VaR Estimation under Stochastic Volatility Models

Chuan-Hsiang Han

Dept. of Quantitative Finance Natl. Tsing-Hua University

TMS Meeting, Chia-Yi

(Joint work with Wei-Han Liu)

December 5, 2009

Outline

- Risk Management in Practice: Value at Risk (VaR)
- Estimate Default Probability by Efficient Importance Sampling
- Fourier Transform Method: boundary effect and a price correction scheme
- Stability of Estimation and some Empirical Results

Value at Risk

Let r(t) be an asset return at time t. Its $(1 - \alpha)\%$ VaR, denoted by VaR_{α} , is defined by the $\alpha\%$ -quantile of r(t). That is,

$$P(r(t) \ge -VaR_{\alpha}) = 1 - \alpha.$$

That is a risk controller has a $(1-\alpha)$ % confidence that the asset price will not drop below VaR_{α} in time t.

Aspects about VaR

• Mathematically, it is not a **coherent** risk measure* because it doesn't satisfy the risk diversification principal. Instead, CVaR is.

• Practically, it is commonly required by financial regulations.

*Artzner P., F. Delbaen, J.-M. Eber, and D. Heath, "Coherent Measures of Risk," *Mathematical Finance*, 9 (1999): 203-28.

Estimation of VaR

- Riskmetrics: normal assumption
- Historical Simulation: generate scenarios
- Monte Carlo method: model dependent

Estimate Probability of Default

Given a dynamical model of an asset price S_t , its return process is $r_t = \ln S_t / S_{t-1}$.

Given a loss threshold B, the probability of default is defined by

$$\mathsf{DP}(\mathsf{B}) = E_{t-1} \{ \mathbf{I}(r(t) \leq -B) \}.$$

Note: VaR_{α} is the *B* satisfying $DP(B) = \alpha$.

Importance Sampling

Given the Black Scholes Model under measure P, a new measure \tilde{P} defined from an exponential martingale $\frac{dp}{d\tilde{P}} = Q$ satisfies

$$\tilde{E}_{t-1}[S_t] = \exp(-B).$$

Denote DP by P_{ε} and the second moment by $M_{2\varepsilon}$, which are defined by

$$P_{\varepsilon} = \mathbb{E}_{t-1} \left[\mathbf{I} \left(r_t \leq -B \right) \right]$$
$$M_{2\varepsilon} = \mathbb{E}_{t-1} \left[\mathbf{I} \left(r_t \leq -B \right) Q^2 \right]$$

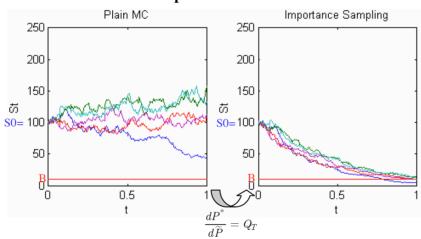
Asymptotic Optimality in Variance Reduction

Theorem: $M_{2\varepsilon} \approx (P_{\varepsilon})^2$ for small ε (spatial scale). Thus, the importance sampling is optimal (or efficient).

Proof: by means of Cramer's theorem for 1-dim case.

For high-dimensional first passage time problem, see H. (09).

Trajectories under different measures Single Name Case



Simulation of the stock price :

Some Modifications: SV model and Jump-Diffusion Model

SV Model:

$$\begin{cases} dS_t = \mu S_t dt + \sigma_t S_t dW_t \\ \sigma_t = \exp(Y_t/2) \\ dY_t = (m - Y_t) dt + \beta dZ_t \end{cases}$$

JD Model:

$$\frac{dS_t}{S_t} = \mu dt + \sigma dW_t + d\left(\sum_{j=1}^{N_t} \left(Y(j) - 1\right)\right),$$

1-dim. Default Probability - SV Model

В	BMC	Importance Sampling	
94.855	0.0103 (0.0010)	0.0099 (1.6964E-004)	
96.36	0.0501 (0.0022)	0.0500 (7.3140E-004)	

The number of simulations is 10^4 and the Euler discretization takes time step size T/100, where T is one day.

