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Abstract

As an important economic index, interest ratesam®uimed to be constant in the Black
and Scholes model (1973); however, they actualigtéilate due to economic factors. Using a
constant interest rate to evaluate derivatives stoahastic model will produce biased results.
This research derives the LIBOR market model withmp risks, assuming that interest rates
follow a continuous time path and tend to jump esponse to sudden economic shocks. We
then use the LIBOR model with jump risk to priceRange Accrual Interest Rate Swap
(RAIRS). Given that the multiple jump processes mr@ependent, we employ numerical
analysis to further demonstrate the influence ofgwize, jump volatility, and jump frequency
on the pricing of RAIRS. Our results show a negatrelation between jump size, jump
frequency, and the swap rate of RAIRS, but a pasitelation between jump volatility and the
swap rate of RAIRS. When new information emergés, tesulting increase in jump size
reduces the value of LIBOR, which in turn lowers tfalue of RAIRS. Similarly, the value of
RAIRS declines when the jump frequency of LIBOR remses. This is because jump
frequency is associated with higher uncertainti, rend the market pays out a premium for
bearing such risk. On the other hand, when jumptility increases, both parties must agree
to a higher swap rate because the floating ratemiaysubsidized by the fixed rate payer for
bearing risk.
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Pricing Range Accrual Interest Rate Swap Employing LIBOR Market Modelswith
Jump Risks

1. Introduction

Interest rates constitute an important economiexndand unexpected movement in
interest rates may cause changes in the pricinfinahcial assets. Therefore, interest rate
swaps are often used by investors to alter thgosure to interest rate risk. Since interest
rate swaps are a major instrument in global finantiarkets, the ability to price interest rate
derivatives accurately is of great importance.

First introduced by Vasicek (1977), the short ratedel following a mean reverting
process may produce negative interest rates. Toeconee this disadvantage, Cox, Ingersoll
and Ross (1985) (CIR) introduce a model in whiclpestations, risk aversion, investment
alternatives, and preferences about the timingooisamption all play a role in determining
bond prices. By further assuming that all interas¢ claims are priced contingent on only the
short rate, CIR derive an equilibrium pricing modeéat relies on a continuous arbitrage
argument.

Ho and Lee (1986) are the first to incorporateiscalnt function into the pricing of
contingent claims. Given a term structure, theirdeloderives the subsequent stochastic
movement of the term structure such that the mowensearbitrage-free. However, the short
rate movement is assumed to be constant, whiclitsesua failure to derive an interest rate
that is always consistent with the market intenede. Therefore, Hull and White (1990)
incorporate the discount function into the Vasicekdel and relax the constant short rate
assumptions of Ho and Lee (1986) to derive the fantsr equilibrium term structure model,
which is capable of determining a short rate predést is consistent with the current term

structure of interest rateBurthermore, Ho and Lee (1986), and Hull and W(i®90) apply



term structure equilibrium models to the pricing discount bonds. In these models, all
discount bonds are priced relative to the stocbadtort rate such that there are no arbitrage
opportunities in their trading. Researchers haneesideveloped such long-term interest rate
models as the instantaneous forward rate modeltfiidarrow and Morton, 1992) and the
LIBOR market model (Brace, Gatarak and Musiela, 7)9%ll based on the no-arbitrage
condition.

Merton (1976) points out that since stock price atyics do not follow a continuous
sample path, they should be modeled as a “jumpfes® with a non-continuous sample path
that reflects the impact of the emergence of ingrdrtnew information. Later, research
increasingly focused on the interest rate jumpuditin model. Shikarawa (1991) employs a
pure jump model to price derivatives; Bjork, Kabarend Runggaldier (1997) extend the
Heath, Jarrow and Morton (1992) “drift conditiond tncorporate market point process to
derive the instantaneous forward rate jump-diffagimodel. The jump size in the market point
process is assumed to be drawn from a continuaishiition with multiple jump processes,
each of which is associated with a constant jumlpevagcaled by time-deterministic jump
volatility. Such a model allows for solving for a-4arbitrage condition and a risk-neutral
probability measurement. Finally, following the nebadf Bjork, Kabanov and Runggaldier
(1997), Chiarella and To (2003) propose an instaatdas forward rate jump-diffusion model.
Assuming that multiple market point processes adependent and follow a Poisson process,
Chiarella and To (2003) derive no-arbitrage pricofginterest rate futures in a risk-neutral
condition. Furthermore, they use the full-informatiikelihood function to prove the pricing
accuracy of interest rate futures after incorpogathe jump process.

