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ABSTRACT 
While incorporating the quantile regression (QR) technique, this work examines the non-monotonic 
relationship between risk and returns in the cross-section of stock returns. The empirical data include 
U.S. S&P500 firm stocks listed during 1998-2007. The present empirical results indicate that the 
systematic (idiosyncratic) risk-return relationship is significant (insignificant) for stocks with stable 
price movements, as demonstrated by the CAPM theory, whereas the model’s theoretical risk-return 
relation is failed when stocks with volatile price changes are considered. Further, our empirical results 
could satisfactorily explain the longstanding risk-return puzzles in earlier studies. 
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1. Introduction 

    In this paper, we reexamine the risk-return relationship in the cross-section of 

stock returns. Our ideas are based on the following notions. First, we consider that the 

security risk should be classified into two categories, systematic against idiosyncratic. 

Second, the capital asset pricing model (CAPM) theory suggests that stock prices 

should reflect systematic risk only, with no compensation given to diversifiable risk 

(i.e., idiosyncratic risk). Third, the empirical findings regarding the link between risk 

and security returns are inconclusive and it has posed a longstanding problem in 

research field. 

    In particular, while the CAPM risk-return relationship has been widely tested 

empirically, the empirical evidence is generally mixed (e.g., Lintner, 1965; Black et 

al., 1972; Levy, 1978; Amihud et al., 1992; Jagannathan and Wang, 1993), and most 

studies reveal weak or no support at all for the CAPM. Further, Fama and French 

(1992), an influential and widely cited study, strongly rejects the CAPM. Further, 

although financial theory suggests that idiosyncratic risk should not be priced in the 

capital markets, Barberis and Huang (2001), Malkiel and Xu (2002) and Jones and 

Rhodes-Kropf (2003) find that idiosyncratic risk is positively related to stock returns, 

whereas Ang et al. (2006) indicates stocks with high idiosyncratic risk have low 

average returns. 

    Although these inconsistent empirical findings might be attributed to the small 

sample size problems, or the quality of the data used, we posit that the risk-return 

relationship is possibly not uniform cross-sectionally, and sometimes the relation is 

not even monotonic. In particular, the CAPM risk-return relationship is derived under 

certain assumptions. We argue that it is possible that some of the CAPM assumptions 

are not held for certain stocks, and therefore the model’s theoretical risk-return link is 
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not consistent across various stock observations. Given the above discussion, this 

work is one of the first studies to examine the non-monotonic risk-return relationship 

in the cross-section of stock returns using quantile regression (hereinafter referred to 

as QR).  

    As a statistical term, the quantile is a statistical term describing a division of 

observations into certain defined intervals based upon the values of the data, and the 

return quantile of a specific stock could show the relative magnitude of it return in 

comparison with the entire set of stock observations. Moreover, the median value of 

stock returns, i.e. the 0.5 return quantile, approaches zero, and thus higher and lower 

than the 0.5 return quantiles can be defined as a rise and fall in price, respectively. 

Accordingly, this work is concerned with whether the CAPM risk-return relationship 

is valid for specific stocks which are experiencing volatile price movements, i.e. 

stocks with an extremely high/low return quantile condition. The opposite scenario 

occurs for moderate quantiles, i.e. a stability in stock price.   

    The rest of this paper is organized as follows. Section 2 details the method for 

calculating the systematic and idiosyncratic risk. Section 3 presents the underlying 

models for examining the risk-return relationship in the cross-section of stock returns, 

including the QR and conventional regression approaches. Section 4 shows the 

empirical results, and Section 5 concludes the paper. 

 

2. Calculation of systematic and idiosyncratic risk  

Both systematic and idiosyncratic risks are considered in this study, and the 

risk-return relationship in stocks is examined. To calculate the two types of risk, the 

CAPM regression is employed in this study and expressed as follows:  
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titmiiti eRR ,,, +×+= βα                                            (1) 

 

where Ri,t and Rm,t denote the daily excess returns of the i-th stock and the market at 

time t, respectively. To avoid ad hoc problems of market index selection, this study 

employs the S&P500 market index to calculate the market returns. Further, to convert 

returns to excess returns, the daily US three-month Treasury bill rate is subtracted 

from the raw returns. 

