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Outline

• Risk Management in Practice: Value at
Risk (VaR)

• Estimate Default Probability by Efficient
Importance Sampling

• Fourier Transform Method: boundary ef-
fect and a price correction scheme

• Stability of Estimation and some Empir-
ical Results
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Value at Risk

Let r(t) be an asset return at time t. Its

(1− α)% VaR, denoted by V aRα, is defined

by the α%-quantile of r(t). That is,

P (r(t) ≥ −VaRα) = 1− α.

That is a risk controller has a (1−α)% confi-

dence that the asset price will not drop below

V aRα in time t.
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Aspects about VaR

• Mathematically, it is not a coherent risk

measure∗ because it doesn’t satisfy the risk

diversification principal. Instead, CVaR is.

• Practically, it is commonly required by fi-

nancial regulations.

∗Artzner P., F. Delbaen, J.-M. Eber, and D. Heath,
“Coherent Measures of Risk,” Mathematical Fi-
nance, 9 (1999): 203-28.
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Estimation of VaR

• Riskmetrics: normal assumption

• Historical Simulation: generate scenarios

• Monte Carlo method: model dependent
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Estimate Probability of Default

Given a dynamical model of an asset price

St, its return process is rt = lnSt/St−1.

Given a loss threshold B, the probability of

default is defined by

DP(B) = Et−1 {I(r(t) ≤ −B)} .

Note: V aRα is the B satisfying DP (B) = α.
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Importance Sampling

Given the Black Scholes Model under mea-

sure P , a new measure P̃ defined from an

exponential martingale dp
dP̃

= Q satisfies

Ẽt−1 [St] = exp(−B).

Denote DP by Pε and the second moment

by M2ε, which are defined by

Pε = IEt−1 [I (rt ≤ −B)]

M2ε = ĨEt−1

[
I (rt ≤ −B) Q2

]
.
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Asymptotic Optimality in Variance

Reduction

Theorem: M2ε ≈ (Pε)2 for small ε (spa-

tial scale). Thus, the importance sampling

is optimal (or efficient).

Proof: by means of Cramer’s theorem for

1-dim case.

For high-dimensional first passage time prob-

lem, see H. (09).
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Trajectories under different measures

Single Name Case
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Some Modifications: SV model and

Jump-Diffusion Model

SV Model:
dSt = µSt dt+ σt St dWt
σt = exp(Yt/2)
dYt = (m− Yt) dt+ β dZt

JD Model:

dSt

St
= µdt+ σdWt + d

 Nt∑
j=1

(Y (j)− 1)

 ,
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1-dim. Default Probability - SV Model

B BMC Importance Sampling
94.855 0.0103 (0.0010) 0.0099 (1.6964E-004)
96.36 0.0501 (0.0022) 0.0500 (7.3140E-004)

The number of simulations is 104 and the Euler discretization

takes time step size T/100, where T is one day.

Other parameters are S0 = 100, µ = 0.3,m = −2, α = 5, β =

1, ρ = 0. Standard errors are shown in parenthesis.
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Default Probability - Jump-Diffusion Model

B PJD PJD PJD PJD
True Basic MC IS-JD∗ IS-D

0.0211 0.05 0.0499 0.0501 0.0482
(0.0069) (0.0024) (7.89× 10−4)

0.0298 0.01 0.01 0.01 0.0094
(3.1× 10−3) (6.8× 10−4) (1.7084× 10−4)

0.04 0.001 0.0001 0.001 0.00095
(9.9× 10−4) (1× 10−4) (8.38× 10−5)

The number of simulations is 104 and the Euler discretization

takes time step size T/100, where T is one day.

Other parameters are µ = 0.06, σ = 0.2, λ = 1, a = 0, b2 =

0.02, T = 1/252. Standard errors are shown in parenthesis.
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A Nonparametric Method to Estimate Vol.

Fourier Transform Method∗

Assume a difussion process

du(t) = µ(t)dt+ σ(t)dWt,

Task: to estimate is σ(t), i.e. the time series

volatility.

∗Malliavin and Mancino(2002,2005,2009)

12



Fourier Transform Method(Step 1)

Compute the Fourier coefficients of du by

a0(du) =
1

2π

∫ 2π

0
du(t),

ak(du) =
1

π

∫ 2π

0
cos(kt)du(t),

bk(du) =
1

π

∫ 2π

0
sin(kt)du(t).

Then,

u(t) = a0 +
∞∑
k=1

[
−
bk(du)

k
cos(kt) +

ak(du)

k
sin(kt)

]
.
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Fourier Transform Method(Step 2)

Fourier coefficients of variance σ2,

a0(σ2) = lim
N→∞

π

N + 1− n0

N∑
s=n0

[
a2
s(du) + b2

s(du)
]
,

ak(σ
2) = lim

N→∞

2π

N + 1− n0

N∑
s=n0

[as(du)as+k(du)] , ∀k > 0,

bk(σ
2) = lim

N→∞

2π

N + 1− n0

N∑
s=n0

[as(du)bs+k(du)] , ∀k ≥ 0,

where n0 is any positive integer. so that

σ2
N(t) =

N∑
k=0

[
ak(σ2) cos(kt) + bk(σ2) sin(kt)

]
.
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Fourier Transform Method(Step 3)

Reconstruct the time series variance σ2(t).

• Finally, σ2
N(t) is an approximation of σ2(t)

as N approaches infinity, which can be

given by classical Fourier-Fejer inversion

formula.

σ2(t) = lim
N→∞

σ2
N(t) in prob.
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Smoothing

• We add a function into the final compu-
tation of time series variance in order to
smooth it.

σ2(t)

= lim
N→∞

N∑
k=0

ϕ (δk)
[
ak(σ

2) cos(kt) + bk(σ
2) sin(kt)

]
where ϕ(x) = sin2(x)

x2 is a function in

order to smooth the trajectory and δ is a

smoothing parameter.
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Boundary Effect Removed

Simulated Data
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A Price Correction Scheme: First Order

Idea: (Nonlinear) Least Squares Method for

first-order correction

rt ≈ σt δt εt

≈ exp(
(
a+ b Ŷt

)
/2) δt εt.

Then by MLE to regress out a and b

ln
r2
t

δ2
t

= a+ b Ŷt + ln ε2t .
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Stability of parameters - GBP/USD
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Stability of parameters - JPY/USD

20



Back Testing

Empirical LRcc Test

Data Sample Period: 1993/1/5 ∼ 2009/7/24

1% VaR RiskMetrics H.S. SV Model
AUD O X O
JPY X X O
SGD X X X
CAD X X O
KRW X X X
GBP X X O
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Conclusion

• Simple and efficient importance sampling

methods are proposed, justified by large

deviation theory.

• Remove boundary effect of Fourier Trans-

form Method

• Some empirical studies on FX data
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