The use of interest rate with jump risk is more ststent with real world observations
(e.g., the emergence of important economic inforomadften results in discontinuous interest

rate movement). For example, China recently in@@asterest rates to cool down an



overheated economy that resulted from the maintsmaih low interest rates to lure foreign
investment. Figure 1 shows that movements in LIB@n 1998 to 2005 did not follow a
smooth path and were discontinuous. Prior to DeezdB, 1998, fluctuations in interest rates
tended to be small, ranging between 4.9% and 5Hi8@ever, interest rates suddenly jumped
to 7.25%~7.27% in late-December 1998, returninghtgr previous level shortly thereafter.
Hence, movements in interest rates are often nob#mbut rather, discontinuous—they tend

to jump following unexpected world events.

Therefore, using a constant interest rate over m@imoous time period to evaluate
derivatives in a stochastic model will produce b@sesults. The present research has two
objectives. We first derive the LIBOR market moaeth jump risk assuming that interest
rates tend to jump in response to sudden econonacks. We then use this LIBOR model
with jump risk to price a Range Accrual Interestd&R8wap (RAIRS). Given that the multiple
jump processes are independent of each other, we #mploy numerical analysis to
demonstrate the impact of jump size, jump volatiéihd jump frequency on the pricing of the
RAIRS. Our results show a negative relation betwgenp size, jump frequency, and the
swap rate of RAIRS, but a positive relation betwgemp volatility and the swap rate of

RAIRS.

This paper proceeds as follows. RAIRS and the madsumptions are introduced in
Section 2. Section 3 incorporates the interest juahp process to derive the LIBOR market
model with jump risk. The RAIRS pricing model ieeh derived to incorporate the influence
of jump size, jump volatility, and jump frequendyumerical analysis demonstrating the
relationship between swap rate and jump size, jUreguency, and jump volatility are

presented in Section 4. Section 5 details our cah.
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2. The Range Accrual Interest Rate Swap (RAIRS) Contract

Consider a hypothetical 1-year RAIRS initiated &y, with a termination dateT,,
between counterparties A and B. We assume A adcepay B at a fixed interest rate per
annum on a notional principal amount d¢f,$and in return B agrees to pay A the 3-Month
USD LIBOR rate on the same notional principal antotdence A is the fixed-rate payer and
B is the floating-rate payer. We further assumeé this agreement specifies that payments are
to be swapped every 3 months and that the intesiestK, is compounded annually. There are
four swaps each year. A schematic of this swapeageat is shown in Figure 2. If the LIBOR
falls within K; andK,, A would pay B an amount equal t&~%K/4. This is the interest on
the ¥ principal for 3 months at interest rdte On the other hand, B would pay A interest on

the ¥ principal at the 3-month LIBOR rate. That is, Buwla pay A an amount equal to $

FxaxN/D. K, represents interest rate flooK, is the interest rate cag§ denotes the



fixed rate;F is the notional principalN shows the total number of calendar days in theogeri

between swaps; and is the total number of calendar days in the yégee Table 1 and

Figure 2)

Table 1. The content of a Range Accrual Interese Bavap

Notional principal F

Currency USD (%)

Trade type Range Accrual Interest Rate Swap
Trade date T

Effective date T,

Termination date T,

Duration 1 year

Fixed rate payer A

Fixed rate K

Fixed rate payment dates

Payments are to be swapped every 3 mor
there are four exchanges of payment.

Fixed rate count convention

Actual/360

Reset date

The first day of each trading date

Floating rate payer

B

Floating rate payment

axg, N is the total number of calendar days

the period between swag3,is the total numbe
of calendar days in a year.