    Undertaking variance calculation on the both sides of Eq. 1, we have  

 

)( ,
2222

timii eσσβσ +×=                                            (2) 

 

where σi, σm and σ(ei,t) are the standard deviation of Ri,t (i.e., the excess returns of the 

i-th stock), Rm,t (i.e., the excess returns of the S&P500 market index) and the residual 

term ei,t, respectively. Next, we define βi and σ(ei,t) as the systematic and idiosyncratic 

risk for the i-th stock, respectively. It should be noted that we collect one-year daily 

data to run Eq. 1, and thus the two types of risk for each stock are calculated. 

 

3. Model specifications for examining the risk-return relationship 

3.1 No quantile models: OLS and LAD 

Once the two types of risk for each stock are calculated, the risk-return relation 

in the cross-section of stock returns is examined as follows. Let (yit, xit), i=1, 2…, N 

and t=1, 2…, T be a sample population, where subscript i denotes the i-th stock and t 

denotes the t-th period. The explained variable yit, represents the annual excess stock 

return of the i-th stock at period t, and xit is a (2X1) vector in which two types of risk 

(systematic vs. idiosyncratic) for the i-th stock are involved. Since our data have a 



 6

panel structure, the fixed effects model is thus used and expressed as follows:  

 

ititiit uxy +⋅+= βα ' ,                                              (3) 

 

where αi (i=1, 2…, N) and β (2X1 vector) are unknown parameters to be estimated.  

As part of this study’s focus on the dynamic relationships between yit and xit (i.e. 

the β parameters) we take the ‘group difference’ between variables and redefine Eq. 3 

as follows: 

 

*** ' ititit uxy +⋅= β ,                                                 (4) 

 

where * denotes variables deviated from the group mean, that is, iitit yyy
_

* −= , 

iitit xxx
_

* −= , iitit uuu
_

* −= , and iy
_

, ix
_

 and iu
_

 are the means of y, x and u of stock i, 

respectively.  

It should be noted that the setting in Eq. 4 (i.e., the non-quantile model) is 

potentially limited owing to the use of a constant parameter in each risk variable (i.e., 

xit) for stock returns (i.e., yit). Specifically, once the final result is a model of Eq. 2, the 

values of all the elements in the (KX1) vector β are fixed between the stocks 

experiencing a fall and rise in price.  

By using the mathematical optimization technique of OLS, the estimator vector 

of β is obtained from: 

 

2**2* )'(1)(1min β⋅−×=× ∑∑ it
i

it
i

it xyu .                                 (5) 
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Further, the sum of absolute errors can be minimized to get the β estimate of LAD:  

 

|'|1||1min *** β⋅−×=× ∑∑ it
i

it
i

it xyu .                                    (6) 

 

The constant term one in Eqs. 5 and 6 represents that the error terms are 

averaged by equal weight; thus, β⋅'*
itx  represents the conditional mean and the 

conditional median functions in the optimization technique of OLS and LAD, 

respectively. One key limitation of the OLS and LAD estimates is that they provide 

only one measure of the central distribution tendency of the dependent variable, and 

tail behaviors are not considered.  

 

3.2 QR model 

To resolve the potential shortcoming of a uniform risk-return relationship for 

stock returns, this study adopts the QR technique developed by Koenker and Basset 

(1978) to establish the following model specification: 
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where )( **
itit xyQuantθ  denotes the θ-th conditional quantile of *

ity  on the regressor 

vector *
itx ; βθ is the unknown vector of parameters to be estimated for different values 

of θ in (0,1); *
ituθ  is the error term assumed to be continuously differentiable c.d.f. 



 8

(cumulative density function) of Fuθ(.|x) and a density function fuθ(.|x). The value 

Fit(.|x) denotes the conditional distribution of the dependent variable conditional on x. 

Varying the value of θ from 0 to 1 reveals the entire distribution of y conditional on x.  

    The estimator for βθ is obtained from: 
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Notably, the estimators do not have an explicit form, but the resulting minimization 

problem can be solved by liner programming techniques.1  

Restated, one feature of the QR is the ability to trace the entire distribution of 

dependent variables conditional on the independent variable. Comparing Eq. 8 with 

Eqs. 5 and 6 reveals a key feature of the QR technique: the estimator vector of β,θ 

varies with θ. Moreover, by comparing the behaviors with different θ, one could thus 

characterize the dynamic estimator vector, namely β,θ, in various return-quantile 

regimes. In addition, a comparison of Eq. 6 with Eq. 8 reveals that the LAD estimator 

is a special case of the quantile-varying estimator with a quantile of 0.5. Further, one 

key limitation of the OLS and LAD estimators is that only a single measure of the 

central distribution tendency is provided, without considering tail behaviors.  

