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Abtract

Under martingale and joint-normality assumptions, various optimal hedge ratios are iden-
tical to the minimum variance hedge ratio. As empirical studies usually reject the joint-
normality assumption, we propose the generalized hyperbolic distribution as the joint
log-return distribution of the spot and futures. Using the parameters in this distribution,
we estimate several most widely-used optimal hedge ratios: minimum variance, maximum
Sharpe measure and minimum generalized semivariance. Under mild assumptions on the
parameters, we find that these hedge ratios are identical. Empirical studies show that our
proposed models fit the TAIEX futures and S & P 500 futures very well. Numerical results
for different optimal hedge ratios also verify our theoretical observations. Regarding the
equivalence of these three optimal hedge ratios, our analysis suggests that the martingale
property plays a much important role than the joint distribution assumption.
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Introduction

Because of their low transaction cost, high liquidity, high leverage and ease of short
position, stock index futures are among the most successful innovations in the financial
markets. Besides the speculative trading, they are widely used to hedge against the market
risk of the spot position. One of the most important issues for investors and portfolio
managers is to calculate the optimal futures hedge ratio, the proportion of the position
taken in futures to the size of the spot so that the risk exposure can be minimized.

The optimal hedge ratios typically depend on the objective functions under con-
sideration. In literature on futures hedging, there are two different types of objective
functions: the risk function to be minimized, and the utility function to be maximized.
Johnson (1960) obtains the minimum variance hedge ratio by minimizing the variance of
the change in the value of the hedged portfolios. On the other hand, as Adams and Mon-
tesi (1995) indicate, corporate managers are more concerned with the downside risk rather
than the upside variation. A measure of the downside risk is the generalized semivariance
(GSV) where the risk is computed from the expectation of a power function of short-
falls from the target return (Bawa 1975, 1978; Fishburn 1977). De Jong, De Roon and
Veld (1997) and Lien and Tse (1998, 2000, 2001) have calculated several GSV-minimizing
hedge ratios. Regarding the utility function approach, we consider the Sharp measure
(SM) criteria, i.e., the ratio of the portfolio’s excess return to its volatility. Howard and
D’Antonio (1984) formulate the optimal hedge ratio by maximizing the Sharp measure.

Normally, these optimal hedge ratios under different approaches are not the same.
However, with the joint-normality and martingale assumptions, they are identical to the
minimum variance hedge ratio. Unfortunately, many empirical studies indicate that major
markets typically reject the joint-normality assumption (Chen, Lee and Shrestha 2001;
Lien and Tse 1998). In particular, the fat-tail property of the return distribution affects
the hedging effectiveness substantially. It will be useful to find out the nature of the
optimal hedge ratios under more realistic assumption. In this paper we introduce the
bivariate generalized hyperbolic distributions as alternative joint distributions for returns
in the spot and futures markets.

Barndorff-Nielsen (1977, 1978) develops the generalized hyperbolic (GH) distribu-
tions as a mixture of the normal distribution and the generalized inverse Gaussian (GIG)
distribution first proposed in 1946 by Étienne Halphen. The class of the generalized hy-
perbolic distributions includes the hyperbolic distributions, the normal inverse Gaussian
distributions and the variance-Gamma distributions, while the normal distribution is a
limiting case of the generalized hyperbolic distributions. Uses of the generalized hyper-
bolic distributions have been increasing in finance literature. To model the log returns of
some financial assets, Eberlein and Keller (1995) consider the hyperbolic distribution and
Barndorff-Nielsen (1995) proposes the normal inverse Gaussian distribution. For more
recent applications of the generalized hyperbolic distributions in finance, see Bibby and
Sørensen 2003; Eberlein, Keller and Prause 1998; Rydberg 1997, 1999; Kuchler, Neumann,
Sørensen and Streller 1999; and Bingham and Kiesel 2001.

In terms of the parameters for the bivariate hyperbolic distributions, we have de-
veloped in this paper the minimum variance hedge ratio, GSV-minimizing hedge ratio
and the SM-maximizing hedge ratio. Moreover, the relationships between these hedge
ratios are explored. In particular, under the martingale assumption, we can still obtain
the result that these hedge ratios are the same as the minimum variance hedge ratio (see
Theorems 2.1, 2.4 and Proposition 2.2.) Based on the maximum likelihood estimation of
the parameters and the numerical methods, we calculate and compare the different hedge
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ratios for TAIEX futures and S &P 500 futures.
The paper is divided into five sections. Section 1 first introduces the definitions

and some basic properties for GIG and GH distributions. In Section 2, we study the
optimal hedge ratios under different approaches and estimate these ratios in terms of the
parameters for GH distributions. In Section 3, we employ the kernel density estimators
and MLE method for our data. Based on these estimations of the parameters, the different
hedge ratios are calculated in the fourth section. The last section provides the concluding
remarks. Proofs are relegated to Appendix A.