Range accrual interest rate interval

[Ku K]

Floating rate

3-Month USD LIBOR

K/4

A(fixed rate payer)

A

v

B(floating rate payer)

Figure 2.

axN/D

The contract form of RAIRS

ths;

n



3. LIBOR Market Model with Jump Risk and the Pricing of RAIRS

Merton (1976) argues that investors react swittlyhte arrival of important information,
hence the sample path of stock prices does nafgdhe continuity property. To be sure,
stock price dynamics can be decomposed into twgpom@nts: (1) The “normal” variations
in stock prices due to factors such as interes catinges, temporary imbalances between
supply and demand, and mild changes in the economilook. These factors often cause
small changes in stock prices, which can be modbled standard geometric Brownian
motion characterized by a constant variance per afniime and a continuous sample path.
This type of stock price change is called the ‘WBfbn” process. (2) “Abnormal” variations in
stock prices that result from the sudden emergehaaportant information, often resulting in
dramatic stock price changes. Typically, such imfation is specific to the firm or industry;
this type of price change is called a “jump” prazes

The jump process is also applicable to interest citanges. In the next section, we
construct an instantaneous forward rate jump-difiuanodel based on the framework of
Bjork, Kabanov, and Runggaldier (1997). Assumingt tmultiple market point processes are
independent and follow the Poisson process, werorate the jump dynamics in the LIBOR
stochastic process such that the instantaneousafdrwate process ofif (t,T) can be

described as

of (1, T) =a(t, T)dt+ o TIW O+ Y h ¢, TN, ¢), (1)

i=1

1st

2nd

where a represents the changes in the instantaneous forwate; o is the standard
deviation of instantaneous forward ratdyV(t) stands for the Wiener process of forward rate
in t; dN.(t) is the i" Poisson process with expected valdglt , where i=1,2,... 1 ;

h(t,x,T)is thei™ function of the forward rate variations, where1,2,... r ; and random



variable x stands for the jump size of forward rate. Thetfeemponent of Eq. (1) is the
“normal” variation in interest rate caused by fastsuch as a temporary imbalance between
the supply of and demand for deposits/loans, cgusmall changes in the instantaneous
forward rate. This component can be modeled bywadstrd geometric Brownian motion. The
seconccomponent of Eq. (1) is the “abnormal” variationimterest rate due to the emergence
of important new information about interest ratessulting in dramatic impact on the
instantaneous forward rate. The secaondponent is the jump term of the interest rate

stochastic, which followsr independent Poisson processes.

Based upon Eq. (1), in the following subsections. wél) derive the no-arbitrage
condition of the LIBOR market model withindependent jump risks, assuming that the model
follows Brownian motion and jump processes; (2) convert the LIBOR market mditeh a
risk-neutral measure to a forward measure; and€8ye the pricing formula of RAIRS based

upon the forward measure in the LIBOR market model.

3.1. No-arhitrage condition and the stochastic process of LIBOR in risk-neutral probability

In this subsection, the no-arbitrage condition ohdbs is derived from the instantaneous
forward rate process. Based on this no-arbitragelition and the relationship between the
instantaneous forward rate and LIBOR, we then @etine LIBOR market process under the

risk-neutral measure.

The relationship between the value of a zero colpmmd and the forward rate is given

by

B(t,T) =exp{—f fEu )du} ,



where B(t,T) is the price of a default-free pure discount bomlderefore, it can be

considered equivalent to the value of $1 to beiveckat timeT. Let
B(t,T)= exp[—jtT f¢u )ju} = expV (tT)]

then

av=d- [ f(tu)du= —[—f (t.tyct+ [ of (t,u)du}

r T

= f(t,t)dt —]'(a(t,u)dt)du —](o—(t,u)mW)du =Y [h X u)duEN, ¢) )

i=1 ¢

= f(t,t)dt—-a (t,T)dt-o (t,T)dW—Zr:]'h (t,x ,u)du@N, ¢),

i=1 ¢

wherea*(t,T):J‘tTa'(t,u)du , a*(t,T):jtTa(t,u)du . Based upon Bjork, Kabanov and
Runggaldier (1997), modified withindependent jump processes, we employ the It6 dtam

to derive the stochastic process value of the zeupon bond as follows

dB(t,T) = B(t,T)dx+% B(t,T)(dx)?

r : . ] 3)
#> | exptef] £ upu=["h €x upu)- expef f (g JoN 1)
Substituting Eq. (1) into Eq. (3), we obtain
dB(t,T) = B(t,T){R(t)—a* (t,T)+%[0* T )]z}dt -B({.T)o ¢.T)XW¢)
(4)

+§exp{-jf tu )du}{ exp{—fh {x u @Iu}— }IdNi ).

whereR(t) is the spot rate. Discounting the zero coupon btmdderive a no-arbitrage
condition in risk-neutral probability, and substitig the no-arbitrage condition into Eq. (1),

10



we obtain the forward stochastic process in theamuitrage condition. First, we define the

discount factor D(t) as

D(t) :exp(—j; R )du) .

