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ABSTRACT 
The dynamic Nelson-Siegel-style models, which are popular in the literature of interest rates term 

structure forecasting, may be unstable because of the potential existence of unit roots in the 

parameter series. In this paper, the dynamic Nelson-Siegel-style models are modified by 

modelling the first-order differenced instead of original parameter series. Empirical study shows 

that the modified models yield significantly smaller RMSE than the original ones when 

forecasting, meanwhile the forecasting RMSE of the modified models is much more stable even 

when the forecasting horizon increases. Besides, we interpret that the traditional duration of one 

bond is proportional to its expected return. Based on that, the information concerned with the 

forecasted bonds’ yields, which can be calculated by discounting their future cash flows after the 

term structure of interest rates is forecasted, are introduced to the constraint equations of the 

traditional duration matching model in interest rates risk hedging. Empirical study shows that 

incorporation of the forecasted yields information of bonds can improve the performance of 

interest rates risk hedging when applied to mid-term or long-term target bonds. 

Key Words: dynamic Nelson-Siegel-style models; interest rates term structure forecasting; risk 

management 
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1. Introduction 

Forecasting the term structure of interest rates is crucial for bond portfolio risk management. 

Despite great advances in modeling the dynamic behavior of yield curve (Vasicek 1977; Cox et al. 

1985; Duffie and Kan 1996; Ho and Lee 1986; Hull and White 1990; Heath et al. 1992) in recent 

years, Duffee (2002) concludes that these models perform poorly in forecasting. 

To provide an enhanced forecasting model for the yield curve, Diebold and Li (2006) extend the 

parsimonious Nelson-Siegel model (Nelson and Siegel, 1987) to the dynamic Nelson-Siegel 

model, which performs particularly well. Besides, some other works focusing on interest rates 

term structure forecasting (Almeida et al. 2009; Laurini and Hotta, 2010; Pooter et al. 2010; Yu 

and Zivot, 2011) are all based on the parsimonious Nelson-Siegel model or its extended versions. 

These models are named as dynamic Nelson-Siegel-style models by Pooter et al. (2010). 

Augmented Dickey-Fuller tests suggest that some parameter series of the dynamic Nelson-Siegel 

model have a unit roots (Diebold and Li, 2006), and the largest eigenvalue of the state transition 

equation estimated by Diebold et al. (2006) is 0.98, slightly less than 1, which implies that the 

dynamic Nelson-Siegel-style models may be unstable. 

Nawalkha and Soto (2009) classify the interest rates risk hedging models into four categories 

given as M-absolute (Nawalkha and Chambers, 1996)/M-square (Fong and Vasicek, 1984) models, 

duration vector (Chambers et al. 1988; Crack and Nawalkha, 2000)/M-vector (Nawalkha and 

Chambers, 1997) models, key rate duration models (Ho, 1992), and principal component duration 

models (Litterman and Scheinkman, 1991). However, none of these models considers the problem 

of incorporating the interest rates forecasting information. Wang and Kang (2010) suggest 

introducing the forecasted price information to the target function of the traditional duration 

matching model, but the hedging portfolio under this model may be undiversified because of 

converging to certain bonds. 

In this paper, we suggest modifying the dynamic Nelson-Siegel-style models by modeling the 

first-order differenced parameter series to solve the unstable problem. Besides, we propose to 

incorporate the forecasted price (yield) to the constraint equations instead of the target function of 

the traditional duration matching model to make sure the hedging portfolio diversified thoroughly. 

The remainder of this paper is organized as follows. In Section 2 we provide the modified 

dynamic Nelson-Siegel-style models and the risk management model incorporating the forecasted 



yields of bonds. Then in Section 3, we proceed to the empirical study of forecasting the term 

structure of interest rates under both the original dynamic Nelson-Siegel-style models and the 

first-order difference modified models, and hedging the interest rates risk under the traditional 

duration model and our model with forecasted yield incorporated. And at last in Section 4, we 

draw the conclusion. 

