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Empirical Evidence on Jumps and Large Fluctuations
in Individual Stocks

Abstract

We make use of the extant testing methodology of Barndorff-Nielsen and Shephard (2006) and

Aït-Sahalia and Jacod (2009a,b,c) to examine the importance of jumps, and in particular “large"

and “small" jumps, using high frequency price returns on 25 stocks in the DOW 30 and S&P

futures index. In particular, we examine jumps from both the perspective of their contribution to

overall realized variation and their contribution to predictive regressions of realized volatility. We

find evidence of jumps in around 22.8% of the days during the 1993-2000 period, and in 9.4% of

the days during the 2001-2008 period, which implies more (jump induced) turbulence in financial

markets in the previous decade than the current decade. Also, it appears that frequent “small"

jumps of the 1990s have been replaced to some extent with relatively infrequent "large" jumps in

recent years. Interestingly, this result holds for all of the stocks that we examine, supporting the

notion that there is strong comovement across jump components for a wide variety of stocks, as

discussed in Bollerslev, Law and Tauchen (2008). In our prediction experiments using the class of

linear and nonlinear HAR-RV, HAR-RV-J and HAR-RV-CJ models proposed by Müller, Dacorogna,

Davé, Olsen, Puctet, and Von Weizsäckeret (1997), Corsi (2004) and Andersen, Bollerslev and

Diebold (2007), we find that the “linear" model performs well for only very few stocks, while there

is significant improvement when instead using the “square root" model. Interestingly, the “log"

model, which performs very well in their study of market indices, performs approximately equally as

well as the square root model when our longer sample of market index data is used. Moreover, the

log model, while yielding marked predictability improvements for individual stocks, can actually

only be implemented for 7 of our 25 stocks, due to data singularity issues associated with the

incidence of jumps at the level of individual stocks.

Keywords: Itô semi-martingale, realized volatility, jumps, quadratic volatility, multipower variation,

tripower variation, truncated power variation, quarticity, infinite activity jumps.

JEL Classification: C58, C22, G17.
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1 Introduction

In recent years, a sustained effort in the financial econometrics research community has been un-

dertaken in order to further understand the underlying structure of asset returns. In one branch

of this research, methods for testing whether log return processes have jumps has been formalized.

A very few of the key contributions in this area include: Aït-Sahalia (2002), Carr et al., (2002),

Carr and Wu (2003), Huang and Tauchen (2005), Barndorff-Nielsen and Shephard (BNS: 2006),

Woerner (2006), Cont and Mancini (2007), Jiang and Oomen (2008), Lee and Mykland (2008),

Tauchen and Todorov (2008), and Aït-Sahalia and Jacod (2009a,b,c).

In an important paper, Huang and Tauchen (2005) find evidence of jumps for S&P cash and

future (log) returns from 1997 to 2002 in approximately 7% of the trading days. Their test requires

the jump component to be a compound Poisson process. Several authors, including Cont and

Mancini (2007), Tauchen and Todorov (2008) and Aït-Sahalia and Jacod (2009c) have taken the

analysis of jumps one step further by developing tests to ascertain whether the process describing

an asset contains "infinite activity jumps" - those jumps that are tiny and look similar to contin-

uous movements, but whose contribution to the jump risk of the process is not negligible. Cont

and Mancini (2007) implement their method of testing for the existence of infinite activity jumps

using foreign exchange rate data, and find no evidence infinite activity jumps. Aït-Sahalia and

Jacod (2009c) estimate that the degree of activity of jumps in Intel and Microsoft log returns is

approximately 1.6, which implies evidence of infinite activity jumps for these, and possibly many

other stocks. Anderson, Bollerslev and Diebold (ABD: 2007) find that separating out the volatility

jump component results in improved out-of-sample volatility forecasting, and find that jumps are

closely related to macroeconomic announcements. In summary, it is now generally accepted that

many return processes contain jumps.

In this paper, we first add to the burgeoning literature on this topic by using a simple procedure

for decomposing high frequency return jumps into "small" and "large" jumps, and by empirically

examining the properties of these different types of jumps via examination of the degree of jump

activity and the contribution of jump variation to total quadratic variation. The impetus for our

research stems from the fact that while "small" jumps may or may not play an important role in

financial decision making and asset allocation, "large" jumps almost certainly do play an important

role, and hence directly testing for jumps and then characterizing their degree of activity and varia-
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tion magnitude is of particular interest to applied practitioners. There are many precedents to our

empirical analysis, although our paper is closest to Huang and Tauchen (2005) and ABD (2007) and

Aït-Sahalia and Jacod (2009a), and indeed our empirical analysis is meant to build on the empirical

findings of those papers. Thereafter, we revisit class of HAR-RV prediction models.proposed by

Müller, Dacorogna, Davé, Olsen, Puctet, and Von Weizsäckeret (1997) and Corsi (2004) and the

extension thereof to linear and nonlinear HAR-RV-J and HAR-RV-CJ models examined by ABD

(2007). These models utilize realized measures of jump and continuous components of asset return

in order to assess realized volatility predictability.

Our approach in this empirical paper is to implement recent theoretical advances in the areas of

jump testing and the characterization of continuous time processes with jumps in order to isolate

and examine jumps with magnitude larger than level  (and smaller than ), for some given constant

value of . In particular, we first examine whether there are jumps in the process describing the

dynamics of an asset return by using methodology in Huang and Tauchen (2005), BNS (2006),

Jacod (2007), and Aït-Sahalia and Jacod (2009b). The idea underlying their methods is to track

the distance between the variation of the continuous component and the overall quadratic variation

of a given log return process. Of note is that BNS (2006) provides methodology appropriate for

processes with finite activity jumps, although we also allow for infinite activity jumps in this paper,

as we take advantage of the limit theory developed for this purpose in Jacod (2008) and Aït-Sahalia

and Jacod (2009b). Once jumps are found, we truncate the process in order to isolate those jumps

with size larger than  and construct a realized measure of the variational contribution of large

and small jumps to total variation.

One potential use of our approach is in jump risk assessment and management. For example,

financial managers may be interested in knowing not only the probability of jumps, but also the

probability that jumps of certain pre-defined "large" magnitudes will occur. This is an important

distinction, particularly given that, as shown by Aït-Sahalia and Jacod (2009a,c), infinite activity

jumps are present in the dynamics of some asset returns. However, such jumps, when of small

magnitude, may not only be difficult to distinguish (in practice) from the continuous component

of the process, but may not be of as serious concern to financial planners as "large" jumps. In this

sense, it may be of empirical interest not only to test for jumps in general, but also to check for

jumps of varying magnitudes, and to characterize the contribution of such jumps to total variation.

In particular, the partitioning of jumps into those that are "small" and "large" allows us to uncover
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empirical evidence concerning what type of jumps are contributing to overall jump variation. This

is also potentially of interest in macroeconomics, for example, as it may turn out that larger but

less frequent jumps characterize periods of economic recession, while smaller jumps characterize

expansionary periods, say. More generally, jump frequency and magnitude (i.e. jump risk) may

play an important role in dating business cycle turning points. Moreover, it is already known

from ABD (2007) that many significant jumps are associated with specific macroeconomic news

announcements, and our approach provides a simple framework from within which this finding can

be further explored.

In our empirical analysis, we examine high frequency data for 25 stocks in the DOW 30, using

5 minute interval observations, and for the sample period from 1993 to 2008. Some of the stocks

in our dataset, (e.g. Microsoft and Intel) have been found to be characterized by infinite activity

jumps by Aït-Sahalia and Jacod (2009b,c), and therefore do not belong to the class of finite activity

jump processes that BNS (2006) has often been applied to. This fact underscores the importance

of the recent papers by Jacod (2008), Tauchen and Todorov (2008) and Aït-Sahalia and Jacod

(2009a,b,c), where new limit theory applicable to infinite activity is implemented and developed.

In the first part of our empirical analysis, we find evidence of jumps in around 22.8% of the

days in the 1993-2000 period, and 9.4% in the 2001-2008 period. This degree of jump activity

implies more (jump induced) turbulence in financial markets in the previous decade than the

current decade. However, and as expected, the prevalence of "large" jumps varies across these

periods. (Note that we examine large jumps by picking 3 different fixed  levels, corresponding to

50 75 and 90 percentiles of samples of the monthly maximum return increments, i.e. our

monthly “abnormal event" samples.) In particular, large jump activity increases markedly during

the 2001-2008 period, with respect to its contribution to the realized variation of jumps and with

respect to the contribution of large jumps to the total variation of the (log) price process. This

suggests that while the overall role of jumps is lessening, the role of large jumps has not decreased,

and indeed, the relative role of large jumps, as a proportion of overall jumps has actually increased

in the 2000s. Note that this result holds on avergae across all 25 stocks examined. In summary,

it appears that frequent “small" jumps of the 1990s have been replaced with relatively infrequent

"large" jumps in recent years. Interestingly, this result holds for all of the stocks that we examine,

supporting the notion that their is strong comovement across jump components for a wide variety

of stocks, as discussed in Bollerslev, Law and Tauchen (2008).
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In the second part of our empirical analysis, we revisit the HAR-RV models discussed above.

However, we examine predictive ability regressions for our 25 individual stocks rather than for

stock market indices as ABD (2007) do. This allows us to assess whether their findings hold for

individual stocks. We find that the “linear" model performs well for only very few stocks, while

there is significant improvement when instead using the “square root" model. Interestingly, the

“log" model, which performs very well in their study of market indices, performs approximately

equally as well as the square root model when our longer sample of market index data is used.

Moreover, the log model, while yielding marked predictability improvements for individual stocks,

can actually only be implemented for 7 of our 30 stocks, due to data singularity issues that are

likely associated with the incidence of jumps at the level of individual stocks.

The rest of the paper is organized as follows: Section 2 discusses the model and assumptions,

and Section 3 summarizes results from the extant testing and prediction literatures that are used

in the sequel. Section 4 contains the results of our empirical analysis of 25 of the DOW 30 stocks,

and concluding remarks are contained Section 5.