1 GIG and GH Distributions

1.1 The Generalized Hyperbolic Distributions

To introduce the generalized hyperbolic distribution, we first recall some basic properties
of generalized inverse Gaussian (GIG) distributions. Note that for any δ, ψ > 0 and
λ ∈ R, the function

dGIG(λ,δ,ψ)(x) =
(ψ/δ)λ

2Kλ(δψ)
xλ−1e−

1
2
(δ2x−1+ψ2x), x > 0 (1)

is a probability density function on (0,∞). Here the function

Kλ(x) =
1

2

∫ ∞

0

uλ−1e−
1
2
x(u−1+u)du, x > 0 (2)

is the Bessel functions of the third kind with index λ. The distribution with the density
function dGIG(λ,δ,ψ)(x) on the positive half-line is called a generalized inverse Gaussian
(GIG) distribution with parameters λ, δ, ψ, and denoted by GIG(λ, δ, ψ). The moment
generating function of the generalized inverse Gaussian distribution is given by

MGIG(λ,δ,ψ)(u) =

∫ ∞

0

euxdGIG(λ,δ,ψ)(x)dx =

(
ψ√

ψ2 − 2u

)λ
Kλ(δ

√
ψ2 − 2u)

Kλ(δψ)
(3)

with the restriction 2u < ψ2. From this, we obtain

E[GIG] =
δ

ψ

Kλ+1(δψ)

Kλ(δψ)

V ar[GIG] = (
δ

ψ
)2[

Kλ+2(δψ)

Kλ(δψ)
− K2

λ+1(δψ)

K2
λ(δψ)

].

Barndorff-Nielsen (1977) introduced the class of generalized hyperbolic(GH) distributions
as mean-variance mixtures of normal distributions. More precisely, one says that a random
variable Z has the generalized hyperbolic distribution GH(λ, α, β, δ, µ) if

Z|Y = y ∼ N(µ + βy, y),

where Y is a random variable with distribution GIG(λ, δ,
√

α2 − β2) and N(µ + βy, y)
denotes the normal distribution with mean µ + βy and variance y. From this, one can
easily verify that the density function for GH(λ, α, β, δ, µ) is given by the formula

dGH(λ,α,β,δ,µ)(x) =

∫ ∞

0

dN(µ+βy,y)(x)d
GIG(λ,δ,

√
α2−β2)

(y)dy

= (
ψ

δ
)λ e(x−µ)β

√
2πKλ(δψ)

[
δ2 + (x− µ)2

α2

]λ− 1
2

2

Kλ− 1
2
(α

√
δ2 + (x− µ)2)
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where ψ =
√

α2 − β2.
The class of hyperbolic distributions is the subclass of GH distributions obtained

when λ is equal to 1. We write H(α, β, δ, µ) instead of GH(1, α, β, δ, µ). Using the fact
that K1/2(z) = (π/2z)1/2e−z, one obtains the density for H(α, β, δ, µ) is

dH(α,β,δ,µ)(x) =

√
α2 − β2

2αδK1(δ
√

α2 − β2)
e−α

√
δ2+(x−µ)2+β(x−µ). (4)

The normal inverse Gaussian(NIG) distributions were introduced to finance in Barndorff-
Nielsen (1995). It is a subclass of the generalized hyperbolic distributions obtained for λ
equal to −1/2. The density of the NIG distribution is given by

dNIG(α,β,δ,µ)(x) =
δ

π

[
α2

δ2 + (x− µ)2

] 1
2

eδψ+(x−µ)βK1(α
√

δ2 + (x− µ)2).

1.2 Multivariate modelling

In finance one does not look at a single asset, but at a bunch of assets. Since the assets in
the market are typically highly correlated, it is natural to use multivariate distributions.
A straightforward way for introducing multivariate generalized hyperbolic(MGH) distrib-
utions is via the mixtures of multivariate Normal distributions with the generalized inverse
Gaussian distributions. In fact the multivariate generalized hyperbolic distributions were
introduced and investigated in Barndorff-Nielsen (1978).

Let ∆ be a symmetric positive-definite d×d- matrix with determinant |∆| = 1. As-
sume that λ ∈ R, β, µ ∈ Rd, δ > 0, and α2 > β′∆β. We say that a d-dimensional random
vector Z has the multivariate generalized hyperbolic distribution MGH(λ, α, β, δ, µ, ∆)
with parameters (λ, α, β, δ, µ, ∆) if:

Z|Y = y ∼ Nd(µ + y∆β, y∆),

where Nd(A,B) denotes the d-dimensional Normal distribution with mean vector A and
covariance matrix B, and Y distributed as GIG(λ, δ,

√
α2 − β′∆β). Here we notice that

the generalized hyperbolic distributions are symmetric if and only if β = (0, ..., 0)′. For
λ = (d + 1)/2 we obtain the multivariate hyperbolic distributions. For λ = −1/2 we
obtain the multivariate normal inverse Gaussian distribution.

