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In this paper, we develop a bankruptcy prediction framework that could be used in the study
of rating systems. A hybrid model with credit migration is proposed, which could not only
capture the differences in bankruptcy probabilities of firms with different ratings, but also
of firms within the same rating. Moreover, we derive explicitly computable approximations
for the expected bankruptcy time and the tail probabilities of the bankruptcy time, and
further applied them to the evaluation of rating systems’ performances. Numerical results
are also presented.

1 Introduction

In risk management, credit rating systems provide valuable information by dividing firms
into different ratings, and indicate that firms in distinct ratings should have different
bankruptcy probability. However, firms within the same rating are still different in
bankruptcy probabilities, which are not captured by the rating information. Moreover, if
this difference is relatively large, the rating system would only provide little information
to a firm’s bankruptcy probability, and thus be less efficient. This paper studies this issue
by a three steps progress. First, we formulate a bankruptcy prediction framework that
can not only reflect the differences in bankruptcy probabilities of firms with distinct credit
ratings, but also of firms with the same rating but with distinct individual characteristics.
Second, we derive explicitly computable approximations of the expected bankruptcy time
and the tail probabilities of the bankruptcy time. And last, we use these approximations
to examine the proportion of bankruptcy probabilities that is determined by the credit
rating system, which could be used to evaluate the rating system’s performance.

In the first step, we formulate our credit risk model. To capture both the difference
in bankruptcy probabilities among firms of distinct ratings and of the same rating, we
need to have a model which the bankruptcy probability is constructed by two compo-
nents: an exogenous part that is the same among all firms with the same rating, and
an endogenous part that may vary among firms even with the same rating 1. For the
exogenous part, we incorporate the Markov chain model proposed by Jarrow et al.(1997,)

∗This research was supported in part by NSC 97-2118-M-008-001-MY3.
1For the terminologies of exogenous and endogenous bankruptcies, see Acharya and Carpenter (2002) for example.
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which allows us to have different bankruptcy probabilities for firms with distinct ratings
via the transition probabilities matrix. For the endogenous part, on the other hand, we
use the standard barrier-option framework, which enable us to have different bankruptcy
probabilities among firms via different firm value.

To be more precise, our framework is based on two useful phenomena. First, we
apply credit rating as the underlying Markov chain and using bankruptcy state to for-
mulate exogenous bankruptcy. This setting can be dated back to Jarrow et al. (1997),
in which they formulate the credit rating process as a K-state Markov chain, with state
1 to K − 1 represents different credit ratings, and state K be the default state. The
securities are then valued as standard options combined with an exogenous default time
depending only on the time when the Markov chain goes into the default state. Further
researches along this line can be found as follows: Kijima and Komoribayashi (1998) re-
laxes the assumption on the transformation of the transition probability matrix from the
real probability measure to the risk-neutral measure; Das and Tufano (1996) extends the
model to the case of random recovery rates; Lando (1998) elaborates it to a conditionally
Markov model; and Bielecki and Rutkowski (2000) takes the stochastic interest rate into
consideration. Note that all of these models successfully describe the linkage between
credit rating and the exogenous bankruptcy, but fail to explain why different firms with
the same credit rating would have different bankruptcy probability since they did not
consider endogenous bankruptcy.

Second, we release the independency between the firm value and the rating process, and
incorporate the bankruptcy barrier approach to formulate the endogenous bankruptcy.
That is, we use bankruptcy barrier to formulate endogenous bankruptcy. Without using
the credit rating process, this setting can be found in Brockman and Turtle (2003), in
which they treat corporate securities as barrier options acting on the firm-value process,
and regard the bankruptcy as the first-passage time τ en(H) relative to an exogenous con-
stant barrier H. They further explore this idea by providing empirical evidences that the
implied barriers are significant in the securities market. Here, we adopt this framework
to model the endogenous bankruptcy, with further incorporation of the credit rating in-
formation as mentioned above. Other considerations could also be brought in, such as
the optimal capital structure and finite maturity debts [e.g. Leland et al. (1996)] and
stochastic interest rate [e.g. Longstaff and Schwartz (1995)].

In summary, we use a Markov random walk2 framework, in which the firm’s observ-
able rating process is incorporated as the underlying Markov chain, and the logarithm
of the firm value is modeled as a random walk, such that the increment distribution is
determined by the current rating. The exogenous and endogenous bankruptcies are then
modeled through the bankruptcy state approach and the knock-out barrier approach,
respectively and simultaneously. In other words, the bankruptcy time is decomposed as
two parts. An exogenous bankruptcy is determined by the firm’s current credit rating,
to which the bankruptcy probability is shared across all firms with the same rating; and
an endogenous bankruptcy is determined by both the rating and the firm-value process,
to which the bankruptcy probability is govern by the individual firm alone. As a result,
our model is capable of capturing the following features: the differences in bankruptcy

2A Markov random walk is a random walk with the increment distribution determined by the state of the underlying
Markov chain.
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probabilities for firms in different ratings by making the bankruptcy rating dependent;
the differences for firms in the same rating by allowing the endogenous bankruptcy to
vary across firms with distinct firm values; and the effects of rating transition on the
bankruptcy probabilities by having different transition probabilities and increment dis-
tributions under different rating. Therefore, by having different current firm values, cor-
porations with same ratings can have different bankruptcy probabilities under our model.