Other parameters are $S_0 = 100, \mu = 0.3, m = -2, \alpha = 5, \beta =$

 $1, \rho = 0$. Standard errors are shown in parenthesis.

Default Probability - Jump-Diffusion Model

B	P_{JD}	P_{JD}	P_{JD}	P_{JD}
	True	Basic MC	IS-JD*	IS-D
0.0211	0.05	0.0499	0.0501	0.0482
		(0.0069)	(0.0024)	$(7.89 imes 10^{-}4)$
0.0298	0.01	0.01	0.01	0.0094
		(3.1×10^{-3})	(6.8×10^{-4})	(1.7084×10^{-4})
0.04	0.001	0.0001	0.001	0.00095
		(9.9×10^{-4})	(1×10^{-4})	$(8.38 imes 10^{-}5)$

The number of simulations is 10^4 and the Euler discretization takes time step size T/100, where T is one day.

Other parameters are μ = 0.06, σ = 0.2, λ = 1, a = 0, b^2 =

0.02, T = 1/252. Standard errors are shown in parenthesis.

A Nonparametric Method to Estimate Vol. Fourier Transform Method*

Assume a difussion process

$$du(t) = \mu(t)dt + \sigma(t)dW_t,$$

Task: to estimate is $\sigma(t)$, i.e. the time series volatility.

*Malliavin and Mancino(2002,2005,2009)

Fourier Transform Method(Step 1)

Compute the Fourier coefficients of $d\boldsymbol{u}$ by

$$a_{0}(du) = \frac{1}{2\pi} \int_{0}^{2\pi} du(t),$$

$$a_{k}(du) = \frac{1}{\pi} \int_{0}^{2\pi} \cos(kt) du(t),$$

$$b_{k}(du) = \frac{1}{\pi} \int_{0}^{2\pi} \sin(kt) du(t).$$

Then,

$$u(t) = a_0 + \sum_{k=1}^{\infty} \left[-\frac{b_k(du)}{k} \cos(kt) + \frac{a_k(du)}{k} \sin(kt) \right]$$

Fourier Transform Method(Step 2)

Fourier coefficients of variance σ^2 ,

$$\begin{aligned} a_{0}(\sigma^{2}) &= \lim_{N \to \infty} \frac{\pi}{N+1-n_{0}} \sum_{s=n_{0}}^{N} \left[a_{s}^{2}(du) + b_{s}^{2}(du) \right], \\ a_{k}(\sigma^{2}) &= \lim_{N \to \infty} \frac{2\pi}{N+1-n_{0}} \sum_{s=n_{0}}^{N} \left[a_{s}(du) a_{s+k}(du) \right], \forall k > 0, \\ b_{k}(\sigma^{2}) &= \lim_{N \to \infty} \frac{2\pi}{N+1-n_{0}} \sum_{s=n_{0}}^{N} \left[a_{s}(du) b_{s+k}(du) \right], \forall k \ge 0, \end{aligned}$$

where n_0 is any positive integer. so that

$$\sigma_N^2(t) = \sum_{k=0}^N \left[a_k(\sigma^2) \cos(kt) + b_k(\sigma^2) \sin(kt) \right].$$

Fourier Transform Method(Step 3)

Reconstruct the time series variance $\sigma^2(t)$.

• Finally, $\sigma_N^2(t)$ is an approximation of $\sigma^2(t)$ as N approaches infinity, which can be given by classical Fourier-Fejer inversion formula.

$$\sigma^2(t) = \lim_{N \to \infty} \sigma_N^2(t)$$
 in prob.