The density function of the distribution MGH(λ, α, β, δ, µ, ∆) is given by the for-
mula

dMGH(x) = cd

Kλ−d/2

(
α
√

δ2 + (x− µ)′∆−1(x− µ)
)

(
α−1

√
δ2 + (x− µ)′∆−1(x− µ)

)d/2−λ
e(β′(x−µ)) (5)

where cd = [(α2−β′∆β)/δ2]λ/2

(2π)d/2Kλ(δ
√

α2−β′∆β)
. The mean and covariance of MGH are given by

E[MGH(λ, α, β, δ, µ, ∆)] = µ + ∆βE[GIG(λ, δ, ψ)], (6)

V ar[MGH(λ, α, β, δ, µ, ∆)] = ∆E[GIG(λ, δ, ψ)] + ∆ββ′∆V ar[GIG(λ, δ, ψ)] (7)

where ψ =
√

α2 − β′∆β. (For details, see, e.g., Blæsid 1981.)
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2 Futures hedge ratios

We consider a decision maker. At the decision date (t = 0), the agent engages in the
production of Q (Q > 0) commodity units for sale at the terminal date (t = 1) at the
random cash price P1. In addition, at the decision date the agent can sell X commodity
units in the futures market at the price F0, but must repurchase them back at the terminal
date at the random futures price F1. Let the initial wealth be V0 = P0Q and the end-
of-period wealth be V1 = P1Q + (F0 − F1)X. Then we consider the wealth return that
is

r̃θ =
V1 − V0

V0

=
P1Q + F0X − F1X − P0Q

P0Q

=
P1 − P0

P0

− F1 − F0

F0

(
F0

P0

X

Q
) = r̃p − θr̃f (8)

where r̃p = P1−P0

P0
and r̃f = F1−F0

F0
are one-period returns on the spot and futures positions,

respectively, h = X
Q

is the hedge ratio and θ = hF0

P0
. ( Note that θ is so-called the

adjusted hedge ratio.) The main objective of hedging is to choose the optimal hedge ratio
θ. However the optimal hedge ratio will depend on a particular objective function to be
optimized. We recall some most widely used theoretical approaches to the optimal futures
hedge ratios and compute explicitly these optimal ratios in terms of the parameters for
MGH distributions. For a comprehensive review of futures hedge ratios, see Chen et al.
(2003).

2.1 Minimum variance hedge ratio

The most widely-used hedge ratio is minimum variance hedge ratio which is known
as the MV hedge ratio. The objective function to be minimized is the variance of r̃θ.
Clearly we have

V ar[r̃θ] = σ2
rp

+ θ2σ2
rf
− 2θρσrpσrf

,

where σrpand σrf
are standard deviations of r̃p and r̃f , respectively and ρ is the correlation

coefficient between r̃p and r̃f . The MV hedge ratio is obtained by minimizing V ar[r̃θ].
Simple calculation shows that the MV hedge ratio is given by

θ∗MV = ρ
σrp

σrf

. (9)

Theorem 2.1. Assume (r̃f , r̃p)
′ is distributed as MGH(λ, α, β, δ, µ, ∆), where β = (β1, β2)

′, µ =

(µ1, µ2)
′, and ∆ =

(
∆11 ∆12

∆21 ∆22

)
is symmetry. Then we have

θ∗MV =
∆12E[GIG] + δfp

∆11E[GIG] + δff

(10)

where GIG = GIG(λ, δ,
√

α2 − β′∆β) and

δff =
[
β2

1∆
2
11 + 2β1β2∆11∆12 + β2

2∆
2
12

]
V ar[GIG]

δfp =
[
β2

1∆11∆12 + β1β2(∆11∆22 + ∆2
12) + β2

2∆12∆22

]
V ar[GIG].

In particular, if β = (0, ..., 0)′, then θ∗MV = ∆12

∆11
.
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2.2 Sharpe hedge ratio

We consider the optimal hedge ratio that incorporates both risk and expected return.
Howard and D‘Antonio(1984) considered the optimal level of futures contracts by maxi-
mizing the ratio of the portfolio’s excess return to its volatility, that is

max
θ

µrp − θµrf
− rL

σθ

, (11)

where σθ is the stanard deviation of r̃θ, µrp , µrf
are expected values for r̃p and r̃f , respec-

tively, and rL is the risk-free interest rate.
Consider the function

r(θ) =
µrp − θµrf

− rL

σθ

.

Then we have

r
′
(θ) =

θ
[
−σ2

rf
(µrp − rL) + µrf

σrf rp

]
+ (µrp − rL)σrprf

− σ2
rp

µrf

σ3
θ

(12)

where σrf rp = Cov(r̃p, r̃f ) and, hence, the critical point for r(θ) is given by

θ∗s =
(

σrp

σrf
)2µrf

− ρ
σrp

σrf
(µrp − rL)

ρ
σrp

σrf
µrf

− (µrp − rL)
. (13)

It follows from the equation (12) that if µrp − rL > ρ
σrp

σrf
µrf

, then r′(θ) > 0 for θ < θ∗s
and r′(θ) < 0 for θ > θ∗s . Hence θ∗s is the optimal hedge ratio(Sharpe hedge ratio) for the
equation (11). Similarly, if µrp − rL < ρ

σrp

σrf
µrf

, then r(θ) has a minimum at θ∗s . (Note

that if µrp − rL = ρ
σrp

σrf
µrf

, then r(θ) is strictly monotonic in θ.)

The measure of hedging effectiveness (abbreviated HE) is given in Howard and
D‘Antonio(1984) by

HE = r(θ∗s)�(
µrp − rL

σrp

). (14)

Write

ζ =
µrf

/σrf

(µrp − rL)/σrp

(15)

(ζ is also-called the risk-return relative.) Then we have

θ∗s =
σrp

σrf

(
ρ− ζ

1− ζρ
)

and

HE =

√
(ρ− ζ)2

1− ρ2
+ 1 .
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Clearly the last equality implies that

HE

{
> 1 when ρ 6= ζ
= 1 when ρ = ζ.