 

2. The models 

2.1 Term structure forecasting models 

2.1.1 Dynamic Nelson-Siegel model 

Diebold and Li (2006) modify the parsimonious Nelson-Siegel model and assume that the term 

structure evolves as equation (1): 
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where ( )ty τ  denotes the time t  yield of zero coupon bond whose maturity is τ . The 

parameter tλ  which is fixed to a constant determines the decay rate of the loadings on 1tβ  and 

2tβ . The loading on 0tβ  for all maturities is always 1, so it can be viewed as the level factor of 

interest rates term structure. The loading on 1tβ  is (1 )t
te λ τ λτ−− , which initiates at 1 and 

decrease to 0 monotonically, so 1tβ  represents the slope factor. The loading on 2tβ  is 

((1 ) )t t
te eλ τ λ τλτ− −− − , which initiates at 0, increase and then decrease to 0, so 2tβ  represents 

the curvature factor.  

Diebold and Li (2006) propose two models for the evolution of , 0,1, 2it iβ = . Either assume 

the dynamics of the vector of these parameters follows VAR(1) process: 

 -1t tu Aβ β= +         (2) 

or assume the evolution of these parameters follow univariate AR(1) process: 

 -1 0,1, 2it i i itu a iβ β= + =　　       (3) 

where 0 1 2( , , ) 't t t tβ β β β= , u is a (3×1) vector, A  is a (3×3) matrix, iu  and ia  are 

constants. It is obvious that tβ  can be fitted and forecasted through the model constructed by 



equation (1) and (2), or the model constructed by equation (1) and (3). For simplicity, we denote 

the former model by NS-VAR and the latter one by NS-AR. 

2.1.2 Incorporating macroeconomic variables 

There is some link between macro factors and interest rates term structure. Theoretically, yield 

spread of long-term and short-term interest rates is often used to measure inflation; Interest rates 

level can influence consuming and investing behavior so as to influence the growth of real 

economy; Short-term interest rates is the target of monetary policy, et al. Empirically, Pooter et al. 

(2010), Yu and Zivot (2011) find that the incorporation of macro factors such as real economy, 

inflation and monetary policy can enhance the models’ forecasting performance. Denote the time 

t  (3×1) vector of macro factors as tM , which is consist of the real economy factor, inflation 

factor and monetary policy factor, Diebold et al. (2006) incorporate it as follows: 

 1t tf u Af −= +         (4) 

where ( ', ') 't t tf Mβ= , u  represents the (6×1) constant vector and A  is the (6×6) coefficient 

matrix. In fact, equation (4) is similar to equation (2), the only difference is the dimension of these 

state vector. We denote the model consist of equation (1) and equation (4) by NS-VAR-Macro. 

Meanwhile, tM can be introduced as an exogenous vector (Pooter et al. 2010) as in equation 

(5): 

-1t t tu A BMβ β= + +        (5) 

where u  and A  keep the same as in equation (2), and B  is another coefficient matrix. We 

denote the model consist of equation (1) and equation (5) by NS-VAR-X. 

2.1.3 First-order difference modified dynamic Nelson-Siegel-style models 

Diebold and Li (2006) find that some parameter series of the dynamic Nelson-Siegel model 

have a unit roots. Besides, the largest eigenvalue of A  in equation (2) estimated through the US 

interest rates term structure data (Diebold et al. 2006) is 0.98, slightly less than 1. These imply that 

the dynamic Nelson-Siegel-style models may be unstable. So, we argue that the first-order 

differenced series of tβ (or tf ) should be used when modeling. In fact, the Augmented 

Dickey-Fuller tests on tβ  presented in Section 3.1.3 suggest doing so. 

Take the NS-VAR-Macro model as an example, equation (6) and equation (7) gives the 

modified model: 

t ty fΔ = ΛΔ         (6) 



1t tf u A f −Δ = + Δ         (7) 

where Δ  is the first-difference operator. Obviously, equation (6) and equation (7) are the 

modified version of equation (1) and equation (4) respectively. We denote the model consist of 

equation (6) and equation (7) by D-NS-VAR-Macro. 

The modified models of NS-AR, NS-VAR and NS-VAR-X are similar to equation (6) and 

equation (7) in form, so the specific equations are omitted here. For simplicity, we denote the 

modified version of NS-AR, NS-VAR and NS-VAR-X by D-NS-AR, D-NS-VAR and 

D-NS-VAR-X respectively.  

In fact, NS-AR, NS-VAR, NS-VAR-X and NS-VAR-Macro are the so-called dynamic 

Nelson-Siegel-style models (Pooter et al. 2010), so, we name the modified models (D-NS-AR, 

D-NS-VAR, D-NS-VAR-X and D-NS-VAR-Macro) as first-order difference modified dynamic 

Nelson-Siegel-style models. 