2 Model and Assumptions

In this section, we follow the general set-up of Aït-Sahalia and Jacod (2009b). Consider the filtered

probability space (Ω  ()≥0  )  in which ()≥0 is denoted as a filtration (i.e., a family of sub-

sigma algebra  of  being increasing  :  ⊂  if  ≤ ). The log price process, = () is

assumed to be an Itô semimartingale process that can be written as:

 = 0 +

Z 

0

+

Z 

0

 +
X
≤
∆ (1)

where 0+
R 
0
+

R 
0
 is the continuous semimartingale component of the process, which is

the sum of a local martingale plus an adapted process with finite variation component. Additionally,

∆ is a jump at time , defined as:

∆ =  − 
→

 

Given this definition, the jump part of  in the time interval [0 ] is defined to be
P

≤∆. Note

that when the jump is a Compound Poisson Process (CPP) - i.e. a finite activity jump process -
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then it can be expressed as:

 =
X
≤
∆ =

X
=1



where  is number of jumps in [0 ]  follows a Poisson process, and the ’ are i.i.d. and are

the sizes of the jumps. The CCP assumption has been widely used in the literature on modeling,

forecasting, and testing for jumps. However, recent evidence suggests that processes may contain

infinite activity jumps - i.e. infinite tiny jumps that look similar to continuous movements. In such

cases, the CCP assumption is clearly violated, and hence we draw in such cases on the theory of

Jacod (2008) and Aït-Sahalia and Jacod (2009b,c) when applying standard BNS (2006) type jump

tests.

The empirical evidence discussed in this paper involves examining the structure of the jump

component of the log return process,  using one historically observed price sample path

{0∆ 2∆ ∆} where ∆ is deterministic. The increment of the process at time ∆ is

denoted by:

∆
  = ∆ −(−1)∆



For convenience, we consider the case  = ∆ in the sequel.
1 Moreover, note that for a given level

of    0 equation (1) can be written as:

 = 0 +

Z 

0

+

Z 

0

 +
X
≤
∆|∆|≤ +

X
≤
∆|∆|  (2)

where |∆≥| is an indicator which equals 1 for |∆| ≥ and 0 otherwise. Thus, once the process
is found to have jumps, the jumps process can be decomposed into 2 components. One contains

jumps with size larger than  (large jumps) and the other contains jumps with size smaller than 

(small jumps). In the next section, we summarize various important features of the extant literature

on jump testing and the use of it in realized volatility forecasting.

3 Testing for Jumps and Decomposing Jumps

3.1 Testing for jumps

In this section, we review some theoretical results relating to testing for jumps, namely testing

whether  =
P

≤∆ 6= 0.
1See Jacod (2008) for further details.
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In pioneering work, BNS (2006) proposes a robust and simple test for a class of Brownian Itô

Semimartingales plus Compound Poisson jumps. In recent work, Aït-Sahalia and Jacod (2009b)

among others develop a different test which applies to a large class of Itô-semimartingales, and

allows the log price process to contain infinite activity jumps - small jumps with infinite concen-

trations around 0. In this paper, we follow the jump test methodology of Huang and Tauchen

(2005) as well as Barndorff-Nielsen and Shephard (2006), which looks at the difference between the

continuous component and total quadratic variation in order to test for jumps. However, we make

use of the limit theorems developed and used by Jacod (2008) and Aït-Sahalia and Jacod (2009b)

in order to implement the Barndorff -Nielsen and Shephard (2006) type test under the presence of

both infinite activity and finite activity jumps (see Section 4 for further discussion).

A simplified version of the results of the above authors applied to (1) for the one-dimensional

case is as follows. If the process  is continuous, let () =  (exponential growth), let  be

the law (0 2) and let () be the integral of  with respect to this law. Then:r
1

∆

Ã
∆

X
=1

(
∆
 √
∆

)2 −
Z 

0

()

!
−−→

Z 

0

q
(

2)− 2() (3)

Here, −  denotes stable convergence in law, which also implies convergence in distribution. For

 = 2 the above result is the same as BNS (2006). More generally:r
1

∆

Ã
X
=1

(∆
 )

2 −
Z 

0

2

!
−→ (0

Z 

0

4) (4)

or q
1
∆

³P
=1(∆


 )

2 − R 
0
2

´
qR 

0
4

−→ (0 1) (5)

where  is constant and where
R 
0
2 is known as the integrated volatility or the variation of the

continuous component of the model and
R 
0
2 is integrated quarticity. From the above result,

notice that if the process does not have jumps, then
P

=1(∆

 )

2 which is an approximation of

quadratic variation of the process, should be "close" to the integrated volatility. This is the key

idea underlying the BNS (2006) jump test. A final crucial issue in this jump test is the estimation

of
R 
0
2 and

R 
0
4 in the presence of both finite and infinite activity jumps. As remarked in

BNS (2006), in order to ensure that tests have power under the alternative, intergrated volatility

and integrated quarticity estimators should be consistent under the presence of jumps. The authors
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note that robustness to jumps is straightforward so long as there are a finite number of jumps, or in

cases where the jump component model is a Lévy or non-Gaussian OU model (Barndorff-Nielsen,

Shephard, and Winkel (2006)). Moreover, under infinite activity jumps, note that as pointed out

in Jacod (2007), there are available limit results for volatility and quarticity estimators for the case

of semimartingales with jumps.

Turning again to our discussion of volatility and quarticity, note that in a continuation of

work initiated by Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen, Graverson, Jacod,

Podolskij, and Shephard (2006) and Jacod (2007) develop general so-called multipower variation

estimators of
R 
0
 in the case of continuous semimartingales and semimartingales with jumps,

respectively, which are based on

12 =

X
=2

|∆
 |1 |∆

−1|2 |∆
−| 

where 12  are positive, such that
P
1  =  For cases where  = 2 and  = 4, BNS (2006)

use 11 (bipower variation) and 1111. In our jump test implementation, we use  2
3
 2
3
 2
3
(tripower

variation) and  4
5
 4
5
 4
5
 The reason we use tripower variation,  2

3
 2
3
 2
3
 instead of bipower variation,

11 is that it is more robust to clustered jumps. Denote the estimators of
R 
0
2 and

R 
0
4 to

be c and c, and note that: c =  2
3
 2
3
 2
3
−32
3

'
Z 

0

2 (6)

and

c = ∆−1  4
3
 4
3
 4
3
−54
5

'
Z 

0

4 (7)

where  = (||) and  is a (0 1) random variable.

Regardless of the estimator that is used, the appropriate test hypotheses are:

0 :  is a continuous process

1 : the negation of 0 (there are jumps)

If we use multi-power variation, under the null hypothesis the test statistic which directly follows

from the CLT mentioned above is:

 =

q
1
∆

³P
=1(∆


 )

2 − c ´q
c −→ (0 1)
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and the so-called jump ratio test statistic is:

 =

q
1
∆q

c(c )2
Ã
1−

cP
=1(∆


 )

2

!
−→ (0 1)

Of note is that an adjusted jump ratio statistic has been shown by extensive Monte Carlo exper-

imentation in Huang and Tauchen (2005), in the case of CCP jumps, to perform better than the

two above statistics, being more robust to jump over-detection. This adjusted jump ratio statistic

is:

 =

q
1
∆q

(−1 c(c )2)
Ã
1−

cP
=1(∆


 )

2

!
−→ (0 1)

In general if we denote the daily test statistics to be () where  is the number of observa-

tions per day and  is the test significance level 2, then we reject the null hypothesis if () is

in excess of the critical value Φ leading to a conclusion that there are jumps. The converse holds

if () is less than Φ. In our empirical application, () is the adjusted jump ratio statistic,

and we calculate the percentage of days that have jumps, for the period from 1993 to 2008. We

now turn to a discussion of large jumps and constructing measures of the daily variation due to

continuous and jump components.

3.2 Large Jumps and Small Jumps

There is now clear evidence that jumps are prevalent in equity market. For example, Huang and

Tauchen (2005) construct the above jump test statistics, and find that jumps contribute about 7%

to the total variation of daily stock returns. Aït-Sahalia and Jacod (2009b) not only find jumps

but given the existence of jumps, they look more deeply into the structure of the jumps, and for

Intel and Microsoft returns they find evidence of the existence of infinite activity jumps.

An important focus in our paper is to the decomposition of jumps into "large" and "small"

components so that we may assess their contributions to the overall variation of the price process.

In particular, for some fixed level , define large and small jump components as follows, respectively:

() =
X
≤
∆|∆|≥

2 i.e., ∆ = 1
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and

() =
X
≤
∆|∆| 

The choice of  may be data driven, but in this paper we are more concerned with scenarios

where there is some prior knowledge concerning the magnitude of . For example, under various

regulatory settings, capital reserving and allocation decisions may be based to a large extent on the

probability of jumps or shocks occurring that are of a magnitude greater than some known value,

. In such cases, planners may be interested not only in knowledge of jumps of magnitude greater

than , but also in characterizing the nature of the variation associated with such large jumps. The

procedure discussed in this section can readily be applied to uncover this sort of information.

3.3 Realized measures of daily jump variation

The partitioning of variation due to continuous and jump components can be done, for example,

using truncation based estimators which have been developed by Mancini (2001,2004,2009) and

Jacod (2008). One can also simply split quadratic variation into continuous and jump components

by combining various measures of integrated volatility, such as bipower or tripower variation and

realized volatility. Andersen, Bollerslev, and Diebold (2007) do this, and construct measures of the

variation of the daily jump component as well as the continuous component. In this paper we use

their method, but apply it to both small and large jumps. In particular, once jumps are detected,

the following risk measures introduced by Andersen et al. (2007) are constructed:

  =Variation of the jump component = {0  − c} ∗ 

  =Variation of continuous component =  −  

where  =
P

=1(∆

 )

2 is the daily realized volatility (i.e. a measure of the variation of the

entire (log) stock return process),  is an indicator taking the value 0 if there are no jumps and

1 otherwise, and  is the number of intra-daily observations. One can then calculate daily jump

risk. Note that in these formulae, the variation of the continuous component has been adjusted

(i.e. the variation of the continuous component equals realized volatility if there are no jumps and

equals c if there are jumps). In addition, note thatP
=1(∆


 )

2|∆
 |≥ converges uniformly in

probablity to
P

≤(∆)
2|∆|≥  as  goes to infinity

3. Thus, the contribution of the variation

3See Jacod (2008), Aït-Sahalia and Jacod (2009a) for further details.
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of jumps with magnitude larger than  and smaller than  are denoted and calculated as follows:

Realized measure of large jump variation:  =min{  (
P

=1(∆

 )

2|∆
 |≥ ∗ )},

Realized measure of small jump variation:   =   −  
where  is defined above and  is an indicator taking the value 1 if there are large jumps

and 0 otherwise. This condition simply implies that large jump risk is positive if the process has

jumps and has jumps with magnitude greater than 

Now we can write the relative contribution of the variation of the different jump components

to total variation in a variety of ways:

Relative contribution of continuous component =  


Relative contribution of jump component =  


Relative contribution of large jump component =
 


Relative contribution of small jump component =
 


Relative contribution of large jumps to jump variation =
 
 

Relative contribution of small jumps to jump variation =
 
 