Furthermore, D(t)B(t,T) follows the Martingale process. That is, if weadisnt the zero
coupon bond to timein the risk-neutral probability, the discountedcprwill be identical to
the current price at timig implying the absence of arbitrage, hence thecefg must be equal

to zero. Therefore,

d[D(t)B(t, T)] =-D(t) B(t, T) &’ (t, T)dW(t)

r T 5
+D(t)B(t—,T)Z[exp[—jt h¢x u )du}— } €N, € - A%dt) ©)
Incorporating the discount factor from Eq. (4),
d(D(t)B(t,T)) = D(t)B(t,T){(—a* (t,T)+%[J* ¢ T)] -0 ¢.T )dW(t)}
(6)

+D(t)B(t—,T)iZ;:{exp[—ftTh ¢ x u )ju}— }olNi 0).

Since under the no arbitrage condition the interegpqual to zero, comparing Eq. (5) and (6),

we obtain

- (1) 3[0 )] +3fexs] [ tx upu]-}aot g =-0 (7 p Oforaiit, ()

i=1

whered(t) is the risk premium of the diffusion rate. Sinceleaero coupon bond in a term

structure must correspond to the no-arbitrage d¢mmdiin the risk-neutral probability,

11



differentiating Eq. (7) with respectTa the no-arbitrage condition is obtained as
~a(tT)+oT)o’ (. T)-[ h.x ,T)exp{—fh x4 ﬁu}/l‘?f € ¥ =-o (T P () forallt, (8)

wheref (x)is the probability distribution of stochastic vdriex . By substituting the no

arbitrage condition into Eq. (1), the instantanediosward rate withr independent

jump-diffusion processes in risk-neutral probapibecomes

df (t,T) = (e T)dt + ¢, T)EW €)+ Y h (€. TXIN, ¢), ©)

where a(t,T)=0o(t,T)o’ (t,T)—j:in(t,x ,T)exr{—fh (xu ﬁU}LQf & 9%

Similar to Brace, Gatarak and Musiela (1997), theclsastic process of LIBOR in
risk-neutral probability can be derived using teéationship between instantaneous forward

rate and LIBOR. Therefore, the relationship betwkeward rate and LIBOR is given by
T,+0
1+0L,(t,T,)= expjT f € uYu (10)

where dL,(t,T,) stands for the compounded forward LIBOR (frgmto T, ;) at time t, and

O is the constant interval measured in year. Le®@i(iq,T, ,5) :.[TTM f(t,u)du,

T,+J
dz = jT df (t,u)du

= J'TT" o(t,u)du}dwe(t) + J': 2 UTT‘; h(t, X, u) du}dNi (t) f(X) dx

I ({3l ] Jauja ;2o 7 €5 asar e

" i=1

12



It follows that

dz = jTTn”*"df (t,u)du+§ jj{exp[—f””h t.x u )du}— eerT"h (x olu}]Aithf X O

*, Zl[f: h(t. ,u)dU} dN, (1) (x)dx.

According to the 1t6 formula and the jump stochagtiocess of Elliott (1982), the LIBOR

jump-diffusion process follows

dL,(t,T) = % expZ T, T.., JHIZ(T, To. )] +2—15exp2 @ T HEZ T, T )Z(T, T, )]
(11)

+le% N {expﬁ r ‘)]Ee‘fxp[ LTH"“’h €x u )du} - expE T )}]dNi OF &3

Substituting dZ(T,,T.,5) into Eq. (11) yields the jump-diffusion stochagtiocess of LIBOR

as

dL (t,T,) = %[1+ oL (T, )]{[a* €T,.) -0 €T..) ¢, } dt
+;—15[1+ oL, T €Ts)-0 €T, } W2 ¢)
+21% [NEEEN A (12)
fexs{ <[ €.x ] - exd=["h O u g faca g

+§%j:[1+ 5L (t",Tn)]{exp[ [ ex u nu}— }dNi (¥ &ix

From Brace, Gatarak and Musiela (1997), assumiagitheach probability measure the
stochastic process of LIBOR follows a lognormaltmisition, the stochastic process of

LIBOR becomes
dL, (t,T.)=mL, (t,T)dt+y L T )dW?(t)+L, T, )dJ. ¢t), (13)

13



where m, is the drift rate, y, is the diffusion rate, ang(t)is the jump rate of LIBOR.