 

2.2 Risk management models 

After forecasting the interest rates term structure, we can predict the prices and yields of bonds, 

which can be incorporated to hedge the risk of bonds. In this section, we introduce the constraint 

condition of the predicted yields matching to the traditional duration matching model. 

2.2.1 Duration and bonds’ yield 

Duration is the classic tool for measuring and hedging interest rates risk. Duration iD  of bond 

i  is defined as equation (8): 
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where iP  is the price of bond i , yΔ  and iPΔ  represent the change of yield and price 

separately. Because of yΔ  is the same for all bonds, duration iD  measures the expected yield 

of bond i . So we can assume that the risk hedging performance can be improved by 

incorporating the forecasted yields of bonds to the traditional duration matching model. 

2.2.2 Risk management model incorporating forecasted yields 

The traditional duration matching model can be formulated as follows: 
2min iω∑　　         (9) 

s.t. T i iD Dω=∑        (10) 

where TD  is the target bond’s duration, iω  and iD  are the weight and duration of the thi  



bond in the hedging portfolio respectively. Obviously, the sum of iω  should equal to 1. The 

target function defined by equation (9) can diversify the portfolio thoroughly (Nawalkha and Soto, 

2009). 

Suppose at time t , we intend to build a portfolio to hedge the interest rates risk of the target 

bond over horizon h . In fact, if we can forecast the interest rates term structure at time t h+ , 

then we can discount the cash flows of a bond to calculate its theoretical price at time t h+ . 

Denote the forecasted price of target bond over horizon h  as ,t h TB + , then we can forecast that 

its yield from time t  to t h+  is: 

, , , ,ln( / )t t h T t h T t Ty B B+ +=       (11) 

where ,t TB  is its price at time t . Similarly, we can forecast the yield of the thi  bond in the 

hedging portfolio from time t  to t h+  follows: 

, , , ,ln( / )t t h i t h i t iy B B+ +=       (12) 

where ,t iB  and ,t h iB +  are the thi  bond’s forecasted price at time t h+  and real price at time 

t  respectively. 

If the portfolio can perfectly hedge interest rates risk of the target bond, their forecasted yields 

should be equal: 

, , , ,t t h T i t t h iy yω+ += ∑         (13) 

Then we can expect to enhance the hedging performance by incorporating the forecasted yields 

matching constraint into the risk management model. That is the enhanced model follows: 
2min iω∑　　         (14) 
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where the sum of iω  should be also equal to 1. 

 

3. Empirical study 

3.1 Term structure forecasting 

3.1.1 Data 

Limited by the availability, the end-of-month T-bonds’ price data of Shanghai Security 



Exchange (SSE) in China range from March 2003 to March 2011 is employed. We use the 

unsmoothed Fama-Bliss method (Fama and Bliss, 1987) as Diebold and Li (2006) demonstrated to 

estimate the monthly interest rates term structure. Those maturities employed to compare the 

forecasting performance under all the original and modified dynamic Nelson-Siegel-style models 

are 3, 6, 9, 12, 24, 36, 48, 60, 84, and 120 months. 

When analyzing the impacts of macro factors on term structure, the factors usually are 

considered in three categories: real economy, inflation and monetary policy (Matsumura and 

Moreira, 2011). Limited by the availability of the data, Industrial Added Value, CPI and Monetary 

Base (M1) are chosen to measure real economy, inflation and monetary policy respectively. 

Obviously, we should also employ the monthly data. The bonds’ price and macro data is collected 

from the CSMAR database and the NBSC’s website http://www.stats.gov.cn. 

3.1.2 Value of λ  

Nelson and Siegel (Nelson and Siegel, 1987) insist that the fitting result would not be 

influenced significantly if λ  is a pre-specified value. The main purpose of this section is to study 

the influence of first-order difference on the forecasting results, so we fix λ  to 0.79 according to 

Kang and Wang (2010) for simplicity. 

3.1.3 Two-steps method 

The two-steps method is employed to model and forecast the parameters of original and 

modified dynamic Nelson-Siegel-style models. We exemplify the two-steps method under the 

NS-VAR model. The series of tβ  can be estimated through equation (1) by ordinary least 

squares method period by period, then substituted into equation (2) to model and forecast tβ . 