3.4 Linear and Nonlinear HAR-RV, HAR-RV-J AND HAR-RV-CJ Models

The realized measures summarized in previous section have been utilized to forecast future realized

volatility by several authors. In a key paper in this forecasting literature, ABD (2007) develop

Linear, Square Root and Log HAR-RV, HAR-RV-J and HAR-RV-CJ classes of models (see above for

further details). The HAR-RV formulation is based on an extension of the so-called Heterogeneous

ARCH, or HARCH, class of models analyzed by Müller et al. (1997), in which the conditional

variance of the discretely sampled returns is parameterized as a linear function of the lagged squared

returns over the identical return horizon together with the squared returns over shorter return

horizons. The authors find that there is an improvement by incorporating jumps in these models,

and their class of log HAR-RV, HAR-RV-J and HAR-RV-CJ models performs the best. We revisit

this class of models but focus on the predictive performance of the models applied to individual

stock returns, as opposed to market indices. The models are specified as follows:

First, define the multi-period normalized realized variation for jump and continuous components

as the sum of the corresponding one-period measures. Namely:

+ = −1[+1 ++2 + ++]

 + = −1[ +1 +  +2 + +  +]
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 + = −1[ +1 +  +2 + +  +]

where  = 1 2 . Note that in the case where  = 1, +1 = +1. Also,  = 5 and  = 22 refer

to measures of weekly and monthly volatilities, respectively. The class of linear models includes:

HAR-RV Model (Model Type 1)

+ = 0 +  + −5 + −22 + +

HAR-RV-J Model (Model Type 2)

+ = 0 +  + −5 + −22 +   + +

HAR-RV-CJ Model (Model Type 3)

+ = 0+ + −5+ −22+ + −5+ −22+ +

The class of square root models includes:

Square Root HAR-RV Model (Model Type 1)

(+)
12 = 0 + ()

12 + (−5)12 + (−22)12 + +

HAR-RV-J Model (Model Type 2)

(+)
12 = 0 + ()

12 + (−5)12 + (−22)12 + ( )
12 + +

HAR-RV-CJ Model (Model Type 3)

(+)
12 = 0 + ( )

12 + ( −5)12 + ( −22)12 + ( )
12+

+( −5)12 + ( −22)12 + +

Finally, the class of log linear models includes:

HAR-RV Model (Model Type 1)

log(+) = 0 +  log() +  log(−5) +  log(−22) + +

HAR-RV-J Model (Model Type 2)

log(+) = 0 +  log() +  log(−5) +  log(−22) +  log( ) + +

HAR-RV-CJ Model (Model Type 3)

log(+) = 0 +  log( ) +  log( −5) +  log( −22) +  log( )+

+ log( −5) +  log( −22) + +

We now turn to the results of our empirical investigation using the above methodology.
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4 Empirical Findings

4.1 Data description

We use a large tick by tick dataset of 25 DOW 30 stocks available for the period 1993-2008. The

data source is the TAQ database. We use only 25 stocks because we purge our dataset of those

stocks that not frequently traded or are not available across the entire sample period. For the

market index, we follow several other papers and look at S&P futures. We also follow the common

practice in the literature of eliminating from the sample those days with infrequent trades (less

than 60 transactions at our 5 minute frequency).

One problem in data handling involves determining the method to filter out an evenly-spaced

sample. In the literature, two methods are often applied - previous tick filtering and interpolation

(Dacorogna, Gencay, Müller, Olsen, and Pictet (2001)). As shown in Hansen and Lund (2006),

in applications using quadratic variation, the interpolation method should not be used, as it leads

to realized volatility with value 0 (see Lemma 3 in their paper). Therefore, we use the previous

tick method (i.e. choosing the last price observed during any interval). We restrict our dataset to

regular time (i.e. 9:30am to 4:00pm) and ignore ad hoc transactions outside of this time interval. To

reduce microstructure effects, the suggested sampling frequency in the literature is from 5 minutes

to 30 minutes4. As mentioned above, we choose the 5 minute frequency, yielding a maximum of 78

observations per day.

4.2 Jump and Large Jump Results

We implement our analysis in two stages. In the first stage we test for jumps and in second stage we

examine large jump properties, in cases where evidence of jumps is found. The list of the companies

for which we examine asset returns is given in Table 1, along with a summary of our jump test

findings. The rest of the tables and figures summarize the results of our empirical investigation.

Before discussing our findings, however, we briefly provide some details about the calculations that

we have carried out.

All daily statistics are calculated using the formulae in Sections 3 with:

4See Aït-Sahalia, Y., Mykland, P. A., and Zhang, L. (2005)
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∆ =
1


=

1

# of 5 minute transactions / day

Therefore, ∆ = 178 for most of the stocks in the sample, except during various shortened and

otherwise nonstandard days, and except for some infrequently traded stocks. This also implies the

choice of time to be the interval [0 1], where the time from [0 1] represents the standardizing time

with beginning (9 am) set to 0 and end (4.30 pm) set to 1 In our calculations of estimates of

integrated volatility and integrated quarticity, we use multipower variation, as given in (6) and (7).

Recall also that ∆
  = ∆−(−1)∆

is simply the incremental return of ∆ . For any trading

day, 0 and 1 correspond to the first and the last observations of the day. Denote  as the number

of days in the sample. We construct the time series {()}=0 and
n
 


  



 



 


o
=0



The number of days and proportion of days identified as containing jumps can easily be calculated

as:

Number of days identified as jumps =
P

=0 (()  Φ)

Proportion of days identified as jumps =


=0 (()Φ)




In addition, we construct the following monthly time series

Proportion of days identified as jumps in a month=
+

= (()Φ)



Monthly average relative contribution of jump component =
+

=
 
 



Monthly average relative contribution of large jump component truncated at level  =

+
=







where  is the starting date and  is the number of days in each month. On average, there are 22

business days per month. Note that there are 12 statistics each year for each time series.

Here, (·) denotes the indicator function. The average relative contribution of continuous, jump,
and large jump components to the variation of the process is reported using the mean of the sample

(i.e. we report the means of  


  



 


 and
 


)

In addition to reporting findings based on examination of the entire sample period, we also split

the sample into two periods. The first period is from 1993 to 2000 and the second period is from

2001 to 2008. The reason for doing this is that we would like to see whether jump activity changes

over time. Moreover, these subsamples correspond roughly to break dates for financial data found

in Cai and Swanson (2010).

In the sequel, we provide figures for representative individual stocks in our sample (i.e. Walmart,

IBM, Bank of America and Citigroup). These stocks are chosen on the basis of their market
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systematic risk beta. Namely, Walmart has low beta of around 0.3, IBM has a beta close to 0.7,

and Bank of America and Citigroup are more risky stocks with betas of around 2.6 and 2.8.

Turning now to our results, a first sense of the prevalence of jumps can be formulated by

inspecting Panels A,B, C and D of Figure 1, where statistics higher than 3.9 (i.e. the 0.001

significance level critical value) are presented for the entire sample from 1993 to 2008. It is obvious

that jumps are prevalent. Additionally, it should be noted that there is a marked difference in jump

frequency between 1993-2000 and 2001-2008, where the first period is much more densely populated

with jumps than the latter period. The highest statistic values are around 11, for Walmart in 1997,

11 for IBM in 1994, 10 for Bank of America in 1996 and 7 for Citigroup from 1996 to 1998. Post

2000, the highest statistics are consistently located in 2002 and 2006-2008. Moreover, a simple

visual check of the statistic magnitudes in this figure suggests that jumps are more prevalent in the

earlier sample period, with respect to both frequency and significance level (more will be said on

this later).

Regarding our choice of the large jumps, an important step is to choose truncation levels, . If

we choose arbitrarily large truncation levels, then clearly we will not find evidence of large jumps.

Also one may easily proceed by just picking the truncation level based on the percentiles of the

entire historical sample of the 5 minute log return. However, results could then turn out to be

difficult to interpret, as in one case the usual choice of 90 or 75 percentiles leads to virtually no

large jumps while the choice 25 or 10 percentiles leads to a very large number of large jumps.

In addition, "large" jumps are often thought of as abnormal events that arise at a frequency of one

in several months or even years. Therefore, a reasonable way to proceed is to pick the truncation

level on the basis of the sample of the monthly maximum increments - monthly based abnormal

events. Specifically, we set three levels  = 1 2 3 to be the 50 75 and 90 percentiles of

the entire sample from 1993 to 2008. Panels A,B,C, and D of Figure 2 depict the monthly largest

absolute increments and the jump truncation levels used in our calculations of the variation of large

and small jump components. Again, it is quite obvious that the monthly maximum increments are

dominant in the previous decade. The larger monthly increments in current decades are mostly

located in 2006-2008 and 2002-2004. As a result, the fixed truncation levels which are chosen across

the entire sample result in more "hits" in previous decade than in the current one. The truncation

level of Citigroup is the largest of the four stocks depicted (for example at  = 3 the level is

approximately 0.04 for Citigroup and 0.025 for IBM).
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Notice that the graphs in Figures 3A and 3B depict magnitudes of the variation of continuous,

jump, and truncated jump components of returns for our 4 sample stocks. Namely, the plots are of

daily realized volatility, and realized variance of continuous, jump and large jump components at

different truncation levels. As might be expected, inspection of the graphs suggests a close linkage

between the greater number of jumps in the first decade of the sample and the and large jump

risk over the same period. For example, in the case of IBM, the variation of the jump components

is clearly dominant in the earlier decade. The highest daily jump risk occurs in late 1998, and is

above 0.018. Indeed, at jump truncation level 3, we only see large jump risk for the years 1994,

1996, 1998, 2000 and 2008. Combined with the results of Figure 1, this again strongly suggests

that there was much more turbulence in the earlier decade.

Turning now to our tabulated results, first recall that Table 1 reports the proportion of days

identified as having jumps, at 6 different significant levels,  = {01 005 001 0005 0001 00001}
Again, there is clear evidence of jumps in both periods. However, the jump frequency in the

1993-2000 sample is significantly higher than that in the 2001-2008 sample, across all stocks and

test significance levels. For example, at the  = 0005 and 0001 levels, the average daily jump

frequencies are 46.9% and 22.8% during the 1993-2000 period, as compared with 16.8% and 9.4%

during the 2001-2008 period, respectively. When considering individual stocks, the story is much

the same. As illustrated in Figures 1, and tabulated in Table 1, the proportion of "jump-days"

for IBM and for the Bank of America are 5.9% and 8.8% during the 2000s, which is much smaller

than the value of 19.2% and 21.3% for the two stocks during the 1990s, based on tests implemented

using a significance level of  = 0001.