Rearranging the diffusion rate component and comgdtq. (12) with Eq. (13) we obtain

_ y.oL.(t,T)

otT,)-otT)= ,
T =0 (LT 1+0L, (t,T,)

(14)

and

1ILT) o 1 )J{ Y,0L,(t,T,) T |

0-* (t’-l-n+1)[a:k (t’Tn+1) - d (t ’Tn )] - 1+ JLn (t ,Tn ) 1+ JLn (t 'Tn )

If the interval fromt to u is smaller thad, i.e., t<u<t+J, o (t,T,)=0, then

. V.2OLAT)) _ <& Vi
oL, (t.T,)o (t.T )+ ——te= ) =*
voL,(tT)o (tT,) 1+0L (t,T,) kgm

oL, (t,T)L (t,T,)
1+oL ¢ T)

(15)

Substituting Eq. (15) into Eq. (13), we obtain tHBOR jump-diffusion process as

- 3 ynyden(t’Tn)Lk(t’Tk) Q
dL (t,T)) LZ”(‘:) TENES dt+y L (t,T)dWC (t)

' 1 pe
+> = | [1+dL,,T,
gdjo[ LT 16)

fexs] [ €x 0 |- exf =" (6 u g acar €
+Z;% jo“’ [1+ oL, @t T )]{ ex;{ j:h € X u)du} —]]dNi (t) f (x)dx.

Rearranging the jump rate component, andli@f) be the jump size function of LIBOR, then

14



ot Tl exd [0 €x up]- =L T W)
1 T+5
= Hexp [ 1 tauxu]-3h &)

After transposing we obtain

{EXpUTWf tupu+ [ ¢ “ﬁu}}_l_lzy-l, (17)

{eprTT+5f tu ﬂu}—:} |

H () =

where Y, stands for the jump ratio of LIBOR at tHejump, and Y, 21,

eprTTﬂy f ¢,u)du +J'TT+5h t.x u )Jlu} -1
eprTT+5 ftu ﬂu} -1 .

\1 =

Influenced by the movement of the forward rate fiorch(t,x,T), if jumps occur,

H(Y)=Y -1 ifnot, H(Y)=0, and the jump rate compound Poisson process of RIEBO

r Ni(t)

37 L T)H, (N, @0 (9 =L T,)a3 3 H, (6), (18)

i=1 n=1
and

_OL (= TH (), o 1F oL, (t=T,)[1+H, %)
T o1+0L -T) 1+0L, ¢-.T,)

eprTTn"“’ he¢,xu ):iu}

15



Similar to the diffusion rate componentt #u<t+o9, eprTu he.x u )iu} = 1. Using this

result to simplify the second term of Eq. (12), eleain

n 1+0L, t-.T,)

Q
k=n(t) 1+ 5Lk (t_’Tk )[l+ HkI ()ﬂ )]A, dt f (X)dX, (19)

[ Ha (L, E-T,)

Substituting Eq. (18) and Eq. (19) into Eqg. (12l¢s the stochastic process of LIBOR with

risk-neutral probability as

dL (t,T )= Zn: YahoL, (L T)L (4T, )
T k=1 1+ 5Ln (t1Tn)

e ) n 1+0L, (t-,T,) o (20)
Zl Jo Ha (L ,Tn)k:” | T7oL T ) H, o (x)dx}dt

r N

L ETIAWC @)+ LE-T, )Y Y Hy (%).