Similar to the results of Diebold and Li (2006), Table 1 shows that the Augmented Dickey-Fuller 

tests suggest that 0tβ  and 1tβ  may have a unit roots, and that 2tβ  does not, while at the ten 

percent level. 

 

Table 1. p value of the ADF tests on the parameter series  
 level 1st differenced 

0tβ  0.6505 0 

1tβ  0.4361 0 

2tβ  0 0 

As a result, it’s reasonable and necessary to modify the dynamic Nelson-Siegel-style models by 



modeling first-order differenced parameter series. 

3.1.4 Forecasting results 

We estimate and forecast the term structure of interest rates recursively. The data range from 

March 2003 to the time when the forecast is made is employed to fit the models, and the data 

range from April 2009 to March 2011 is employed to test the forecasting performance. 

In Table 2-4, the forecasting results are compared when forecast horizon is 1 month, 6 months 

or 12 months respectively: 

We define the gap between forecasted yields and real yields (yields estimated by the Fama-Bliss 

method) as the forecasting error. In Table 2-4, the first column shows the model code, the second 

column reports the RMSE of total 10 maturities, the third to seventh columns report the RMSE of 

some typical maturities. 

 

Table 2. RMSE of 1-month-ahead forecasting 
Models Total RMSE 3 m 1y 3y 5y 10y 

RW 0.003517 0.007232 0.003016 0.002165 0.001575 0.001186

NS-AR 0.003501 0.006937 0.00332 0.002041 0.001506 0.001347

D-NS-AR 0.003476 0.007118 0.003213 0.00229 0.001734 0.001368

NS-VAR 0.003144 0.006306 0.002779 0.002031 0.001507 0.00118

D-NS-VAR 0.003078 0.007049 0.003104 0.002081 0.001538 0.001297

NS-VAR-Macro 0.00368 0.00688 0.003358 0.00263 0.00219 0.001976

D-NS-VAR-Macro 0.003612 0.007392 0.003265 0.001939 0.001452 0.001365

NS-VAR-X 0.003461 0.006644 0.003087 0.002391 0.001953 0.00178

D-NS-VAR-X 0.003322 0.007171 0.003174 0.002048 0.001451 0.00129

 

Table 3. RMSE of 6-months-ahead forecasting 
Models Total RMSE 3 m 1y 3y 5y 10y 

RW 0.006159 0.010167 0.006251 0.005088 0.004217 0.003367

NS-AR 0.004867 0.008049 0.005188 0.003795 0.003075 0.002445

D-NS-AR 0.003889 0.007921 0.00347 0.002291 0.001692 0.001342

NS-VAR 0.005469 0.009296 0.005817 0.003964 0.00326 0.002813

D-NS-VAR 0.003875 0.008069 0.003262 0.002251 0.001656 0.001397

NS-VAR-Macro 0.008284 0.009609 0.008275 0.008361 0.007883 0.007226

D-NS-VAR-Macro 0.004171 0.008425 0.003655 0.002638 0.00197 0.001558

NS-VAR-X 0.004857 0.006979 0.004042 0.004461 0.004543 0.004629
D-NS-VAR-X 0.003983 0.008086 0.003386 0.002557 0.001929 0.001628

 



Table 4. RMSE of 12-months-ahead forecasting 
Models Total RMSE 3 m 1y 3y 5y 10y 

RW 0.009475 0.013314 0.011055 0.008511 0.006545 0.004525

NS-AR 0.006708 0.009974 0.007587 0.005627 0.004562 0.003631

D-NS-AR 0.003548 0.006815 0.003208 0.002521 0.001967 0.001583

NS-VAR 0.005808 0.007926 0.005964 0.005391 0.004894 0.004425

D-NS-VAR 0.003442 0.006929 0.003009 0.002265 0.001665 0.001202

NS-VAR-Macro 0.007092 0.008195 0.006418 0.007047 0.007159 0.007151

D-NS-VAR-Macro 0.003581 0.007211 0.003157 0.00233 0.001685 0.001275

NS-VAR-X 0.008108 0.010549 0.008593 0.007453 0.006867 0.006378

D-NS-VAR-X 0.003477 0.006844 0.003105 0.002349 0.001772 0.001454

The second column of Table 2-4 show that the first-order difference modified models always 

perform better than the corresponding original model, no matter what forecasting horizon is. 

When exercising the Paired Sample Nonparametric Sign Test to compare the forecasting error 

under original and first-order difference modified dynamic Nelson-Siegel-style models, p-value is 

0, which means that the first-order difference modified models perform significantly better than 

the corresponding models at the ten percent level. 