 

4. Data and empirical results 

Data from S&P500 firms are analyzed over a 10-year period of 1998 to 2007. 

Financial firms are excluded from the data sample, since their liabilities and capital 

                                                 
1 See Koenker (2000) and Koenker and Hallock (2001) for the related discussions. 



 9

structure intrinsically differ from those of non-financial firms. The overall sample 

consists of 392 firms and 3,794 annual observations.2 All data are obtained from the 

Datastream and Compustat databases.  

It must be noted that we adopt a two-step procedure to examine the risk-return 

link in the cross-section of stock returns. In particular, we first estimate the two types 

of risk (systematic and idiosyncratic) using Eqs. 1 and 2, and then examine the 

risk-return relationship using Eq. 3 to Eq. 8. Table 1 summarizes the definitions of 

stock return and risk variables selected for this study, and the descriptive statistics of 

those variables are presented in Table 2. 

The following two tables summarize the estimation results of the proposed QR 

model, with the OLS results also presented for comparison purposes. Notably, a 

multiple regression approach is adopted when implementing the QR model, in which 

the two explanatory variables (systematic and idiosyncratic risk) for stock returns are 

included simultaneously. 

Table 3 summarizes the estimation results of the QR model to illustrate how 

systematic risk and stock returns are related. Figure 1 displays the corresponding 

graph. First, using the 5% level as a criterion, the OLS estimate of the systematic 

variable is insignificant. This result indicates the systematic risk-return relationship is 

not presented in our data. Next, the non-monotonic risk-return link derived by the QR 

model is examined. Importantly, while the systematic risk-return relationship deep 

outside the central region (i.e., 0.05 to 0.20 and 0.70 to 0.95) is insignificant, it is 

significant when the moderate quantiles from 0.25 to 0.45 are concerned.  

The right columns of Table 3 list the F test of the equality of slope parameters 
                                                 
2 It must be noted that the specified financial data of some firms are not available for the entire 
ten-year period, and some firms do not continue to exist for ten consecutive years. Further, firms for 
which the annual stock returns exceed 500% and the beta estimates are larger than 6 in absolute value 
are excluded. Consequently, the panel data used in this work is unbalanced, and thus the number of 
available observations over the ten-year period is less than 3,920 (=392x10).  
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across various quantiles. It should be noted that the estimate at the 0.5 quantile is used 

as a benchmark. Notably, the inequality of slope estimates across various quantiles is 

significant (insignificant) at the tail (central) regions. In particular, near the central 

regions from 0.15 vs. 0.50 to 0.60 vs. 0.50, the inequality of estimates is insignificant. 

However, in the left-tailed (0.05 vs. 0.50) and right-tailed regions (0.95 vs. 0.50, 0.90 

vs. 0.50, 0.85 vs. 0.50, 0.80 vs. 0.50, 0.75 vs. 0.50, 0.70 vs. 0.50 and 0.65 vs. 0.50), 

the difference is significant.  

Table 4 lists the OLS and QR estimates for the idiosyncratic risk variable and 

Figure 2 displays the corresponding graph. Interestingly, the idiosyncratic risk 

variable is accompanied with an insignificant coefficient at moderate quantiles 

ranging from 0.45 to 0.80, as found in the OLS estimate, whereas the coefficient 

becomes significant for the left-tailed quantiles (0.05 to 0.40) and right-tailed 

quantiles (0.85 to 0.95). Further, the idiosyncratic risk is positively related to stock 

returns over the higher quantiles, from 0.85 to 0.95. Conversely, they are negatively 

connected for the lower quantiles, from 0.05 to 0.40. In addition, the right columns of 

Table 2 depict the F tests of the equality of slope parameters across various quantiles: 

the differences between slope estimates at the θ and (1-θ) quantiles. Interestingly, 

differences across various quantiles are significant, except for the central region: 0.45 

vs 0.55. Consequently, the observed nonlinearities derived from conditional QR reveal 

considerable differences in the idiosyncratic risk-return link with different levels of 

return quantile.  

The aforementioned findings require further clarification. First, we state that 

situations involving the extreme return quantiles, i.e. θ=0.95 and 0.05, closely 

correspond to volatile price conditions. Accordingly, the inverted U-shaped estimates 

in Figure 1 show that the CAPM systematic risk-return connection is valid for stocks 
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with a relatively stable price, i.e. stocks with moderate return quantiles. The opposite 

scenario occurs for tail quantiles, i.e. a large change in stock price. Prior studies (e.g. 