Of course, when calculating jump frequencies, we ignore the magnitudes of the jumps. Table

3 addresses this issue by summarizing another measure of jumps - namely the average percentage

contribution of jumps to daily realized variance. Details of the measures reported are given above

and in Section 3. In support of our earlier findings, it turns out that jumps account for about 15.6%

and 8.1% of total variation at significance levels  = 0005 and 0001, respectively, when considering

the entire sample period from 1993-2008 Moreover, analogous statistics for the period 1993-2000

are 25.1% and 12.7%, while those for the 2001-2008 period are 7% and 5%. The statistics for IBM

and Bank of America are 25.3% and 10.7% for the period 1993-2000 and 3.5% and 2.3% for the

period 2001-2008 while those for the entire samples are 7.9% and 6.6%. This result is consistent

with our earlier findings through figure analysis.

17



In summary, without examining the impact of large jumps, we already have evidence that: (i)

There is clear evidence that jumps characterize the structure of the returns of all of the stocks that

we examine. (ii) The 1990s are characterized by the occurrence of more jumps than the 2000s. (iii)

The contribution of jumps to daily realized variance is substantively higher during the 1990s than

the 2000s. (iv) Our results are consistent across all stocks, suggesting the importance of jump risk

comovement during turbulence periods.

In our empirical analysis of large jumps, we carry out the same steps as those employed above

when examining overall jump activity. Results are reported in Tables 4A-C are for truncation levels

 = 1 2 3 at 6 different significant levels,  = {01 005 001 0005 0001 00001} As mentioned
earlier, Figures 1 and 3 contain plots of jump test statistics and realized variation not only for

overall jump activity, as discussed above, but also for large jumps. Examination of these tables

suggest a number of conclusions.

Across the entire sample, there is evidence of large jumps at all levels by measure of variation.

Table 4A reports the proportion of days identified as having large jumps for truncation level  = 1.

It can be seen that the proportion of variation due to large jumps at truncation level  = 1 accounts

for about 09% and 06% of total variation (regardless of stock), at significance levels  = 0005

and 0001, respectively. Values at significance level 0.001 for the periods 1993-2000 and 2001-2008

are around 08% and 04%, respectively. For  = 2 values are 0.4% and 0.3% at significant levels

 = 0005 and 0001 respectively, when considering the entire sample. Values at significance level

0.001 for the periods 1993-2000 and 2001-2008 are around 0.4% and 0.2% for period 1993-2000 and

2001-2008, respectively. A similar result obtains for  = 3, suggesting that large jump variability

is around twice as big (as a proportion of total variability) for the latter sub-sample, regardless

of truncation level. As previously, these results are surprisingly stable across stocks. Although

not included here, our analysis of the market index data discussed above yielded a similar result.

Further examination of the statistics in the Tables 4A-C also yields another interesting finding.

In particular, though proportions of jumps and large jumps at truncation level  = 1 2 3 are all

larger in the previous decade, the difference is smaller and increasingly narrows as higher truncation

levels are considered, when examining large jumps. This result, which is true for many of our

stocks, suggests an increased role of large jumps in explaining daily realized variance during the

latter sub-sample. To illustrate this point, which is apparent upon inspection of average statistics

constructed for all 25 stocks, we investigate the case of of ExxonMobil, where we look at all statistics
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at significance level  = 0001 The proportion of variation of jumps to total variation is 17% for

the period 1993-2000 (as shown in Table 3), almost 3 times as much as the corresponding value

of 6.2% in 2001-2008. However for large jumps at truncation level  = 1 , the analogous value is

0.6% for 1993-2008, which is just 1.5 times as much as the 0.4% value during 2001-2008. Similarly

at truncation level  = 2 the value is 0.4% for 1993-2008 and 0.2% for 2001-2008. Interestingly,

at truncation level  = 3 the proportion of variation of jumps is 0 for period 1993-2000 while

it is 0.1% for period 2001-2008. Therefore, with respect to large jump we find that: (i) Large

jumps incidence and magnitudes are consistent with our earlier finding that the 1990s are much

more turbulent than the 2000s. (ii) However, for higher truncation levels, the contribution of jump

risk during the two periods becomes much closer, and indeed the contribution during the latter

period can actually become marginally greater. This suggests that while the overall role of jumps

is lessening, the role of large jumps has not decreased, and indeed, the relative role of large jumps,

as a proportion of overall jumps has actually increased in the 2000s.

4.3 Realized Jump Measures and Realized Volatility Prediction

Equations for all of the prediction models for which results are discussed in this section were

presented in Section 3. Note that the HAR-RV model does not include a jump variable, while

HAR-RV-J incorporates jump variation into the HAR-RV model. The HAR-RV-CJ model goes

one step further, and separates continuous and jump variation components. The empirical analyses

of exchange rates, equity index returns, and bond yields in ABD (2007) suggests that the volatil-

ity jump component is both highly important and distinctly less persistent than the continuous

component, and that separating the "rough" jump movements from the smooth continuous move-

ments results in significant in-sample volatility forecast improvements (i.e. the linear and nonlinear

HAR-RV-CJ models perform better than the other two classes of models). These models, which

are both simple and convenient, have been widely referred to in RV forecasting literature, and we

revisit them in the context of our individual stocks over our long sample period from 1993 to 2008.

We also provide a brief discussion on the performance of the models for S&P futures. Note that

within the scope of our paper, the in-sample predictive performance of a model is measured by its

2 which is similar to approach taken in ABD (2007).

Turning to our regression results, Table 5A report adjusted 2 values for the linear HAR -RV,

HAR-RV-J and HAR-RV-CJ models when used to forecast Realized Volatility of log stock returns
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at daily  = 1, weekly  = 5 and monthly  = 22 horizons It is clear that except for JPM, Proctor

and Gamble, Verizon and Exxon Mobile (values in bold in the table), 2 values are very low, at all

forecasting horizons and for all HAR realized models. For example, in the case of Intel, the value for

 = 1 is 0.0716 for the RV model, while it is 0.0766 for the RV-J model and 0.0833 for the RV-CJ.

At the weekly horizon the corresponding values are all even smaller (0.0612, 0.0612, and 0.0674),

and again at the monthly horizon (values are 0.0430,0.0438 and 0.0470). It is quite obvious from

these low values that the predictive performance is poor regardless of forecasting horizon, although

there is some improvement when switching from the RV model to the RV-CJ model. The same

result holds for all stocks. Moreover, though the improvement is small in magnitude, it turns out

to be quite a significant percentage. In the case of Intel, for example, the percentage improvement

is 16% when  = 1

Table 5B reports analogous results for the nonlinear square root RV class of models. As might

be expected given the results of ABD (2007), there is substantive improvement in the predictive

performance of this class of non-linear models for all stocks in our sample. In contrast to the

linear model, 20 stocks have 2 values greater than 0.2. Stocks with values larger than 0.3 are

highlighted. Again focussing on Intel, for  = 1 the 2 value is 0.4028 for the RV model, 0.4069

for the RV-J model and 0.4212 for the RV-CJ model. For  = 5, values are 0.3338, 0.3344, and

0.3452. Finally for  = 22, values are 0.2576,0.2578 and 0.2670, suggesting that the RV plus jump

model is preferable to the one that separates the continuous and jump components. This finding is

similar to that of ABD (2007) for market indices. Overall, the huge improvement in the predictive

performance points to strong non-linearity in the dependence of future RV on the past RV, VC

and VJ variables, across different horizons. In addition, and similar to the more poorly performing

linear models, predictive performance is better at shorter horizons.

The last class of models (see Table 5C) that we investigate includes our nonlinear log models,

which are found by ABD (2007) to yield the best predictive performance. Note that the focus of

our paper is on individual stocks in the DOW 30, which is quite different from examining the S&P

futures index. Surprisingly, the HAR-RV-CJ just only works for 7 stocks in our sample, otherwise

yielding data matrix singularities (i.e. due to too many zero values) leading to a failure of least

squares. (Note that the market index is constructed as the weighted average of individual stocks

returns, and therefore contains much more jump activity than single stock.) The stocks for which

the model works, and for which results are reported include Citigroup, Dupont, Home Depot,
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Intel, Microsoft, Verizon and Exxon Mobil. Interestingly, for these models, there are significant

overall improvements in regression fit, with 2 values increasing to the 0.65 - 0.75 range for the

log RV model when  = 1for example. To illustrate, for the the case of Intel, values for the

log RV-CJ model are 0.6202 for  = 1, 0.5329 for  = 5 and 0.4438 for  = 22. In order to

contrast S&P futures results with the above findings, please refer to Panels D of Table 5. The

performance of linear HAR-RV, HAR-RV-J and HAR-RV-CJ models are much better than in the

case of individual stocks. Indeed 2 value of approximately 0.38 for  = 1, 0.37 for  = 5 and 0.33

for  = 22 obtain As before, nonlinear models are better than linear models, regardless of forecast

horizon. However, the gain is not as pronounced as found when examining individual stocks. Again

as before, the models perform best at lesser forecast horizons. Finally, and most surprisingly, note

that the predictive performance of the log model is close to that of the square root model. Indeed,

the square root model actually yields slightly higher 2 values, regardless of forecast horizon For

example, for  = 1 the linear RV-CJ model value is 0.3800, while it is 0.4741 and 0.4592 for the

square root and log models, respectively. These findings are somewhat different from ABD (2007)

where the log model is always the best. This difference may be accounted for by the fact that our

dataset includes recent data spanning the period 2002 to 2008.

In summary, we find that: (i) The class of linear models performs poorly for individual stocks,

and there is much improvement when using more complicated models. (ii) Forecasts are better

at shorter horizon for all models, regardless of stock and forecasting horizon (iii) There is huge

improvement when moving from the linear model to the square root model and from the square

root model to the log model (when the log model is "well-defined"), in the case of individual stocks.

This improvement is much higher than that obtaining when examining market level data.

5 Concluding Remarks

In this paper, we review the recent literature on assessing the variational contribution of large jumps

- those jumps that are far in the tails of a return distribution, and then undertake an extensive

empirical investigation of 25 stocks in DOW 30 (as well as the S&P futures market index).

Our investigation provides new and clear evidence of jumps in individual log price processes.

Moreover, there are clearly comovements during turbulent times, for all stocks. More noticably,

jump incidence is noticably greater during the 1990s than during the 2000s, although the incidence
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of "very large" jumps is similar across both decades, and the relative importance of large jumps

has increased. In a series of predictive experiments, we find similar results as those in ABD (2007).