Moreover, without any distribution assumption, we have the following relationship be-
tween θ∗s and θ∗MV . In particular, if the expected return on the futures contract is zero
and µrp > rL, then the Sharpe hedge ratio reduces to the minimum variance hedge ratio.

Proposition 2.2. Assume µrp > rL and 1 > ζρ. Then we have




θ∗s > θ∗MV when µf < 0
θ∗s = θ∗MV when µf = 0
θ∗s < θ∗MV when 0 < µf .

Recall that σrf rp = Cov(r̃p, r̃f ). Then we have

θ∗s =
σ2

rp
µrf

− σrf rp(µrp − rL)

σrf rpµrf
− σ2

rf
(µrp − rL)

. (16)

From this and by equations (6) and (7), we obtain

Theorem 2.3. Assume (r̃f , r̃p)
′ is distributed as in Theorem 2.1. Assume that

ζfp [(µ1 + β1∆11 + β2∆12)E[GIG]] < ζff [(µ2 + β1∆21 + β2∆22)E[GIG]− rL] .

Then we have

θ∗s =
ζpp [(µ1 + β1∆11 + β2∆12)E[GIG]]− ζfp [(µ2 + β1∆21 + β2∆22)E[GIG]− rL]

ζfp [(µ1 + β1∆11 + β2∆12)E[GIG]]− ζff [(µ2 + β1∆21 + β2∆22)E[GIG]− rL]
(17)

where δff , δfp, GIG are the same as in Theorem 2.1 and

δpp =
[
β2

1∆
2
21 + 2β1β2∆21∆22 + β2

2∆
2
22

]
V ar[GIG]

ζff = ∆11E[GIG] + δff

ζfp = ∆12E[GIG] + δfp

ζpp = ∆22E[GIG] + δpp.

2.3 Minimum generalized semivariance hedge ratio

In this case the optimal hedge ratio is obtained by minimizing the generalized semi-
variance(GSV) given below:

Ln(c, X) =

∫ c

−∞
(c− x)ndF (x), n > 0, (18)

where F (·) is the probability distribution function of the return X. The GSV is specified
by two parameters: the target return c and the power of the shortfall n. (Note that if

the density function of X is symmetric at c, then we obtain L2(c,X) = Var(X)
2

. Hence
in this case, the GSV approach is the same as that of the minimum variance.) The
GSV, due to its emphasis on the returns below the target return, is consistent with
the risk perceived by managers(see Lien and Tse 2001). For futures hedge, we consider
Ln(c, θ) = Ln(c, r̃p − θr̃f ).

Under some conditions on the joint distribution, we obtain that the minimum GSV
hedge ratio is the same as the minimum variance hedge ratio.
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Theorem 2.4. Assume (r̃f , r̃p) is the same as in Theorem 2.1. If β = 0 and µ1 = µrf
= 0,

then the minimum GSV hedge ratio is the same as the minimum variance hedge ratio(i.e.,
θ∗GSV = θ∗MV = ∆12

∆11
).

In empirical studies, the true distribution is unknown or complicated. Then θ∗GSV

can be estimated from the sample by using the so-called empirical distribution method
adapted in, e.g., Price, Price and Nantell 1982 and Harlow 1991. Suppose we have m
observations of (r̃f , r̃p), say, (rf (i), rp(i)), i = 1, 2, ..., m. From this, the GSV can be
estimated by the formula:

Lobs
n (c, θ) =

1

m

m∑
i=1

(c− ri,θ)
nIri,θ≤c, (19)

where ri,θ = rp(i) − θrf (i) . Given c and n, numerical methods can be used to search
the hedge ratio that minimizing the sample GSV, Lobs

n (c, θ). (We will write θobs
GSV for this

numerical value in Tables 10 and 11.)

3 Estimation and Simulation

3.1 Kernel Density Estimators

Assumed that we have n independent observations x1, ..., xn from the random variable
X with the unknown density function f . The kernel density estimator for the estimation
of f is given by

f̂h (x) =
1

nh

n∑
i=1

K(
x− xi

h
), x ∈ R (20)

where K is a so-called kernel function and h is the bandwidth. In this paper we work with
the Gaussian kernel: K(x) = 1/

√
2π exp{−x2/2} and h = (4

3
)1/5σn

−1
5 . (For more details,

see Scott 1979.) Meanwhile it is worth noting that Lien and Tse (2000) proposed the
kernel density estimation method to estimate the probability distribution of the portfolio
return for every θ, and then grid search methods was adapted to find the optimum GSV
hedge ratio.

Table 1: Mean, standard deviation, skewness and kurtosis of daily log returns
of major indices and futures

Insert Table 1 here.

In Table 1, we summarize the empirical mean and standard deviation for the daily
log returns of major indices and futures over the period from January 2000 until December
of 2004. Figure 1 shows the Gauussian kernel density estimators together with the fitted
normal distributions, with parameters from Table 1. We see that the Gaussian kernel
density estimators have sharp peaked distributions and heavy tail behavior than that of
normal distributions.