i=1 n=1

3.2. Forward measure of LIBOR market model

Because the stochastic process of LIBOR involvesynmarameters under risk-neutral
probability, it is difficult to price interest ratgerivatives incorporating multi-period LIBOR.
To simplify the model, we must transform the diftus rate and jump rate parameters to the

last pricing period. To do so, we rearrange thaudibn rate of Eq.(12) as
dL, (t.T,) = %[1+ oL, t.T,))[0 ¢ Ts)-0 ¢.T,)][0 ¢ T Xt+dWe )],  (21)

according to the theory of the transformation afl@bility measure

W (t) = j; o (u,T +u)du +W(t),

16



then Eq. (21) becomes
L (LT,)= 5 [1+0L, (T [0 .Tes)=0 ET W™ ),

Similar to Brace, Gatarak and Musiela (1997), let
dW' (t) = 0" (t, T, )dt + dWO (t),
dW' (t) = 0" (t, T, )dt + AW (t).
Comparing these two functions, we obtain
dw " =[a* tT)-0 (t,Tjﬂ)] dt +dw ' (t),

If we substitute the term) o’ (t,T,) o (t,T,.,) | from Eq. (14), then

MET)OLET)
1+0L(,T))

dw’ =

dt + dw ' (t).

Letting j =n, we obtain

aw = YETIOLET) oo
1+0L(t,T,)

Letting j =n-1, then

aw = = VT2 )OL O To) g, gy

1+0L(t,T )
__MTLOLET,) 4 YETIOLET,)

1+JL(t,T ) 1+0L¢.T))

+dW™ ().

17
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Repeating this process, we have

aw' = METIOLET)

dt + dW ™ (t). 23
st 1+OL(,T) © (23)

Substituting Eq. (23) into Eqg. (12), and unifyinget multiple-period Brownian motion

measures, we obtain

_1 : _ _N MET)OLET)
dLn(t,Tn)—S[1+5Ln(t,Tn)][J tT.;)-0 ¢, )][ i;l T OLET) dt o0

1 R R
+3[1+ JLn (t 1T )] I:O- (t 7Tn+1)_a (t ’TM +1):| dWM +1(t)'

According to Bjork, Kabanov and Runggaldier (19€% condition for transformingi®? to

the last pricing period is

T+J
—j h(t,x,u)du

- Q
As=€" A%,

In Eq. (16) the transformation processi8f measure is

[ ™2 (% u)du
Tn

™M udu | -
%[1+ oL, (t.T,)] e " {e - l}/}Mﬂdt

™ % u)du ™t u)du
— 1[1_'_ 5|—n (t,Tn )] eJ.Tnﬂ % |:1_ e.[Tn X :|/1M +ldt
o (25)

'[TMﬂh(t,xi w)du

=-H(Y)L,(t=T,)e™ Ay 0t

= _H (Yl)Ln (t_’Tn) |__| 1+ 5ik_§t;|'_Tk(3E1::: l; (tk )) M+ldt'

Letting n=M and substituting Eq. (25) into Eq. (13), we obtiie LIBOR market model of

forward rate measurement with jump risk as

18



dLn (t,T) = anLn (t’T)dt + ynLn (t 1T )dWM +1 (t)+ Ln (t 1T )dJn (t)’ (26)

where
a =- Z”: Vit Ty (T, )OLET)
k=n+1 1+ 5'— (t 1Ti )
o M1+ 0L, (t-,T,)[1+H, ¢)]
[ H, L (t-T ok =y F (X,
Jo LHOLET [ = G gy e 00
r Ni(t)
dJ, () =d> > H,(x)f(x).
i=1 n=1
If n=M, then
I:J* tT.) -g tTy +1):| =0,
HL GOL T e A, = —H (0L,
Eq. (26) can be simplified as
dL, (t,T)/ Ly, (t= Ty ) = ¥y @AW" () +dJ,, (t)-fowz Hyyi (6 ) Ay 0t £ (X)dx. (27)
i=1

3.3. The pricing model of Range Accrual Interest Rate Svap

The value of cash inflows for floating-rate payetree maturity of RAIRS is

4 a*N

RNIRS(t,'I'i,'I'Hl):[Z 5 - ‘i%}":’

a=1 a=1

whereN, is the number of calendar days between swaps, Kné the fixed rate paid by the
fixed-rate payer. Assuming 30 trading days per amd 3 months per period, the number of

trading days will be 90 per period. The pricing rabdf floating-rate payer in risk neutral

19



probability is thus

e Q BT,
RNI RS(t,Tq ’Tq+l) - ;; B(t ,Tq +| )X E li]{K2>L(Tq+I’Tq+1+| )>Kl}j| * B(t T + | ) g
=1 |= 'q