Besides, when forecasting horizon increase, the volatilities of RMSE of first-order difference 

modified models are much smaller than that of the corresponding original models, which means 

that the forecasting result is more stable. So, we can conclude that the first-order difference 

modified models perform better in forecasting. 

 

3.2 Risk management incorporating the forecasted yields 

3.2.1 Data 

As Section 3.1.1 mentioned, we also employ the end-of-month bonds’ price data of SSE to 

exercise risk hedging study. Specifically, the data range from April 2009 to March 2011 is used to 

test the risk hedging performance. 

3.2.2 Forecasting model specification 

In Section 3.1.4, it is shown that first-order difference modified models perform better when 

forecasting. For simplicity, we employ the D-NS-VAR model to forecast the term structure and 

bonds’ yields. Once the interest rates term structure between April 2009 and March 2011 is 

forecasted, bond price (and also yield) can be easily forecasted by discounting its cash flow, so as 

to substitute into the risk management model. 

The forecasting and risk management horizon h  is set to be 1 month, 6 months and 12 months 

as in Section 3.1.4. 



3.2.3 Risk hedging result  

We set the target bonds’ maturities at 1 year, 5 years or 10 years. They represent the short-term, 

mid-term or long-term bond respectively. However, at each point of time, it’s virtually impossible 

to find a bond whose maturity is exactly 1 year, 5 years or 10 years. So we choose the bond whose 

maturity is closest to 1 year, 5 years or 10 years as our target bond. 

After forecasting the yields of all bonds, we can introduce them to the risk management model 

shown in section 2.2.2 to produce the optimal portfolio. So the yield gap between the optimal 

bond portfolio and the target bond after h  months is the risk hedging error. Besides, the risk 

hedging error under the traditional duration model is also calculated to be the comparison 

benchmark. The hedging RMSE are shown in Table 4: 

 

Table 4. RMSE of Risk Hedging  
 1h =  6h =  12h =  

Maturity Duration Forecast Duration Forecast Duration Forecast 
1y 0.007292 0.008047 0.007673 0.006527 0.02291 0.016946 
5y 0.005017 0.005873 0.008608 0.006865 0.012984 0.009465 

10y 0.004894 0.004564 0.005363 0.005299 0.012684 0.007974 

The RMSE of risk hedging under all circumstance are shown in Table 4, in which the 

“Duration” columns show the RMSE under traditional duration matching model and the 

“Forecast” columns report the RMSE under our risk management model with forecasted yields 

incorporated. 

Table 4 shows that when 6h =  or 12h = , the RMSE under our model is smaller, which 

means that when forecasting horizon is long enough, risk hedging performance can be improved 

by incorporating the forecasted yields matching constraint. 

When 1h = , our model performs better in hedging the interest rates risk of bond whose 

maturity is 10 years. That’s because when horizon is only 1 month, the cash flow of short-term or 

mid-term bond is fewer, so its price is less volatile which may lead to bigger hedging error under 

our model. 

 

4. Conclusion 

In this paper, we suggest modifying the dynamic Nelson-Siegel-style models by modeling the 

first-order differenced parameter series. Empirical study shows that the first-order difference 

modified dynamic Nelson-Siegel-style models yields smaller error when forecasting. Besides, the 

RMSE of forecasting are stable under the modified models even if horizon increases.  

Based on the forecasting of interest rates term structure, we introduce extra forecasted yields 



matching constraint to the traditional duration matching risk hedging model. Empirical tests show 

that when forecasting (hedging) horizon or target bond’s maturity is long enough, incorporating 

the predicted yields matching constraint could reduce risk hedging error. 

 

Acknowledgement 

Thanks for the financial support of National Natural Science Foundation of China (Grant No. 

70771075, 71171144), New Century Excellent Talents in University (NCET-08-0397). 

 

Reference 

[1] Almeida C., R. Gomes and A. Leite, 2009, “Does Curvature Enhance Forecasting,” 

International Journal of Theoretical & Applied Finance, 12(8), pp. 1171-1196. 

[2] Cox J., J. Ingersoll and S. Ross, 1985, “A theory of the term structure of interest rates,” 

Econometrica, 53(2), pp. 385-407. 