Basak, 2005; Levy et al., 2006; Fama and French, 2007; Berrada, 2008) invariably 

indicate that some of the assumptions for the CAPM do not hold, which is why the 

traditional CAPM has failed to explain the variation in equity prices. We further 

reveal that the invalid CAPM risk-return link is mainly composed of stocks with 

volatile price movements.  

Further, although the link between idiosyncratic risk and returns is insignificant 

over moderate quantiles, as shown in Table 4 and Figure 2, they are significantly 

related when the tail quantiles are encountered. Malkiel and Xu (2002) and Jones and 

Rhodes-Kropf (2003) indicate that investors demand compensation for not being able 

to diversify risk. Some studies (see Barberis and Huang, 2001) employ behavioral 

models and demonstrate that stocks involved with higher idiosyncratic volatility earn 

higher returns. Conversely, Jiang, Xu, and Yao (2005), Zhang (2006), Bali and Cakici 

(2008) and Ang, et al. (2006, 2009) show that stocks with high idiosyncratic volatility 

have low returns. Importantly, these inconsistent empirical results involved in earlier 

studies could be satisfyingly accounted for by this study. In particular, as shown in 

Table 4 and Figure 2, the relationship between idiosyncratic risk and return is 

significantly positive over the higher quantiles, from 0.85 to 0.95, whereas their 

relation is significantly negative for the lower quantiles, from 0.05 to 0.40.  

 

5. Conclusions 

    The CAPM risk-return relationship in stocks has long been of great interest to 

researchers, since the CAPM is one of the most fundamental models in economics and 

finance. While adopting large panel data over the period of 1998-2007, this work is 
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one of the first to examine the changing distribution in stock returns, across stocks and 

over time by using a conditional QR. The empirical results obtained with the QR 

system show that the risk-return link in stocks is not uniform cross-sectionally and 

occasionally, the relations are not even monotonic. 

    Our empirical results further demonstrate that the CAPM risk-return relationship 

is valid when stocks with stable price movements are concerned. Conversely, for 

stocks with volatile price changes, the model’s theoretical risk-return link is invalid. 

Importantly, this study demonstrates that the conventionally adopted OLS 

optimization approach elucidates central behaviors only, and misidentifies the 

risk-return connection, particularly for stocks significantly rising and falling in price. 

Finally, the non-monotonic relationship between risk and stock returns addressed by 

this study could provide a meaningful solution to the longstanding risk-return puzzles 

in earlier studies. 
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Table 1 Definition of dependent/independent variables 
Variables Definitions 
Dependent variable (yit) The annual excess stock returns  
Independent variables (xit)  

Systematic risk The firm’s beta estimated from the CAPM regression using one-year 
historical data 

Idiosyncratic risk: The standard deviation of the residual of the CAPM regression 
Notes:  
1. Data from S&P500 firms are analyzed over the 1998-2007 period. Financial firms are excluded from the data 
sample. The overall sample consists of 392 firms and 3,794 annual observations.    
2. The specified financial data of some firms are not available for the entire ten-year period, and some firms do not 
continue to exist for ten consecutive years. Further, the firms in which the annual stock returns exceed 500% and 
the beta estimates are larger than 6 in the absolute value are excluded. Accordingly, the panel data used in this 
work is unbalanced, and thus the available observations over the ten-year period are less than 3,920 (=392x10).  

 
 
 
 
 
 
 
 

Table 2 Descriptive statistics of dependent/independent variables 
 The annual stock 

returns 
Systematic risk (beta) Idiosyncratic risk 

Mean 16.54 0.94 2.59 
Median 8.96 0.89 1.85 
S.D. 48.78 0.55 3.96 
Skewness 2.41 1.05 9.14 
Kurtosis 11.34 8.49 105.58 
Maximum 424.11 5.42 64.56 
Minimum -95.37 -3.19 0.00 

Notes:  
1. This table summarizes certain descriptive statistics of the dependent/independent variables selected for this 
study.  
2. The data source is same as in Table 1.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tables 
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Table 3 The relationship between systematic risk and stock returns across various quantile levels 
Estimated results of quantile regression Statistic tests of the equality of slope estimates across various quantiles 