(28)
3 K

- B(t,T,)—xF,
q=L 4
where g is the number of swaps in the trading periddjs the number of days between
swaps; B(t,T,)/B(t, T, +1)stands for the discount factor of Range Accruahd@an a

Martingale processB(t,T, +1) is the value of the zero-coupon bond at termimatiX is

the agreed swap rateX =a/D measured in years from today. Eq. (28) can berdposed

as
RNIRS(t, lQ’ |q+1 - q=1 1=1 H ]{K2>L(Tq’Tq*1+l)>Kl} B(t, lq )

4
K
-SB(t,T,)—~F
BT,

q

=F {if BT, +)X 3. e (TH_O"'J,(!T M0 N, - N(d,,)] 29)

gq=1 I=1

Bt,T) < K
B(t,T, +I) ;B(t’T‘*)4}

= FX[A— Ig]

whereF x A is the floating rate interest received by the dixate payer. On the other hand,
F xB is the fixed rate interest received by the flogtiate payer.

L(t, T, +1)
Iny—équﬂq +1-1)
K, 2

\lo-ijz(Tq +1-1)

L@t T,+1)" 1
In—"3% = —=g *(T, +| -t)
K2 2 j q

Jo, (T, +1 1) |

dl,ij = ) d2,ij =

i=1

Lt T, +D)™ = L(t,T, +1)ex Zr:—/]“mi T+l -t )}Iil (B m, )
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Let the price of RAIRS be equal to zero, then thed interest rateK (swap rate) is

; eI+ -t _ B(t.T,)
ZB(tT);;B(tT +|)xz g [N(@,)) N(dzyj)]B(t,T ot (30)

4. Numerical Analysis

In this section, we use a numerical analysis toatestrate the relationship between swap
rate and jump size, jump frequency, and jump viithatof a RAIRS. Assume a value for
RAIRS equal to zero, a duration of contract of gear, 360 days in a year, and payments
swapped every 3 months—four swaps per year. Tlexest rate floor is 0% and the cap is
2.5%, 3-month USD LIBOR is 1.8% at tinte0, the volatility of 3-month USD LIBOR is
0.05. Two independent jump processes are assumétkipricing period. The first one is
induced by stronger information, which has a draenatfluence on the jump process of
LIBOR. On the contrary, the second is associated weaker information. The corresponding

jump sizes are 0.0h§ =0.01) and 0.5 (n, =0.5); the corresponding jump volatilities are
0.15 (s =0.15) and 0.45 §,=0.45); and the corresponding jump frequencies are 0.5
(4,=0.5) and 1.5 @, =1.5), respectively. The value of the zero coupon baetlines

$0.0001 mark-to-market starting at $0.90.

4.1. The impact of jump size on the swap rate of RAIRS

From Table 2, when jump sizesy and m, change (within an interval from O to 0.6),
the swap rate of RAIRS will decrease with the iase of the expected value of jump size,
and the smaller the initial swap rate, the lessiafale the RAIRS will be. When evaluating the
LIBOR in risk-neutral probability, potential jumpze due to information emergence must be

eliminated in the initial pricing to ensure an ardje-free condition. Therefore, when jump
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size gradually increases due to information emergenhe initial value for LIBOR will
become smaller, as does the value of underlyingtasSince this is disadvantageous to the
floater, the value of RAIRS will be smaller.

In addition, from Table 2, Figure 3, and Figure @, has greater impact on the swap

rate of the RAIRS thamm,, because jump sizen, > m,.

Table 2. Jump size changes and the swap rate RAIRS

Changes in  The swap rate of RAIRS Changes in The swap rate of RAIRS

jump sizem  corresponding to jump sizem,  corresponding tm,
0.0 0.0237 0.0 0.0237
0.1 0.0228 0.1 0.0221
0.2 0.0220 0.2 0.0207
0.3 0.0213 0.3 0.0195
0.4 0.0206 0.4 0.0184
0.5 0.0201 0.5 0.0174
0.6 0.0195 0.6 0.0166

Note: Initial jump sizes arem =0.01land m, =0.5.
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Figure 3. The relationship between jump sizg and the swap rate of the RAIRS
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Figure 4. The relationship between jump sizg and the swap rate of the RAIRS
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4.2. The impact of jump volatility on the swap rate of RAIRS

From Table 3, when jump volatilities, and s, increase (within an interval from O to
0.3), the swap rate of RAIRS also increases. Tisecause when jump volatility increases,
the total volatility of RAIRS follows suit. Hencehen jump volatility increases, both parties
of the RAIRS must accept a higher swap rate bectneséoating rate payer is subsidized by
the fixed rate payer for bearing risk. The highlee swap rate is, the higher the value of
RAIRS will be.