8



3.2 Maximum-Likelihood Estimation

We focus on how to estimate the parameters of a density function f(x; Θ), where Θ
is the set of parameters to be estimated. Suppose that we have n independent observa-
tions x1, ..., xn of a random variable X with the density function f(x; Θ). The maximum
likelihood estimator θ̂MLE is the parameter set that maximizes the likelihood function

L(Θ) =
n∏

i=1

f(xi; Θ).

Clearly this is equivalent to maximizing the logarithm of the likelihood function:

log L(Θ) =
n∑

i=1

log f(xi; Θ).

The log-likelihood function for hyperbolic distribution H(α, β, δ, µ) is given by

`H(α,β,δ,µ)(Θ) = n
(
log

√
α2 − β2 − log 2− log α− log δ − log K1(δ

√
α2 − β2)

)

+
n∑

i=1

[
−α

√
δ2 + (xi − µ)2 + β(xi − µ)

]
.

Table 2: MLE parameters for hyperbolic distribution (d=1)
Insert Table 2 here.

Figure 2 shows the Gauussian kernel density estimators based on the daily log returns
of major indices and futures over the period from 2000 until the end of 2004, together
with the fitted hyperbolic distributions, with parameters from Table 2. Compared with
Figure 1, in which the normal counterpart were plotted, we see a significant improvement.

The symmetric MGH density function is given by the formula

(α/δ)λ

(2π)d/2Kλ(αδ)

Kλ− d
2
(α

√
δ2 + (x− µ)′∆−1(x− µ))

(α−1
√

δ2 + (x− µ)′∆−1(x− µ))
d
2
−λ

.

and, in particular, the two-dimensional symmetric hyperbolic distributions(i.e., β = 0 and
λ = 3

2
) has the density

H2 =
(α/δ)3/2

23/2
√

παK 3
2
(αδ)

e−α
√

δ2+(x−µ′)∆−1(x−µ).

From this, we obtain the log-likelihood function for two-dimensional symmetric hyperbolic
distributions :

`H2 = n

[
3

2
log

α

δ
− 3

2
log 2− 1

2
log π − log α− log K 3

2
(αδ)

]

−α

n∑
i=1

√
δ2 + (xi − µ)′∆−1(xi − µ).

Table 3: MLE parameters for symmetric hyperbolic distribution (d=2)
Insert Table 3 here.

Figure 4 shows the fitted symmetric hyperbolic distributions with parameters from
Table 3.
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3.3 Comparison of the Estimates

Various distances between two distributions have been proposed in literature. The
Kolmogorov-Smirnov distance is defined as the supremum over the absolute difference
between the two cumulative density functions, i.e.,

DK = max
x∈R

|Femp(x)− Fest(x)|

where Femp and Fest are the empirical and the estimated CDFs. The Anderson and
Darling statistic is given by

DAD = max
x∈R

|Femp(x)− Fest(x)|√
Fest(x)(1− Fest(x))

.

In Table 4, for both Kolmogorov-Smirnov and Anderson-Darling distances, we get better
results for the GH distributions than for the normal distributions.

Table 4: Distance between the estimated and empirical cumulative density functions
Insert Table 4 here.

3.4 Simulation of Generalized Hyperbolic Random Variables

From the representation of GH distribution as a conditional normal distribution
mixed with the generalized inverse Gaussian, a schematic representation of the algorithm
reads as follows.

1. Sample Y from GIG(λ, δ, ψ) distribution;

2. Sample ε from N(0, 1);

3. Return X = µ + βY +
√

Y ε.

Similarly, for simulating a MGH distributed random vector, we have :

1. Set ∆ = LT L via Cholesky decomposition;

2. Sample Y from GIG(λ, δ, ψ) distribution;

3. Sample Z from N(0, I), where I is d× d-identity matrix;

4. Return X = µ + Y ∆β +
√

Y LT Z.

The efficiency of the above algorithms depends on the method of sampling the gen-
eralized inverse Gaussian distributions. Atkinson (1982) applied the method of rejection
algorithm to sampling GIG. We adopt their method for simulation of estimated hyperbolic
random variables and then use them to evaluate θobs

GSV in Tables 10 and 11
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4 Empirical Analysis

This section empirically analyzes the futures hedging for the spot markets of TAIEX and
S&P 500 using the optimal hedge ratio formulae developed in the earlier sections. We
consider the spot and futures returns in our tests. For the futures series, the closing
settlement prices of the contracts of the nearest month are used. For the spot market,
we adopt the closing indexes as the prices series. All data consist of daily observations of
these prices from January 2000 through December 2004.

Based on the MLE estimation procedures discussed in Section 3, parameters of the
distributions are obtained. We use different statistical tests to examine the goodness of
fit of the estimated distributions. Table 5 depicts the result of the Kolmogorov-Smirnov
test of normal distribution in various markets. It shows that the normality hypotheses are
rejected significantly for all the spot and the futures markets, with P-values ranging from
0.000037 to 0.0133. On the other hand, under the hyperbolic distributions, the data fit
very well at a 5% significance level as shown in Table 6. Moreover the bivariate symmetric
hyperbolic distribution hypothesis is not rejected at the level of 5%, for TAIEX and S &
P 500.