Namely, non-linear square root and log models yield substantial improvements in fit relative to their

linear counterparts, when predicting realized volatility. Furthermore, including jump components in

the regressions further improves predictive performance. However, the log model, though superior to

the other two classes of models considered, is ill-defined for three quarters of our stocks. Moreover,

when we re-consider a market index similar to that examined in ABD (2007), we find that the

square root model is actually marginally superior to the log model, likely due to the fact that we

use an extended sample of data that spans the 1990s and 2000s.
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Figure 1: Jump Test Statistics of Days Identified as Having Jumps of (Log) Stock

Prices: Sample Period 1993-2008 *
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∗ Panel A, B, C, D depict daily test statistics of days identified as having jumps for Walmart, IBM, Bank of America,

Citigroup (Log) Stock Price using 0.001 significant level. Specifically, all statistics in the figure are larger than 3.09. See section

4 for further details.
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Figure 2: Monthly Largest Increments and Truncation Levels  = 1 2 3: Sample

Period 1993-2008 ∗

Panel A: Walmart Panel B: IBM
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∗ Panel A,B,C,D depict the monthly largest absolute increments and the jump truncation levels used as thresholds in

our calculations of the variations of large and small jump components, where level =1 corresponds to the median of monthly

maximum increments , level =2 corresponds to 75th percentile of monthly maximum increments, and level =3 corresponds

to 90th percentile monthly maximum increments of(log) stock prices of Walmart, IBM, Bank of America and Citigroup for the

sample period is from 1993 to 2008.
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Figure 3A: Daily Realized Volatility (RV) and Realized Variation of Continuous,

Jump and Truncated Jump Components (Log) Stock Prices for Truncation Levels

 = 1 2 3 ∗
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∗ See Figure 2 for details about the jump truncation levels. The above panels plot daily realized volatility, realized

measures of the variation of continuous, jump and large jump components at truncation levels  = 1 2 3, which are shortly

referred to as jump 1, jump 2 and jump 3 for the period 1993-2008. The realized measures of variations are calculated as

discussed in Section 3 and 4.
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Figure 3B: Daily Realized Volatility (RV) and Realized Variation of Continuous,

Jump and Truncated Jump Components of (Log) Stock Prices for Truncation Levels

 = 1 2 3 ∗
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∗ See notes in Figure 3A.
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Table 1: Percentage of Days Identified as Having Jumps Using Daily Statistics ∗

Stock Name Panel A: Sample Period 1993-2000 ( ' 2000) Panel B: Sample Period 2001-2008 ( ' 1900)
Significant Level  0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 88 80.9 62.1 52 26.3 8.7 49.2 39.3 21.4 16.5 9.7 4.3

American Express 82.9 76.2 56.4 46.6 19.3 4.6 47.4 36.8 20.2 14.7 8.0 4.0

Bank of America 81.8 75.6 56.7 46.4 21.3 5.0 45.1 34.1 20.1 15.7 8.8 3.1

Citigroup 86.3 80.5 63.3 51.9 23.3 4.9 43.6 32.9 17.9 14.6 7.1 2.6

Caterpillar 87.2 81.5 61.8 51 25.9 7.3 46 35.3 19.9 16.3 9.5 4.3

Dupont 83.8 76.5 57.2 48.3 24.2 5.6 49.5 38.8 21.8 17.1 9.5 3.9

Walt Disney 89.3 83.9 65.9 56.0 27.3 5.3 55.6 43.9 23.9 17.6 10.1 3.9

General Electric 79.6 73.5 54.5 45.5 22.3 4.5 49.2 39.3 21.8 16.2 9.4 3.9

GM 88.1 83.1 65.4 54 25.4 6.2 51.8 40.4 22.8 17.8 10.5 4.7

Home Depot 87.7 81 62.1 51.4 24.6 5.1 49.5 38.5 22.1 16.8 10 4.3

IBM 73.8 65 47.3 39.6 19.2 5.9 39.9 30.1 15.1 11.7 5.9 2.8

Intel 69.2 58.9 39.5 33.0 18.0 6.3 51.7 41.4 23.6 18.7 11.3 4.7

Johnson & Johnson 86.7 81.2 62.8 52.5 25.2 5.7 47.5 37.7 22.1 18.0 10.9 4.6

JPM 79.5 73.2 55.7 47.6 21.4 5.0 47.9 35.9 20.8 16.1 9.0 3.3

Coca Cola 86.4 80.8 63.3 54.2 23.9 4.8 52.5 41.9 23.3 18.5 10.2 4.6

McDonald’s 90.5 85 66.1 55.9 25.8 4.9 51.3 40.8 24.6 19.8 11.5 4.8

3M 85.7 78.8 59.2 49.9 25.6 6.9 43.1 33.1 18.8 14.2 7.9 3.6

Microsoft 68.5 58.7 38.6 30.5 16.4 7.0 56.3 44.8 25.7 21.5 11.1 4.4

Pfizer 82.6 75.4 56.6 49.1 26.3 6.5 50 40 23.5 17.7 9.4 4.1

Procter & Gamble 80.1 72.4 55.6 46.4 25.5 6.4 46.9 35.6 18.5 14.4 7.2 2.8

AT & T 89.3 83.3 65.8 54.7 23.1 4.4 58.8 48.4 29 22.8 13.8 6.1

United Tech.Corp. 84.2 77.1 54.3 43.9 22.8 8.2 46.3 36.3 20.5 16.0 9.1 3.6

Verizon 81.5 67.7 46 39.5 24.2 8.1 51.4 40.9 24.5 19.4 11.2 5.0

Walmart 86.7 81.5 59.8 46.9 15.5 5.1 44.7 34.3 18.7 14.0 7.4 2.6

ExxonMobil 61.3 49.8 32.8 26.2 17 5.2 44.2 33.6 17.5 12.9 6.2 2.9

Average 82.4 75.3 56.4 46.9 22.8 5.9 48.8 38.2 21.5 16.8 9.4 4.0
∗ See notes to Figure 1. Entries denote the percentage of days identified as having jumps based on the calculation of daily

statistics. Statistics are the adjusted ratio jump statistics of Barndorff-Nielsen and Shephard (2006) and Huang and Tauchen

(2005), as discussed in Section 3. Test results are summarized in Panel A for the sample period from 1993-2000 and for the

sample period 2001-2008 in Panel B. These sample periods have approximately 2000 and 1900 daily statistics, respectively.

Statistics are reported for six different significance levels,  =01 005 001 0005 0001 00001.

30



Table 2: Daily Realized Variation: Ratio of Continuous to Total Variation ∗

Stock Name Panel A: Sample Period 1993-2000 ( ' 2000) Panel B: Sample Period 2001-2008 ( ' 1900)
Significant Level  0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 58.8 60.5 67.4 71.6 85.2 94.8 86.4 88.2 92.3 93.6 95.9 97.9

American Express 60.5 61.9 69.5 73.8 89.2 97.4 87.3 89.1 92.9 94.3 96.5 98.1

Bank of America 62.8 64.0 70.3 74.7 87.9 97.1 88.4 90.2 93.2 94.4 96.5 98.5

Citigroup 58.5 59.7 65.9 70.8 86.3 97.0 89.0 90.7 94.0 94.9 97.2 98.8

Caterpillar 60.0 61.4 68.0 72.5 85.3 95.5 87.7 89.5 92.9 93.8 96.0 98.0

Dupont 63.2 64.6 70.9 74.2 86.7 96.8 86.7 88.5 92.4 93.6 96.0 98.2

Walt Disney 58.0 59.2 65.1 69.3 84.2 96.6 84.7 86.8 91.4 93.1 95.8 98.2

General Electric 66.0 67.2 72.9 76.2 87.7 97.5 86.8 88.4 92.3 93.9 96.2 98.2

GM 57.5 58.6 64.8 69.8 85.3 96.1 85.4 87.5 91.7 93.1 95.6 97.8

Home Depot 60.0 61.4 67.7 72.1 85.9 96.9 86.7 88.5 92.2 93.7 95.9 98.0

IBM 69.9 71.7 76.9 79.6 89.3 96.5 90.2 91.8 94.9 95.8 97.7 98.7

Intel 76.0 78.0 83.2 85.3 91.1 96.5 86.1 87.8 91.7 93.1 95.4 97.8

Johnson &Johnson 60.8 61.9 67.7 71.7 85.8 96.6 87.0 88.7 92.2 93.3 95.6 97.9

JPM 64.0 65.3 70.8 74.4 88.0 97.2 87.4 89.4 92.8 94.1 96.3 98.4

Coca Cola 60.1 61.2 66.9 70.6 86.3 97.2 86.0 87.7 91.8 93.2 95.8 97.9

McDonald’s 56.1 57.2 64.0 68.5 84.9 96.9 85.1 86.9 90.8 92.2 95.0 97.7

3M 61.0 62.5 69.1 72.8 85.6 95.9 89.0 90.6 93.8 94.9 96.8 98.4

Microsoft 76.8 78.6 83.9 86.5 92.0 96.3 84.9 86.8 91.0 92.2 95.5 98.0

Pfizer 64.5 65.9 71.8 74.6 85.3 96.1 86.2 87.9 91.7 93.3 96.1 98.1

Procter &Gamble 66.1 67.6 72.2 75.5 85.8 96.3 88.1 89.9 93.7 94.8 97.0 98.6

AT &T 56.2 57.4 64.0 68.9 86.5 97.2 82.3 84.1 88.9 90.7 93.9 97.0

United Tech.Corp. 62.9 64.5 72.4 77.0 87.6 95.2 87.8 89.5 93.0 94.2 96.4 98.4

Verizon 70.6 73.2 79.0 81.2 88.0 95.6 85.6 87.4 91.3 92.6 95.3 97.6

Walmart 55.6 56.8 66.2 72.6 90.9 96.6 88.5 90.2 93.7 94.9 97.0 98.8

ExxonMobil 80.7 82.9 87.3 89.1 92.4 97.4 89.2 90.9 94.3 95.4 97.5 98.7

Panel C: Sample Period 1993-2008 ( ' 3900)
Significant Level  0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 73.3 75.0 80.5 83.1 90.8 96.4