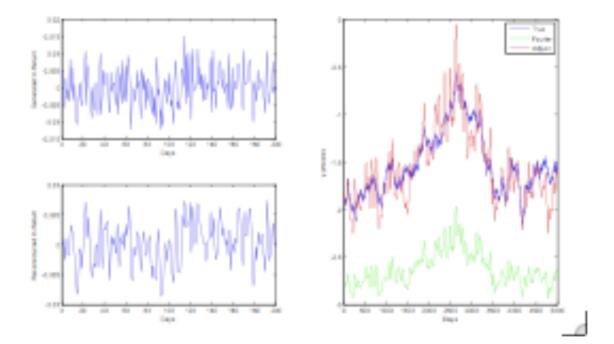
Smoothing

• We add a function into the final computation of time series variance in order to smooth it.

$$\sigma^{2}(t) = \lim_{N \to \infty} \sum_{k=0}^{N} \varphi(\delta k) \left[a_{k}(\sigma^{2}) \cos(kt) + b_{k}(\sigma^{2}) \sin(kt) \right]$$

where $\varphi(x) = \frac{\sin^{2}(x)}{x^{2}}$ is a function in order to smooth the trajectory and δ is a smoothing parameter.

Boundary Effect Removed Simulated Data



A Price Correction Scheme: First Order

Idea: (Nonlinear) Least Squares Method for first-order correction

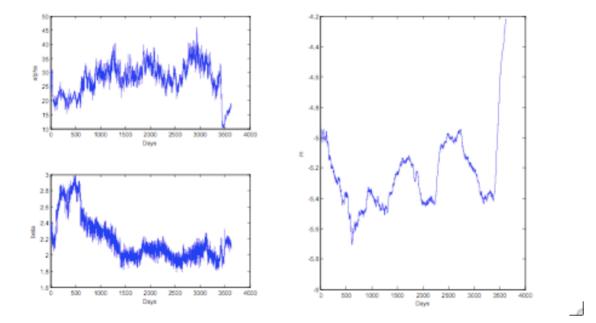
$$r_t \approx \sigma_t \, \delta_t \, \epsilon_t$$

 $\approx \exp(\left(a + b \, \widehat{Y}_t\right)/2) \, \delta_t \, \epsilon_t.$

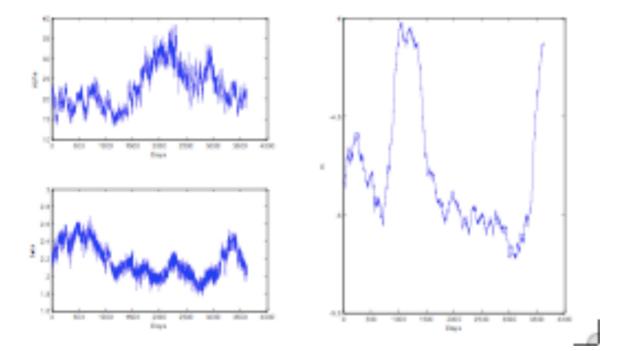
Then by MLE to regress out \boldsymbol{a} and \boldsymbol{b}

$$\ln \frac{r_t^2}{\delta_t^2} = a + b\,\hat{Y}_t + \ln \epsilon_t^2.$$

Stability of parameters - GBP/USD



Stability of parameters - JPY/USD



Back Testing Empirical LRcc Test

Data Sample Period: $1993/1/5 \sim 2009/7/24$

1% VaR	RiskMetrics	H.S.	SV Model
AUD	Ο	Х	Ο
JPY	Х	Х	Ο
SGD	X	Х	X
CAD	Х	Х	Ο
KRW	Х	Х	Х
GBP	Х	Х	Ο

Conclusion

- Simple and efficient importance sampling methods are proposed, justified by large deviation theory.
- Remove boundary effect of Fourier Transform Method
- Some empirical studies on FX data

Acknowledgments

• Math. Inst., Academia Sinica, Anita Chang (QF, NTHU), Tzu-Ying Chen (QF, NTHU).

Thank You