[3] Chambers D.R., W.T. Carleton and R.M. McEnally, 1988, “Immunizing Default-Free Bond 

Portfolios with a Duration Vector,” Journal of Financial and Quantitative Analysis, 23(1), 

pp.89-104. 

[4] Crack T. and S.K. Nawalkha, 2000, “Interest Rate Sensitivities of Bond Risk Measures,” 

Financial Analysts Journal, 56(1), pp. 34-43. 

[5] Diebold F. and C. Li, 2006, “Forecasting the term structure of government bond yields,” 

Journal of Econometrics, 130(2), pp. 337-364. 

[6] Diebold F., G. Rudebusch and B. Aruoba, 2006, “The Macroeconomy and the Yield Curve: A 

Dynamic Latent Factor Approach,” Journal of Econometrics, 131(2), pp. 309-338. 

[7] Duffee G. R., “Term premia and interest rate forecasts in affine models”, Journal of Finance, 

2002, 57(1), pp. 405-443. 

[8] Duffie D. and R. Kan, 1996, “A yield-factor model of interest rates,” Mathematical Finance, 

6(4), pp. 379-406. 

[9] Fama E. and R. Bliss, 1987, “The Information in Long-maturity Forward Rates,” American 

Economic Review, 77(4), pp. 680-692. 

[10] Fong G. and O. Vasicek, 1984, “A Risk Minimization Strategy for Portfolio Immunization,” 

Journal of Finance, 39(5), pp. 1541–1546. 

[11] Heath D., R. Jarrow and A. Morton, 1992, “Bond pricing and the term structure of interest 

rates: A new methodology for contingent claim valuation,” Econometrica, 60(1), pp. 77-105. 

[12] Ho T. and S. Lee, 1986, “Term structure movement and pricing interest rate contingent 

claims,” Journal of Finance, 41(5), pp. 1021-1029. 



[13] Ho T, 1992, “Key Rate Durations: Measures of Interest Rate Risks,” Journal of Fixed Income, 

2(2), pp. 29-44. 

[14] Hull J., and A. White, 1990, “Pricing interest-rate derivative securities,” Review of Financial 

Studies, 3(4), pp. 573-592. 

[15] Kang S.L., and Z.Q. Wang, 2010, “Research on the risk characteristics and containing 

information of the Chinese Interest Rate Term Structure,”  Chinese World Economy, (7), pp. 

121-143. 

[16] Laurini L. and L. Hotta, 2010, “Bayesian extensions to Diebold-Li term structure model,” 

International Review of Financial Analysis, 19(5), pp. 342-350. 

[17] Litterman R. and J. Scheinkman, 1991, “Common factors affecting bond returns,” Journal of 

Fixed Income, 1(1), pp. 54-61. 

[18] Matsumura S. and B. Moreira, 2011, “Assessing macro influence on Brazilian yield curve 

with affine models,” Applied Economics 43(15), pp. 1847-1863. 

[19] Nawalkha S.K. and D.R. Chambers, 1996, “An Improved Immunization Strategy: 

M-Absolute,” Financial Analysts Journal, 52(5), pp. 69–76. 

[20] Nawalkha S.K. and D.R. Chambers, 1997, “The M-Vector Model: Derivation and Testing of 

Extensions to the M-Square Model,” Journal of Portfolio Management, 23(2), pp. 92–98. 

[21] Nawalkha S. and G. Soto, 2009, “Managing interest risk: The next challenge,” Journal of 

Investment Management, 7(3), pp. 1-19. 

[22] Nelson R. and F. Siegel, 1987, “Parsimonious modeling of yield curves,” Journal of Business, 

60(4), pp. 473-489. 

[23] Pooter M., F. Ravazzolo and D. Dick, 2010, “Term Structure Forecasting Using Macro 

Factors and Forecast Combination,” Norges Bank Working Paper, No. 2010/01. 

[24] Vasicek O., 1977, “An equilibrium characterization of the term structure,” Journal of 

Financial Economics, 5(2), pp. 177-188. 

[25] Wang Z.Q., and S.L. Kang, 2010, “Improvement on Nelson-Siegel duration matching 

immunization model,” Chinese Journal of Quantitative & Technical Economics, 28(12), pp. 

133-147. 

[26] Yu W. and E. Zivot, 2011, “Forecasting the term structures of Treasury and corporate yields 

using dynamic Nelson-Siegel models,” International Journal of Forecasting, 27(2), pp. 

579–591. 