American Express 73.6 75.2 80.9 83.8 92.8 97.7

Bank of America 75.3 76.8 81.5 84.3 92.1 97.8

Citigroup 73.4 74.9 79.7 82.6 91.7 97.9

Caterpillar 73.8 75.3 80.4 83.1 90.6 96.7

Dupont 74.6 76.3 81.4 83.7 91.2 97.5

Walt Disney 71.0 72.7 78.0 80.9 89.8 97.4

General Electric 76.2 77.5 82.4 84.9 91.8 97.8

GM 71.1 72.7 77.9 81.2 90.3 96.9

Home Depot 73.0 74.7 79.7 82.6 90.8 97.5

IBM 79.8 81.5 85.7 87.5 93.4 97.6

Intel 81.0 82.8 87.4 89.1 93.2 97.1

Johnson &Johnson 73.6 75.0 79.7 82.3 90.6 97.2

JPM 75.4 77.0 81.6 84.0 92.1 97.8

Coca Cola 72.7 74.1 79.1 81.6 91.0 97.5

McDonald’s 69.6 71.0 76.5 79.5 89.6 97.3

3M 74.0 75.6 80.6 83.1 90.8 97.1

Microsoft 80.6 82.4 87.2 89.2 93.7 97.1

Pfizer 75.1 76.7 81.5 83.7 90.6 97.1

Procter &Gamble 76.8 78.5 82.7 84.9 91.3 97.4

AT &T 68.8 70.4 76.1 79.5 90.1 97.1

United Tech.Corp. 76.3 77.9 83.5 86.2 92.3 96.9

Verizon 84.7 86.5 90.5 91.9 94.9 97.5

Walmart 71.7 73.1 79.6 83.5 93.9 97.7

ExxonMobil 88.1 89.9 93.4 94.6 96.9 98.5
∗ The entries in the table denote the average percentage of daily variation of the continuous component relative to

daily realized variance for the sample periods 1993-2000, 2001-2008 and 1993-2008. The realized measure of variation of the

continuous component is calculated as discussed in Section 3. Entries are caculcated accross 6 different significant levels,

 =01 005 001 0005 0001 00001.
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Table 3: Daily Realized Variation: Ratio of Jump to Total Variation ∗

Stock Name Panel A: Sample Period 1993-2000 ( ' 2000) Panel B: Sample Period 2001-2008 ( ' 1900)
Significant Level  0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 41.2 39.5 32.6 28.4 14.8 5.2 13.6 11.8 7.7 6.4 4.1 2.1

American Express 39.5 38.1 30.5 26.2 10.8 2.6 12.7 10.9 7.1 5.7 3.5 1.9

Bank of America 37.2 36.0 29.7 25.3 12.1 2.9 11.6 9.8 6.8 5.6 3.5 1.5

Citigroup 41.5 40.3 34.1 29.2 13.7 3.0 11.0 9.3 6.0 5.1 2.8 1.2

Caterpillar 40.0 38.6 32.0 27.5 14.7 4.5 12.3 10.5 7.1 6.2 4.0 2.0

Dupont 36.8 35.4 29.1 25.8 13.3 3.2 13.3 11.5 7.6 6.4 4.0 1.8

Walt Disney 42.0 40.8 34.9 30.7 15.8 3.4 15.3 13.2 8.6 6.9 4.2 1.8

General Electric 34.0 32.8 27.1 23.8 12.3 2.5 13.2 11.6 7.7 6.1 3.8 1.8

GM 42.5 41.4 35.2 30.2 14.7 3.9 14.6 12.5 8.3 6.9 4.4 2.2

Home Depot 40.0 38.6 32.3 27.9 14.1 3.1 13.3 11.5 7.8 6.3 4.1 2.0

IBM 30.1 28.3 23.1 20.4 10.7 3.5 9.8 8.2 5.1 4.2 2.3 1.3

Intel 24.0 22.0 16.8 14.7 8.9 3.5 13.9 12.2 8.3 6.9 4.6 2.2

Johnson &Johnson 39.2 38.1 32.3 28.3 14.2 3.4 13.0 11.3 7.8 6.7 4.4 2.1

JPM 36.0 34.7 29.2 25.6 12.0 2.8 12.6 10.6 7.2 5.9 3.7 1.6

Coca Cola 39.9 38.8 33.1 29.4 13.7 2.8 14.0 12.3 8.2 6.8 4.2 2.1

McDonald’s 43.9 42.8 36.0 31.5 15.1 3.1 14.9 13.1 9.2 7.8 5.0 2.3

3M 39.0 37.5 30.9 27.2 14.4 4.1 11.0 9.4 6.2 5.1 3.2 1.6

Microsoft 23.2 21.4 16.1 13.5 8.0 3.7 15.1 13.2 9.0 7.8 4.5 2.0

Pfizer 35.5 34.1 28.2 25.4 14.7 3.9 13.8 12.1 8.3 6.7 3.9 1.9

Procter &Gamble 33.9 32.4 27.8 24.5 14.2 3.7 11.9 10.1 6.3 5.2 3.0 1.4

AT &T 43.8 42.6 36.0 31.1 13.5 2.8 17.7 15.9 11.1 9.3 6.1 3.0

United Tech.Corp. 37.1 35.5 27.6 23.0 12.4 4.8 12.2 10.5 7.0 5.8 3.6 1.6

Verizon 29.4 26.8 21.0 18.8 12.0 4.4 14.4 12.6 8.7 7.4 4.7 2.4

Walmart 44.4 43.2 33.8 27.4 9.1 3.4 11.5 9.8 6.3 5.1 3.0 1.2

ExxonMobil 19.3 17.1 12.7 10.9 7.6 2.6 10.8 9.1 5.7 4.6 2.5 1.3

Average 36.5 35.1 28.9 25.1 12.7 3.5 13.1 11.3 7.6 6.3 3.9 1.9

Panel C: Sample Period 1993-2008 ( ' 3900)
Significant Level  0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 26.7 25.0 19.5 16.9 9.2 3.6

American Express 26.4 24.8 19.1 16.2 7.2 2.3

Bank of America 24.7 23.2 18.5 15.7 7.9 2.2

Citigroup 26.6 25.1 20.3 17.4 8.3 2.1

Caterpillar 26.2 24.7 19.6 16.9 9.4 3.3

Dupont 25.4 23.7 18.6 16.3 8.8 2.5

Walt Disney 29.0 27.3 22.0 19.1 10.2 2.6

General Electric 23.8 22.5 17.6 15.1 8.2 2.2

GM 28.9 27.3 22.1 18.8 9.7 3.1

Home Depot 27.0 25.3 20.3 17.4 9.2 2.5

IBM 20.2 18.5 14.3 12.5 6.6 2.4

Intel 19.0 17.2 12.6 10.9 6.8 2.9

Johnson &Johnson 26.4 25.0 20.3 17.7 9.4 2.8

JPM 24.6 23.0 18.4 16.0 7.9 2.2

Coca Cola 27.3 25.9 20.9 18.4 9.0 2.5

McDonald’s 30.4 29.0 23.5 20.5 10.4 2.7

3M 26.0 24.4 19.4 16.9 9.2 2.9

Microsoft 19.4 17.6 12.8 10.8 6.3 2.9

Pfizer 24.9 23.3 18.5 16.3 9.4 2.9

Procter &Gamble 23.2 21.5 17.3 15.1 8.7 2.6

AT &T 31.2 29.6 23.9 20.5 9.9 2.9

United Tech.Corp. 23.7 22.1 16.5 13.8 7.7 3.1

Verizon 15.3 13.5 9.5 8.1 5.1 2.5

Walmart 28.3 26.9 20.4 16.5 6.1 2.3

ExxonMobil 11.9 10.1 6.6 5.4 3.1 1.5

Average 24.7 23.1 18.1 15.6 8.1 2.6
∗ See notes to Figure 2. The entries in the table denote the average percentage of daily variation of the jump com-

ponent relative to daily realized variance for the sample periods 1993-2000, 2001-2008 and 1993-2008. The realized measure

of variation of the jump component is calculated as discussed in Section 3. In addition to frequency of jumps, realized mea-

sures of variations also take the magintude of jumps into account. Entries are caculcated accross 6 different significant levels,

 =01 005 001 0005 0001 00001.
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Table 4A: Daily Realized Variation: Ratio of Truncation Jump to Total Variation,

Jump Truncation Level  = 1 ∗

Stock Name Panel A: Sample Period 1993-2000 ( ' 2000) Panel B: Sample Period 2001-2008 ( ' 1900)
Significant Level  0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 1.8 1.7 1.2 1.1 0.9 0.6 1.3 1.2 0.9 0.8 0.5 0.4

American Express 1.5 1.3 1.0 0.8 0.6 0.4 1.2 1.1 0.8 0.6 0.5 0.3

Bank of America 3.0 2.7 1.8 1.5 1.0 0.7 1.0 0.9 0.8 0.6 0.4 0.2

Citigroup 2.1 1.9 1.2 1.0 0.6 0.4 0.8 0.7 0.5 0.4 0.3 0.1

Caterpillar 2.3 2.2 1.6 1.5 1.0 0.6 0.7 0.6 0.5 0.5 0.3 0.2

Dupont 2.1 1.9 1.2 1.0 0.7 0.3 0.9 0.9 0.6 0.5 0.4 0.2

Walt Disney 2.1 1.8 1.1 0.9 0.6 0.4 1.6 1.4 1.0 0.9 0.6 0.3

General Electric 1.5 1.4 0.8 0.7 0.4 0.2 1.3 1.2 0.9 0.6 0.3 0.2

GM 1.5 1.4 1.0 0.8 0.6 0.4 1.3 1.2 0.8 0.7 0.5 0.2

Home Depot 1.9 1.7 1.3 1.1 0.6 0.3 0.7 0.6 0.5 0.3 0.2 0.1

IBM 2.3 2.1 1.7 1.6 1.0 0.7 0.5 0.5 0.4 0.4 0.2 0.1

Intel 2.3 2.1 1.6 1.2 0.8 0.5 0.7 0.7 0.4 0.4 0.3 0.2

Johnson &Johnson 2.2 2.0 1.5 1.3 0.9 0.6 0.6 0.6 0.4 0.3 0.2 0.1

JPM 1.3 1.1 0.7 0.6 0.3 0.2 1.7 1.5 1.0 0.8 0.6 0.3

Coca Cola 2.3 2.1 1.3 1.2 0.8 0.5 0.8 0.8 0.6 0.5 0.4 0.3

McDonald’s 1.8 1.6 1.2 0.9 0.7 0.4 1.0 1.0 0.7 0.6 0.4 0.2

3M 2.1 2.0 1.3 1.1 0.7 0.5 0.6 0.6 0.4 0.4 0.4 0.3

Microsoft 2.9 2.7 2.0 1.7 1.0 0.5 0.6 0.6 0.5 0.4 0.2 0.1

Pfizer 2.0 1.9 1.3 1.1 0.8 0.5 0.7 0.6 0.5 0.4 0.3 0.2

Procter &Gamble 2.4 2.2 1.7 1.4 0.9 0.5 0.8 0.7 0.5 0.4 0.3 0.2

AT &T 2.3 2.2 1.6 1.3 0.9 0.7 1.7 1.5 1.2 1.1 0.7 0.4

United Tech.Corp. 3.2 2.9 2.1 1.9 1.2 0.6 1.3 1.1 0.8 0.7 0.5 0.2

Verizon 6.9 6.3 5.0 4.4 2.7 1.1 1.5 1.3 1.0 0.9 0.6 0.4

Walmart 2.7 2.4 1.4 1.2 0.9 0.6 0.6 0.6 0.4 0.4 0.3 0.1

ExxonMobil 2.1 1.8 1.3 1.0 0.6 0.4 1.1 0.9 0.7 0.6 0.4 0.2

Average 2.3 2.1 1.5 1.3 0.8 0.5 1.0 0.9 0.7 0.6 0.4 0.2

Panel C: Sample Period 1993-2008 ( ' 3900)
Significant Level  0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 1.6 1.4 1.0 0.9 0.7 0.5