Similarly, from Table 3, Figure 5, and Figure 6, has greater impact on the swap rate
of RAIRS relative tos,, becauses,>s. This result is consistent with our assumption

described earlier in this section.

Table 3. Jump volatility changes and the swap s&RRAIRS

Changes in jump The swap rate of Changes in jump The swap rate of RAIRS

volatility s RAIRS corresponding volatility s, corresponding tos,
to s
0.00 0.0237 0.00 0.0237
0.05 0.0240 0.05 0.0245
0.10 0.0242 0.10 0.0252
0.15 0.0245 0.15 0.0259
0.20 0.0247 0.20 0.0265
0.25 0.0250 0.25 0.0271
0.30 0.0252 0.30 0.0276

Note: Initial jJump volatilities ares =0.15, ands, =0.45.
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Figure 5. The relationship between jump volat#itgnd the swap rate of RAIRS
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Figure 6. The relationship between jump volatilisy and the swap rate of RAIRS

4.3. The impact of jump frequency on the swap rate of RAIRS
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From Table 4, when jump frequency, (andd, ) increases (within an interval from O to
0.45), the swap rate of RAIRS decreases. This tresul be obtained from Eq. (29)—there
exists a negative relation between jump frequerncyand the swap rate of RAIRS. From
probability theory, we know that given the frequeraf actual occurrence, the value of the
probability decreases when the expected value efibisson distribution increases, which is
consistent with our RAIRS pricing model. From awdstor’s viewpoint, the higher jump
frequency of LIBOR is associated with higher unaimtty risk, hence a decline in the value of
RAIRS can be regarded as the additional market jpir@nfor bearing risk.

Similarly, from Table 4, Figure 7 and Figure 8, has greater impact on the swap rate

of RAIRS relative to A, because jump frequency,>A,.

Table 4. Jump frequency changes and the swapf&AIRS

Changes in jump The swap rate of RAIRS Changes in jump The swap rate of RAIRS

frequency, corresponds toA, frequencyl, corresponds tod,
0.0 0.0237 0.0 0.0237
0.1 0.0235 0.1 0.0216
0.2 0.0234 0.2 0.0195
0.3 0.0232 0.3 0.0178
0.4 0.0230 0.4 0.0159
0.5 0.0228 0.5 0.0136
0.6 0.0226 0.6 0.0119

Note: Initial jump frequencies ard, =0.5 and A, =1.5.
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Figure 8. The relationship between jump frequenty and the swap rate of RAIRS
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5. Conclusions

Interest rates constitute an important economiexndince the jump process of interest
rates is discontinuous in the event of sudden méiiron emergence, we derive the LIBOR
market model with jump risk. Since interest ratéterm follow multiple independent jump
processes, it would be more accurate to use ouehtogrice the derivatives. To this end, we
use numerical analysis to illustrate the influerdejump size, jump volatility, and jump
frequency on the pricing of RAIRS.

Numerical analysis shows that there is a negatelation between jump size, jump
frequency, and the swap rate of RAIRS. Howevertethe a positive relation between jump
volatility and the swap rate of RAIRS, meaning tagger the jump volatility, the higher the
value of RAIRS. Furthermore, the stronger the LIB@Rated information, the greater will be
the impact of jump risk on RAIRS. From the numerimsults, we know that increases in
jump size will decrease the value of LIBOR in tinte= 0. Since this is disadvantageous to the
floater, the value of RAIRS will decrease. Simijathe higher the jump frequency of LIBOR,
the greater the uncertainty risk, hence the vaflRADRS declines because investors are paid
with a premium to bear risk. On the other hand, whanp volatility increases, both parties
must agree to a higher swap rate because therftpedie payer is subsidized by the fixed rate

payer for bearing risk.
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