Quantile Estimate (p-value) Quantile Estimate (p-value) Quantile F-statistics (p-value) Quantile F-statistics (p-value) 
0.05 -8.03 (0.069) 0.95 -10.90 (0.148) 0.05 vs. 0.50 12.37 (0.000)** 0.95 vs. 0.50 6.81 (0.009)** 
0.10 0.01 (0.998) 0.90 -4.37 (0.324) 0.10 vs. 0.50 6.21 (0.012)* 0.90 vs. 0.50 7.02 (0.008)** 
0.15 5.01 (0.141) 0.85 0.89 (0.763) 0.15 vs. 0.50 0.43 (0.512) 0.85 vs. 0.50 5.00 (0.025)* 
0.20 6.51 (0.055) 0.80 0.08 (0.968) 0.20 vs. 0.50 0.03 (0.854) 0.80 vs. 0.50 9.68 (0.002)** 
0.25 8.48 (0.005)** 0.75 1.98 (0.243) 0.25 vs. 0.50 0.38 (0.540) 0.75 vs. 0.50 9.94 (0.002)** 
0.30 8.05 (0.000)** 0.70 2.75 (0.183) 0.30 vs. 0.50 0.44 (0.506) 0.70 vs. 0.50 5.27 (0.022)* 
0.35 7.51 (0.000)** 0.65 3.29 (0.041)* 0.35 vs. 0.50 0.11 (0.740) 0.65 vs. 0.50 5.20 (0.023)* 
0.40 7.08 (0.000)** 0.60 5.00 (0.002)** 0.40 vs. 0.50 0.00 (0.960) 0.60 vs. 0.50 2.04 (0.153) 
0.45 7.56 (0.000)** 0.55 6.43 (0.000)** 0.45 vs. 0.50 0.38 (0.536) 0.55 vs. 0.50 0.26 (0.607) 
0.50 7.02 (0.000)** OLS -0.89 (0.628)     

Notes:  
1. The ** and * denote significance at the 1% and 5% levels, respectively. 
2. The right columns of this table present the F tests of the equality of slope parameters across various quantiles. Notably, the estimate at the 0.5 quantile is used as a benchmark and the 
inequality of slope estimates across various quantiles is examined.  
3. The data source is same as in Table 1.  
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Table 4 The relationship between idiosyncratic risk and stock returns across various quantile levels 

Estimated results of quantile regression Statistic tests of the equality of slope estimates across 
various quantiles 

Quantile Estimate (p-value) Quantile Estimate (p-value) Quantile F-statistics (p-value) 
0.05 -2.40 (0.000)** 0.95 2.50 (0.000)** 0.05 vs 0.95 33.39 (0.000)** 
0.10 -2.28 (0.000)** 0.90 1.26 (0.005)** 0.10 vs 0.90 23.71(0.000)** 
0.15 -2.05 (0.000)** 0.85 0.79 (0.000)** 0.15 vs 0.85 18.56 (0.000)** 
0.20 -2.14 (0.000)** 0.80 0.63 (0.101) 0.20 vs 0.80 14.76 (0.000)** 
0.25 -1.48 (0.003)** 0.75 0.24 (0.498) 0.25 vs 0.75 12.31 (0.001)** 
0.30 -1.48 (0.000)** 0.70 0.11 (0.742) 0.30 vs 0.70 16.23 (0.000)** 
0.35 -1.33 (0.000)** 0.65 -0.08 (0.832) 0.35 vs 0.65 12.76 (0.000)** 
0.40 -1.28 (0.002)** 0.60 -0.25 (0.572) 0.40 vs 0.60 14.55 (0.000)** 
0.45 -0.96 (0.067) 0.55 -0.47 (0.364) 0.45 vs 0.55 3.04 (0.081) 
0.50 -0.62 (0.266) OLS -0.03 (0.901)    

Notes:  
1. The ** and * denote significance at the 1% and 5% levels, respectively. 
2. The right columns of this table present the F tests of the equality of slope parameters across various quantiles. In particular, the difference between slope estimates at the θ and (1-θ) 
quantiles is examined in this table.  
3. The data source is same as in Table 1. 
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Figure 1 The relationship between systematic risk and stock returns: QR estimates 

with 95% confidence intervals versus OLS estimate 
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Figure 2 The relationship between idiosyncratic risk and stock returns: QR estimates 

with 95% confidence intervals versus OLS estimate 
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