American Express 1.3 1.2 0.9 0.7 0.5 0.4

Bank of America 2.0 1.9 1.3 1.1 0.7 0.5

Citigroup 1.4 1.3 0.8 0.7 0.5 0.3

Caterpillar 1.5 1.4 1.1 1.0 0.7 0.4

Dupont 1.5 1.4 0.9 0.8 0.5 0.2

Walt Disney 1.8 1.6 1.1 0.9 0.6 0.4

General Electric 1.4 1.3 0.8 0.7 0.4 0.2

GM 1.4 1.3 0.9 0.8 0.5 0.3

Home Depot 1.3 1.2 0.9 0.7 0.4 0.2

IBM 1.4 1.3 1.0 1.0 0.6 0.4

Intel 1.5 1.4 1.0 0.8 0.6 0.3

Johnson &Johnson 1.4 1.3 1.0 0.8 0.6 0.4

JPM 1.5 1.3 0.9 0.7 0.5 0.3

Coca Cola 1.6 1.5 1.0 0.8 0.6 0.4

McDonald’s 1.4 1.3 1.0 0.8 0.5 0.3

3M 1.4 1.3 0.9 0.8 0.6 0.4

Microsoft 1.8 1.7 1.3 1.1 0.6 0.3

Pfizer 1.3 1.2 0.9 0.8 0.6 0.4

Procter &Gamble 1.6 1.5 1.1 0.9 0.6 0.3

AT &T 2.0 1.9 1.4 1.2 0.8 0.5

United Tech.Corp. 2.1 2.0 1.4 1.3 0.8 0.4

Verizon 1.8 1.6 1.2 1.1 0.7 0.4

Walmart 1.7 1.5 0.9 0.8 0.6 0.3

ExxonMobil 1.2 1.1 0.7 0.6 0.4 0.2

Average 1.6 1.4 1.0 0.9 0.6 0.3
∗ See notes to Figure 2. Entries in the table denote the average percentage of daily variation due to jumps constructed

using truncation level  = 1, relative to the daily realized variance, for the sample periods 1993-2000, 2001-2008 and 1993-2008.

The realized measure of variation of the jump component is calculated as discussed in Section 3. Entries are caculcated accross

6 different significance levels ( =01 005 001 0005 0001 00001).
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Table 4B: Daily Realized Variation: Ratio of Truncation Jump to Total Variation,

Jump Truncation Level  = 2 ∗

Stock Name Panel A: Sample Period 1993-2000 ( ' 2000) Panel B: Sample Period 2001-2008 ( ' 1900)
Significant Level  0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 0.8 0.8 0.6 0.5 0.5 0.3 0.5 0.5 0.4 0.4 0.2 0.1

American Express 0.8 0.7 0.6 0.5 0.3 0.3 0.5 0.4 0.3 0.2 0.2 0.1

Bank of America 0.9 0.9 0.5 0.4 0.3 0.2 0.4 0.4 0.3 0.3 0.2 0.1

Citigroup 1.0 1.0 0.7 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1

Caterpillar 1.0 1.0 0.8 0.8 0.5 0.3 0.3 0.3 0.3 0.3 0.2 0.2

Dupont 0.9 0.8 0.4 0.3 0.2 0.1 0.4 0.4 0.2 0.2 0.1 0.0

Walt Disney 1.0 0.9 0.4 0.3 0.3 0.2 0.5 0.5 0.3 0.3 0.2 0.1

General Electric 0.7 0.7 0.4 0.4 0.2 0.1 0.6 0.6 0.5 0.3 0.1 0.1

GM 0.7 0.7 0.4 0.3 0.2 0.2 0.7 0.6 0.4 0.4 0.3 0.1

Home Depot 1.0 0.9 0.7 0.6 0.3 0.2 0.2 0.2 0.2 0.1 0.0 0.0

IBM 1.0 0.9 0.8 0.7 0.5 0.3 0.2 0.2 0.2 0.2 0.1 0.1

Intel 0.9 0.9 0.7 0.6 0.4 0.2 0.2 0.2 0.1 0.1 0.1 0.0

Johnson &Johnson 0.9 0.8 0.6 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1

JPM 0.4 0.4 0.2 0.2 0.1 0.0 0.7 0.7 0.5 0.4 0.3 0.2

Coca Cola 0.9 0.9 0.4 0.4 0.2 0.2 0.4 0.4 0.2 0.2 0.2 0.2

McDonald’s 0.8 0.7 0.5 0.4 0.3 0.3 0.5 0.5 0.4 0.2 0.2 0.0

3M 1.0 0.9 0.5 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1

Microsoft 1.1 1.0 0.8 0.6 0.3 0.1 0.2 0.2 0.2 0.2 0.1 0.0

Pfizer 0.8 0.8 0.6 0.6 0.4 0.3 0.3 0.3 0.2 0.2 0.1 0.1

Procter &Gamble 1.1 1.0 0.8 0.6 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1

AT &T 1.1 1.0 0.7 0.6 0.4 0.4 0.7 0.6 0.6 0.5 0.3 0.1

United Tech.Corp. 1.1 1.0 0.7 0.6 0.5 0.3 0.4 0.4 0.3 0.3 0.2 0.1

Verizon 2.8 2.6 2.2 1.9 0.7 0.2 0.5 0.5 0.4 0.4 0.3 0.2

Walmart 1.2 1.1 0.6 0.5 0.5 0.4 0.2 0.2 0.2 0.2 0.1 0.0

ExxonMobil 0.8 0.6 0.5 0.4 0.4 0.2 0.5 0.5 0.4 0.3 0.2 0.1

Average 1.0 0.9 0.6 0.5 0.4 0.2 0.4 0.4 0.3 0.3 0.2 0.1

Panel C: Sample Period 1993-2008 ( ' 3900)
Significant Level  0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 0.6 0.6 0.5 0.4 0.3 0.2

American Express 0.7 0.6 0.4 0.3 0.3 0.2

Bank of America 0.7 0.6 0.4 0.4 0.3 0.2

Citigroup 0.7 0.7 0.5 0.4 0.3 0.2

Caterpillar 0.7 0.6 0.5 0.5 0.4 0.3

Dupont 0.7 0.6 0.3 0.3 0.2 0.1

Walt Disney 0.8 0.7 0.4 0.3 0.2 0.2

General Electric 0.7 0.6 0.5 0.3 0.1 0.1

GM 0.7 0.7 0.4 0.3 0.2 0.2

Home Depot 0.6 0.6 0.4 0.3 0.2 0.1

IBM 0.6 0.6 0.5 0.5 0.3 0.2

Intel 0.6 0.5 0.4 0.3 0.2 0.1

Johnson &Johnson 0.6 0.6 0.4 0.4 0.3 0.2

JPM 0.6 0.5 0.4 0.3 0.2 0.1

Coca Cola 0.6 0.6 0.3 0.3 0.2 0.2

McDonald’s 0.7 0.6 0.5 0.3 0.3 0.2

3M 0.6 0.6 0.3 0.3 0.2 0.2

Microsoft 0.6 0.6 0.5 0.4 0.2 0.0

Pfizer 0.6 0.5 0.4 0.4 0.3 0.2

Procter &Gamble 0.7 0.6 0.5 0.4 0.3 0.2

AT &T 0.9 0.8 0.6 0.6 0.4 0.3

United Tech.Corp. 0.7 0.7 0.5 0.4 0.3 0.2

Verizon 0.7 0.6 0.5 0.4 0.3 0.2

Walmart 0.7 0.6 0.4 0.3 0.3 0.2

ExxonMobil 0.6 0.5 0.4 0.3 0.2 0.1

Average 0.7 0.6 0.4 0.4 0.3 0.2
∗ See notes to Table 4A.
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Table 4C: Daily Realized Variation: Ratio of Truncation Jump to Total Variation,

Jump Truncation Level  = 3 ∗

Stock Name Panel A: Sample Period 1993-2000 ( ' 2000) Panel B: Sample Period 2001-2008 ( ' 1900)
Significant Level  0.1 0.05 0.01 0.005 0.001 0.0001 0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 0.3 0.3 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.1 0.1 0.0

American Express 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.0

Bank of America 0.5 0.5 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1

Citigroup 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0

Caterpillar 0.5 0.5 0.4 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1

Dupont 0.4 0.4 0.2 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0

Walt Disney 0.5 0.5 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.1 0.0

General Electric 0.3 0.3 0.2 0.1 0.0 0.0 0.3 0.3 0.3 0.2 0.0 0.0

GM 0.3 0.3 0.2 0.1 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.0

Home Depot 0.4 0.4 0.3 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0

IBM 0.3 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Intel 0.4 0.4 0.3 0.2 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0

Johnson &Johnson 0.4 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.0

JPM 0.2 0.2 0.1 0.1 0.0 0.0 0.2 0.2 0.2 0.2 0.1 0.1

Coca Cola 0.5 0.5 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.1

McDonald’s 0.4 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.0

3M 0.3 0.3 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0

Microsoft 0.4 0.4 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0

Pfizer 0.3 0.3 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0

Procter &Gamble 0.3 0.3 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.1

AT &T 0.6 0.5 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.0

United Tech.Corp. 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.1 0.1 0.1 0.0

Verizon 0.7 0.7 0.7 0.7 0.0 0.0 0.2 0.1 0.1 0.1 0.1 0.0

Walmart 0.5 0.5 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.0

ExxonMobil 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.1 0.0

Average 0.4 0.4 0.3 0.2 0.1 0.1 0.2 0.2 0.1 0.1 0.1 0.0

Panel C: Sample Period 1993-2008 ( ' 3900)
Significant Level  0.1 0.05 0.01 0.005 0.001 0.0001