Table 5: Kolmogorov-Smirnov test of normal distribution
Insert Table 5 here.

Table 6: Kolmogorov-Smirnov test of hyperbolic distribution
Insert Table 6 here.

Table 7: χ2-test of symmetric bivariate hyperbolic distribution
Insert Table 7 here.

Table 8 provides the minimum variance hedge ratios for TAIEX and S&P 500 using
the estimated parameters of the symmetric bivariate hyperbolic distribution. As for the
Sharpe hedge ratio, we first estimate the value of µrp − ρ

σrp

σrf
µrf

. (See Table 9.) For

existence of maximum, we need the condition that rL < µrp − ρ
σrp

σrf
µrf

(see section 2.2). In

our cases, it does not exist for any reasonable value of rL. The dependence of the Sharp
measure on the hedge ratio( for rL = 10−4) are shown in Figure 4. From the figure, it is
seen that we obtain the minimum instead of the maximum.

Table 8: Estimated minimum variance hedge ratios under H2 distribution
Insert Table 8 here.

Table 9: Estimated values of µrp − ρ(σrp/σrf
)µrf

under H2 distribution
Insert Table 9 here.

To find the GSV-minimizing hedge ratios, we consider several target returns (TR=-
0.005, 0, and 0.005) with power of shortfall (n) equal to 1.5 (see Table 10) and 2 (see
Table 11). For comparison purpose, the optimal hedge ratios are calculated by Monte
Carlo method from parameters of the bivariate hyperbolic distribution and of the normal
distribution. The hedge ratios from the empirical distribution obtained from the samples
are also provided. As symmetry property is not rejected for TAIEX or S&P 500 markets
(see Table 7), it is noted that GSV-minimizing hedge ratios (see Table 10 and 11) are
very close to the minimum variance hedge ratios (see Table 8), which are consistent with
Theorem 2.4 as discussed in the earlier section.
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Table 10: GSV-minimizing hedge ratios (n=1.5)
Insert Table 10 here.

Table 11: GSV-minimizing hedge ratios (n=2)
Insert Table 11 here.

Overall, our empirical data from TAIEX spot and futures and from S&P 500 spot and
futures support the proposed model very well. Under the bivariate symmetric hyperbolic
distribution, the optimal hedge ratios calculated from different approaches are found
consistent with the theoretical implication.

5 Concluding Remarks

Although there are many different theoretical approaches to the optimal futures hedge
ratios, under the martingale and joint-normality assumptions, various optimal hedge ratios
are identical to the minimum variance hedge ratio. However empirical studies show that
major market data reject the joint-normality assumption. In this paper we propose the
generalized hyperbolic distribution as the joint log-return distribution of the spot and
futures. In terms of the parameters for generalized hyperbolic distributions, we obtain
several most widely-used optimal hedge ratios: minimum variance, maximum Sharpe
measure and minimum generalized semivariance. In particular, under mild assumptions
on the parameters, we show that these theoretical approaches are equivalent.

To estimate these optimal hedge ratios, we first write down the log-likelihood func-
tions for symmetric hyperbolic distributions. Then we calculate these parameters by
maximizing the log-likelihood functions. Using these MLE parameters for the GH distri-
butions, we obtain the MV hedge ratio and the optimal Sharp hedge ratio by Theorems
2.1 and 2.3 respectively. Also based on the MLE parameters and the numerical method ,
we calculate the minimum generalized semivariance hedge ratio.

Empirical studies show that our proposed models fit the TAIEX futures and S &
P 500 futures very well. Numerical results for different optimal hedge ratios also verify
our theoretical observations. Moreover, regarding the equivalence of these three optimal
hedge ratios, our empirical studies results suggest that the martingale property plays a
much important role than the joint distribution assumption.

Although our empirical studies show that the value of complicated and sophisticated
estimation methods for GSV hedge ratio is negligible, which is consistent with the findings
of Lence (1995), conditional heteroskedasticity and stochastic volatility are observed in
many spot and futures price series. This implies that the optimal hedge strategy should
be time-dependent. To account for this dynamic property, parametric specifications of
the joint distribution are required. Based on our work here, it is interesting to extend the
results to time-varying hedge ratios.
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Appendix A.
Proof of Theorem 2.1. The second statement follows from the first one. We prove the
first statement. By the equation (7), we obtain

Cov(r̃f , r̃p) = ∆12E[GIG] + δfp

and
σ2

rf
= ∆11E[GIG] + δff .

Then our result follows by plugging these into the formula θ∗MV =
Cov(r̃f ,r̃p)

σ2
rf

. ¤
Proof of Proposition 2.2. Assume that µrp > rL. Then 1 > ζρ if and only if

µrp − rL > ρ
σrp

σrf
µrf

. Also µf has the same sign as that of ζ. From this, we observe





ρ−ζ
1−ρζ

> ρ when µf < 0
ρ−ζ
1−ρζ

= ρ when µf = 0
ρ−ζ
1−ρζ

< ρ when 0 < µf .

