmax is not large enough, it still can influence the price B(r, t).

After we can handle the issues above, we can consider the more complicated boundary condition. Recall that
the default threshold v = KB(t, T ) has a main issue that it allows the value of the firm lower than dividend of
the bond which the firm need to pay at the end of every period. So if we want avoid this situation, we can use
the threshold which Kim et al. use in Sec. 5.2.1. We can set the default threshold as v = max(KB(t, T ), c

k )
which is sketched in Fig. 6.2. With the new threshold, we cannot use the changing variable approach which
we used in Chapter 3, so it is a new challenge. We need to figure out a new approach to solve it.
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Figure 6.2: The new boundary for future work.
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