Alcoa 0.3 0.3 0.2 0.2 0.1 0.1

American Express 0.3 0.2 0.2 0.1 0.1 0.1

Bank of America 0.3 0.3 0.2 0.2 0.1 0.1

Citigroup 0.3 0.3 0.2 0.2 0.2 0.1

Caterpillar 0.3 0.3 0.3 0.2 0.2 0.1

Dupont 0.3 0.3 0.1 0.0 0.0 0.0

Walt Disney 0.4 0.4 0.2 0.2 0.1 0.1

General Electric 0.3 0.3 0.2 0.2 0.0 0.0

GM 0.3 0.3 0.1 0.1 0.1 0.1

Home Depot 0.2 0.2 0.2 0.1 0.0 0.0

IBM 0.2 0.2 0.2 0.2 0.1 0.1

Intel 0.2 0.2 0.2 0.1 0.1 0.0

Johnson &Johnson 0.3 0.3 0.2 0.2 0.2 0.1

JPM 0.2 0.2 0.1 0.1 0.0 0.0

Coca Cola 0.3 0.3 0.1 0.1 0.1 0.1

McDonald’s 0.3 0.3 0.2 0.1 0.1 0.1

3M 0.2 0.2 0.1 0.1 0.1 0.1

Microsoft 0.2 0.2 0.2 0.1 0.1 0.0

Pfizer 0.2 0.2 0.2 0.1 0.1 0.1

Procter &Gamble 0.2 0.2 0.2 0.2 0.1 0.1

AT &T 0.4 0.4 0.2 0.2 0.2 0.1

United Tech.Corp. 0.2 0.2 0.2 0.2 0.1 0.1

Verizon 0.2 0.2 0.1 0.1 0.1 0.0

Walmart 0.3 0.3 0.2 0.2 0.1 0.1

ExxonMobil 0.2 0.2 0.2 0.2 0.1 0.0

Average 0.3 0.3 0.2 0.1 0.1 0.1
∗ See notes to Table 4A.
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Table 5A: R2 of Linear Models for Individual Stocks∗
h =1 (Daily forecast) h=5 (Weekly forecast) h=22 (Monthly forecast)

Symbol Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

RV RV-J RV-CJ RV RV-J RV-CJ RV RV-J RV-CJ

Alcoa 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001

American Express 0.0115 0.0133 0.0436 0.0100 0.0100 0.0457 0.0043 0.0044 0.0070

Bank of America 0.1085 0.1241 0.1375 0.0799 0.0905 0.0999 0.0262 0.0282 0.0312

Citigroup 0.0006 0.0025 0.0039 0.0012 0.0017 0.0027 0.0022 0.0022 0.0040

Caterpillar 0.0012 0.0012 0.0018 0.0011 0.0012 0.0016 0.0099 0.0099 0.0144

Dupont 0.0033 0.0033 0.0045 0.0025 0.0025 0.0045 0.0014 0.0014 0.0039

Walt Disney 0.0072 0.0073 0.0088 0.0049 0.0049 0.0071 0.0070 0.0070 0.0079

General Electric 0.0249 0.0292 0.0292 0.0194 0.0197 0.0202 0.0419 0.0419 0.0432

GM 0.0203 0.0203 0.0203 0.0144 0.0144 0.0146 0.0024 0.0028 0.0033

Home Depot 0.0412 0.0493 0.0559 0.0338 0.0352 0.0425 0.0186 0.0196 0.0236

IBM 0.0432 0.0439 0.0447 0.0320 0.0323 0.0333 0.0311 0.0312 0.0314

Intel 0.0716 0.0766 0.0833 0.0603 0.0612 0.0674 0.0430 0.0438 0.0470

Johnson &Johnson 0.0006 0.0007 0.0024 0.0005 0.0010 0.0025 0.0003 0.0004 0.0025

JPM 0.3740 0.3766 0.3799 0.1898 0.1960 0.2024 0.0977 0.0994 0.1018

Coca Cola 0.0381 0.0387 0.0496 0.0315 0.0366 0.0449 0.0201 0.0206 0.0221

McDonald’s 0.0046 0.0055 0.0097 0.0039 0.0041 0.0075 0.0031 0.0032 0.0051

3M 0.0152 0.0153 0.0197 0.0126 0.0127 0.0168 0.0108 0.0108 0.0120

Microsoft 0.0484 0.0486 0.0520 0.0373 0.0373 0.0425 0.0231 0.0246 0.0293

Pfizer 0.0972 0.1069 0.1123 0.0733 0.0759 0.0792 0.0436 0.0436 0.0441

Proctor &Gamble 0.2345 0.2469 0.2516 0.1358 0.1381 0.1446 0.0975 0.0996 0.1040

AT &T 0.0054 0.0055 0.0061 0.0056 0.0063 0.0064 0.0018 0.0019 0.0019

United Tech.Corp. 0.0857 0.0857 0.0864 0.0649 0.0650 0.0670 0.0450 0.0451 0.0467

  04585 04687 04710 03749 03784 03826 02243 02254 02284

Walmart 0.0857 0.0868 0.0944 0.0797 0.0801 0.0872 0.0726 0.0732 0.0767

 05117 05118 05123 03398 03399 03445 01403 01405 01430
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Table 5B: R2 of Square Root Models for Individual Stocks∗

h =1 (Daily forecast) h=5 (Weekly forecast) h=22 (Monthly forecast)

Symbol Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

RV RV-J RV-CJ RV RV-J RV-CJ RV RV-J RV-CJ

Alcoa 0.0000 0.0000 0.0003 0.0000 0.0000 0.0001 0.0000 0.0000 0.0004

American Express 0.4287 0.4291 0.4388 0.3722 0.3723 0.3837 0.2625 0.2625 0.2658

Bank of America 0.4691 0.4807 0.5049 0.3851 0.3905 0.4101 0.2328 0.2328 0.2456

Citigroup 0.1527 0.1958 0.2345 0.1264 0.1531 0.1839 0.0993 0.1101 0.1298

Caterpillar 0.1230 0.1260 0.1583 0.0990 0.1028 0.1289 0.0871 0.0872 0.1054

Dupont 0.1711 0.1711 0.1770 0.1352 0.1353 0.1433 0.0978 0.0996 0.1115

Walt Disney 0.2195 0.2195 0.2274 0.1723 0.1732 0.1799 0.1337 0.1342 0.1387

General Electric 0.2865 0.2873 0.2875 0.2142 0.2143 0.2165 0.1809 0.1809 0.1862

GM 0.2191 0.2192 0.2225 0.1638 0.1643 0.1645 0.0709 0.0709 0.0719

 03495 03541 03738 02796 02812 02966 01924 01931 02026

IBM 0.4042 0.4069 0.4129 0.3072 0.3082 0.3128 0.2389 0.2393 0.2413

 04028 04060 04212 03338 03344 03452 02576 02578 02670

Johnson &Johnson 0.2496 0.2505 0.2731 0.2167 0.2223 0.2440 0.1684 0.1705 0.1983

JPM 0.6033 0.6039 0.6052 0.4612 0.4633 0.4636 0.3101 0.3103 0.3111

Coca Cola 0.3909 0.3912 0.4026 0.3396 0.3441 0.3533 0.2580 0.2591 0.2684

McDonald’s 0.2284 0.2360 0.2712 0.1896 0.1910 0.2209 0.1573 0.1577 0.1782

3M 0.3380 0.3382 0.3432 0.2619 0.2624 0.2670 0.1936 0.1945 0.1970

 04275 04276 04304 03491 03491 03527 02651 02659 02693

Pfizer 0.3679 0.3698 0.3838 0.2875 0.2875 0.2966 0.1984 0.1988 0.2015

Proctor &Gamble 0.5761 0.5780 0.5826 0.4563 0.4565 0.4615 0.3509 0.3509 0.3553

AT &T 0.1635 0.1656 0.1787 0.1405 0.1443 0.1545 0.0867 0.0870 0.0946

United Tech.Corp. 0.4108 0.4110 0.4160 0.3317 0.3317 0.3381 0.2416 0.2416 0.2467

  06301 06325 06424 05475 05488 05583 04042 04043 04060

Walmart 0.5339 0.5356 0.5484 0.4958 0.4964 0.5086 0.4452 0.4461 0.4542

 06094 06095 06120 04543 04544 04580 02186 02186 02203
∗ Entries in the table are adjusted 2 statistics from linear and square root regression models, as discussed in Section 3

and Andersen, Bollerslev and Diebold (2007). The regressions are designed to forecast realized volatility for 25 individual log

stock returns at different forecasting horizons h=1 (daily), h=5 (weekly) and h=22 (monthly), for the sample period 1993-2008.

Further details are given in Section 4.
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Table 5C: R2 of Log Models for Individual Stocks∗

h =1 (Daily forecast) h=5 (Weekly forecast) h=22 (Monthly forecast)

Symbol Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

RV RV-J RV-CJ RV RV-J RV-CJ RV RV-J RV-CJ

Citigroup 0.7003 0.7109 0.7052 0.6217 0.6312 0.6321 0.5087 0.5133 0.5116

Dupont 0.5531 0.5541 0.5426 0.4631 0.4635 0.4640 0.3620 0.3620 0.3637

Home Depot 0.6028 0.6062 0.5850 0.5170 0.5192 0.5089 0.3932 0.3938 0.3892

Intel 0.6265 0.6301 0.6202 0.5362 0.5377 0.5329 0.4463 0.4473 0.4438

Microsoft 0.6982 0.6991 0.6921 0.6124 0.6133 0.6087 0.5076 0.5077 0.5077

Verizon 0.6863 0.6894 0.6912 0.5984 0.6033 0.6059 0.4635 0.4639 0.4630

ExxonMobil 0.6348 0.6354 0.6340 0.4964 0.4966 0.4960 0.2632 0.2634 0.2645
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Table 5D : R2 of Linear, Square Root and Log Models- S&P Futures Market Index

Panel A: Linear Model

h=1 (daily forcast) h=5 days (weekly forcast) h=22 days (monthly forcast)

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

RV RV-J RV-CJ RV RV-J RV-CJ RV RV-J RV-CJ

0.3787 0.3790 0.3800 0.3652 0.3654 0.3732 0.3219 0.3222 0.3331

Panel B: Square Root Model

h=1 (daily forcast) h=5 days (weekly forcast) h=22 days (monthly forcast)

RV RV-J RV-CJ RV RV-J RV-CJ RV RV-J RV-CJ

0.4726 0.4728 0.4741 0.4569 0.4574 0.4582 0.4198 0.4202 0.4213

Panel C: Log Model

h=1 (daily forcast) h=5 days (weekly forcast) h=22 days (monthly forcast)

RV RV-J RV-CJ RV RV-J RV-CJ RV RV-J RV-CJ

0.4673 0.4675 0.4592 0.4462 0.4462 0.4418 0.3886 0.3886 0.3890

∗ See notes in Table 5A. Results for all 25 stocks are reported for log realized volatility regression models in Table 5C,
and for log returns based on the S&P Futures market index in Table 5D.
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