Therefore if µf > 0, then θ∗s =
σrp

σrf

ρ−ζ
1−ζρ

<
σrp

σrf
ρ = θ∗MV . Other cases follow similarly. ¤

Proof of Theorem 2.4. Write

Ln(c, θ) = Ln(c, r̃p − θr̃f ).

Assume that n > 1 and h(rf , rp) is a joint density function of r̃f and r̃p. Then we have

Ln(c, θ) =

∫ ∞

−∞

∫ c+θrf

−∞
(c− rp + θrf )

nh(rf , rp)drpdrf .

Simple calculation gives

∂

∂θ
Ln(c, θ) =

∫ ∞

−∞

∫ c+θrf

−∞
nrf (c− rp + θrf )

n−1h(rf , rp)drpdrf

and

∂2

∂2θ
Ln(c, θ) =

∫ ∞

−∞

∫ c+θrf

−∞
n(n− 1)r2

f (c− rp + θrf )
n−2h(rf , rp)drpdrf .

Since ∂2

∂2θ
Ln(c, θ) > 0, the minimum for Ln(c, θ) occurs at the unique critical point(if it

exists.) If the futures and spot returns are jointly normally distributed and if the future
price is unbiased (i.e., expected futures price change is zero), Lien and Tse (1998) showed
that the minimum GSV hedge ratio is the same as the minimum-variance hedge ratio.
For later application, we summarize their arguments here.
Suppose that (r̃f , r̃p) is bivariate normal distributed. The joint density h(rf , rp) is charac-
terized by means µri

= E(r̃i), i = p, f, and by the covariance σrirj
= cov(r̃i, r̃j), i, j = p, f.

Write x = c + θrf − rp and y = rf . Then we have

∂

∂θ
Ln(c, θ) =

∫ ∞

0

∫ ∞

−∞
nxn−1yh(y, c− x + θy)dydx. (A1)
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The function h(y, c − x + θy) can be decomposed as 1
2πΛ

e
−1
2

AB, where Λ2 = σ2
rp

σ2
rf
−

(σrprf
)2, σ2

rθ
= θ2σ2

rf
− 2θσrprf

+ σ2
rp

, and

A =
[
y + (c− x− µrp)(θσ

2
rf
− σrprf

)σ−2
rθ
− µrf

(σ2
rp
− θσrprf

)σ−2
rθ

]2

Λ−2σ2
rθ

B = (c− x− µrp + θµrf
)2σ−2

rθ
.

Plugging this into equation (A.1) and then integrating with respect to y give

∂

∂θ
Ln(c, θ) =

∫ ∞

0

1√
2π

nxn−1σ−3
rθ

kc(x, θ)e
−1
2

(
c−x−µrp+θµrf

σrθ
)2

dx (A2)

where kc(x, θ) = −(c−x−µrp)(θσ
2
rf
−σrprf

)+µrf
(σ2

rp
−θσrprf

). In the case of an unbiased

futures market(i.e., µrf
= 0), then the above equation implies that

σrprf

σ2
rf

is a critical point

for Ln(c, θ). Hence, by remark above, the minimum generalized semivariance hedge ratio
is established at θ∗GSV =

σrprf

σ2
rf

= θ∗MV , ∀ n > 1.

Next, we consider the case that r̃f and r̃p are distributed as symmetric bivariate
generalized hyperbolic distribution with parameters (λ, α, 0, δ, µ, ∆). Recall that given
Y = y, r̃f and r̃p are distributed jointly as bivariate normal distribution with mean
vector (µ1, µ2)

′ and covariance matrix y∆. Write h(µ,y∆)(rf , rp) for the joint density of
this distribution. Then the generalized semivariance is given by the formula

Ln(c, θ) =

∫ ∞

−∞

∫ c+θrf

−∞

∫ ∞

0

(c− rp + θrf )
nh(µ,y∆)(rf , rp)dGIG(y)dydrpdrf

where dGIG(y) is the density function for the GIG(λ, δ, α) distribution.
Similar arguments as above and using the formula (A2) give

∂

∂θ
Ln(c, θ) =

∫ ∞

0

∫ ∞

0

1√
2π

nxn−1σ−3
θ ykc(x, θ)e

−1
2

(
c−x−µ2+θµ1

σθ
)2
dGIG(y)dydx

where σ2
θ = y(∆22 + θ2∆11− 2θ∆12) and kc(x, θ) = −(c− x−µ2)(θ∆11−∆12) + µ1(∆22−

θ∆12). Clearly, if µ1 = 0 and θ = ∆12

∆11
, then kc(x, θ) = 0. Hence Ln(c, θ) has a critical

point at ∆12

∆11
. The proof is complete.¤
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Figure 1: Normal density and Gaussian kernel density estimators
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Figure 2: Log-densities of daily log returns of major indices and futures(2000-2004)
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Figure 3: Estimated symmetric H2 distributions

19



Figure 4:
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Table 1: Mean, standard deviation, skewness and kurtosis of daily log returns of major
indices and futures

mean ×10−4 standard deviation skewness kurtosis
TAIEX Futures -2.8313 0.0204 -0.0807 4.8848
TAIEX Index -2.8154 0.0177 0.0103 4.1432

S&P 500 Futures -1.5092 0.0128 0.0562 4.8801
S&P 500 Index -1.4577 0.0127 0.1221 4.7822

Table 2: MLE parameters for hyperbolic distribution(d=1)

α̂ β̂ δ̂ µ̂
TAIEX Futures 69.995 1.5937 0.0027 −9.5635× 10−4

TAIEX Index 89.647 3.3658 0.0095 -0.0014
S&P 500 Futures 122.474 -5.8050 0.0059 8.0431× 10−4

S&P 500 Index 125.312 -3.4285 0.0069 4.1696× 10−4

Table 3: MLE parameters for symmetric hyperbolic distributions(d=2)

α̂ δ̂ µ̂× 10−4 ∆̂11 ∆̂12 ∆̂21

TAIEX -2.8313
Futures/Index 161.1448 0.0027 -2.8154 3.3632 2.7491 2.5445
S&P500 -1.5092
Futures/Index 298.1549 0.0017 -1.4577 4.3914 4.2464 4.3339

Table 4: Distance between the estimated and empirical cumulative density functions

Kolmogorov-Smirnov
GH Normal

TAIEX Futures 0.0153 0.0655
TAIEX Index 0.0152 0.0434
S&P 500 Futures 0.0148 0.0488
S&P 500 Index 0.0142 0.0445

Anderson-Darling

TAIEX Futures 0.0748 0.4326
TAIEX Index 0.0608 0.2466
S&P 500 Futures 0.0779 1.0848
S&P 500 Index 0.0653 0.6985
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Table 5: Kolmogorov-Smirnov test of normal distribution

Markets P -value
TAIEX Futures 3.7457× 10−5

TAIEX Index 0.0168
S&P 500 Futures 0.0049
S&P 500 Index 0.0133

Table 6: Kolmogorov-Smirnov test of hyperbolic distribution

Markets P -value
TAIEX Futures 0.9277
TAIEX Index 0.9334
S&P 500 Futures 0.9450
S&P 500 Index 0.9628

Table 7: χ2-test of symmetric bivariate hyperbolic distribution

Markets χ̂2
1 n1 P1-value χ̂2

2 n2 P2-value
TAIEX
Futures/Index 28.45 26 0.0555 18.78 21 0.1302
S&P 500
Futures/Index 30.24 32 0.1769 34.28 33 0.1021

*(To avoid any problems arising from partition sensitivity, two different estimation
procedures were considered. To do this, we partition the whole space into cells of equal
size, and compute the expected number of each cell. Now the first procedure is to count
cells of which the expected value of observations greater than five, and then integrate all
other cells of which the expected value of observations less than five into a new cell. The

second procedure is very much the same as the first, but now combine all the cells of
which the expected value of observations less than five with the random chosen cell of
which the expected number is greater than 5. ni is the number of the modified cells in

procedure i.)

Table 8: Estimated minimum varaince hedge ratios under H2 distribution

θ∗MV

TAIEX 0.8175
S&P500 0.9670

Table 9: Estimated value of µrp − ρ
σrp

σrf
µrf

under H2 distribution

µrs − ρ
σrp

σrf
µrf

TAIEX -5.0106×10−5

S&P500 1.6494×10−7
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Table 10: GSV-minimizing Hedge Ratios (n=1.5)

T R θN2
GSV θH2

GSV θsample
GSV

-0.005 0.8165 0.8182 0.8266
(2.54) (2.99)

TAIEX 0 0.8163 0.8183 0.8224
(1.42) (1.41)

0.005 0.8164 0.8185 0.8320
(1.89) (1.56)

-0.005 0.9650 0.9696 0.9743
(3.80) (4.70)

S&P 500 0 0.9670 0.9701 0.9749
(0.80) (0.71)

0.005 0.9659 0.9672 0.9863
(2.43) (1.99)

TR= Target Return. θN2
GSV = GSV-based optimal hedge ratio from Monte Carlo

Simulation using estimated normal distribution. θH2
GSV = GSV-based optimal hedge ratio

from Monte Carlo Simulation using estimated H2 distribution, and θsample
GSV =GSV-based

optimal hedge ratio computed from sampled market data. The rows in each box without
brackets are the means and the rows with brackets are the variances measured in units
of 10−4.
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Table 11: GSV-minimizing Hedge Ratios ( n=2)

T R θN2
GSV θH2

GSV θsample
GSV

-0.005 0.8121 0.8123 0.7884
(1.65) (3.65)

TAIEX 0 0.8143 0.8176 0.8131
(1.24) (2.12)

0.005 0.8161 0.8208 0.8271
(1.51) (1.90)

-0.005 0.9608 0.9648 0.8764
(1.85) (6.86)

S&P 500 0 0.9656 0.9688 0.9643
(0.74) (1.09)

0.005 0.9687 0.9750 0.9678
(1.70) (1.36)

TR= Target Return. θN2
GSV = GSV-based optimal hedge ratio from Monte Carlo

Simulation using estimated normal distribution. θH2
GSV = GSV-based optimal hedge ratio

from Monte Carlo Simulation using estimated H2 distribution, and θsample
GSV =GSV-based

optimal hedge ratio computed from sampled market data. The rows in each box without
brackets are the means and the rows with brackets are the variances measured in units
of 10−4.
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