Moreover, from modeling point of view, we propose a hybrid-type model that not only
enhances the structural-form model by bring in the credit rating information, but also
strengthen the reduced-form model by taking care of both endogenous and exogenous
bankruptcies. This is also a further improvement in the existing hybrid approaches such
as Madan and Unal (1998), who formulates the default intensity as a function of the
firm value. Here we completely removing the concept of intensity and directly make the
linkage between bankruptcies and firm values. Nevertheless, as in Jarrow et al. (1997),
this framework can be modified into continuous- or discrete-time model. However, note
that the firm value is often unobservable, researchers commonly use the quantity of book
value of assets less the book value of share holders’ equity, plus the market value of equity,
as a proxy of firm value; see Brockman and Turtle (2003) for example. This quantity, as
well as the rating transition information, is in discrete time. Furthermore, discretization
is also required for numerical computations and simulations. Hence, in this paper, we
will study discrete time model only.

Next, in the second part, we provide explicitly computable approximations to the
expected value and tail probability of the endogenous bankruptcy time under this frame-
work. The former can be done by estimating the expected value of τ en, the first-passage
time of the firm value process crossing a constant barrier H < 0. We will provide two
approximations of doing so. The credit-independent approximation is simply done by
estimating the expected first-passage time Ei(τ

en) under a given initial state (credit rat-
ing) i by the expected first-passage time Eπ(τ

en) under the invariant measure π. And we
approximate Eπ(τ

en) by:

Eπ(τ
en) ≈ H

µπ
, (1)

where µπ < 0 is the mean of the Markov random walk under the invariant measure
π. The credit-independent approximation is relatively easy to compute, and can be more
accurate when |H| is sufficiently large.

However, the credit-independent approximation has two shortcomings. First, it does
not take the initial state into the account; different initial rating will result in identi-
cal approximations for the expected bankruptcy time. This makes it unsuitable for the
study of credit risk and credit rating systems since one might want to see the differences
in implied bankruptcy probabilities due to distinct initial ratings. Second, the credit-
independent approximation is less accurate when the barrier H is not far, which can
be vital for credit-related securities valuations. For example, for credit derivatives such
as CDO and CDS, whether the bankruptcy occurs before the mature date or not, will
dramatically change the cash flow, and hence the value of the securities. Even a one-day
difference near the maturity would cause critical changes. Therefore, it is crucial to have
more accurate estimate for bankruptcy prediction.

3



To this end, we provide a credit-dependent approximation of the expected first-passage
time Ei(τ

en), which can reflect different expected bankruptcy time under distinct initial
rating and give more accurate estimate. This approximation is based on Wald’s equation
for Markov random walks given by Fuh and Lai (1998), in which the estimate involves
an expected overshoot term ρ− and an initial distribution related term; see Proposition
1 in Section 3 for details. This overshoot term is not easy to compute numerically in
Markov random walks, however it can be explicitly computed through Spitlzer’s formula
in simple random walks. The mathematics contribution in this paper is that we provide
an approximation of the overshoot ρ− under Markov random walks by the corresponding
terms under simple random walks. The accuracy is assured when the transition proba-
bility matrix is near diagonal, in which it is also the property in credit rating process.
By using the same technique, we have approximations for the tail probabilities of the
bankruptcy time, in which the equality between the tail probabilities and the overshoot
term ρ− is provided by Fuh (2004) instead.

Last, in the third part, we use these approximations to examine the proportion of
bankruptcy probability that is determined by the rating, which provides a method to
evaluate the performance of a rating system. Notice that the rating agencies would like
to keep the number of rating levels at a minimum to be efficient and simplified, but at
the same time facing the problem that when there are too less rating levels, the difference
within a rating would be too large such that one could know only little information about
the firm’s bankruptcy probability when given the firm’s rating, making the rating infor-
mation irrelevant. This would force the agency to increase the number of rating levels,
which has been undergone by many rating agencies. Therefore, an optimal number of
rating levels would be an interest of these agencies. Thus, we provide a method to evalu-
ate the performance of a rating system when having given number of rating level through
the approximations we derived, which is done by examine the proportion of bankruptcy
probability that is determined by the rating information alone. The larger the proportion
is, the stronger the rating information could determine the bankruptcy probability, and
a better performance the rating system functions. We demonstrate this application with
numerical illustrations.

The rest of the paper is organized as follows. Section 2 gives the model formulation.
Section 3 provides analytic approximations of the expected value and tail probabilities
of the bankruptcy time under this framework, and propose the application in evaluating
rating system performance. Three numerical results are given in Section 4 to illustrate
our methods. Section 5 concludes. The proofs are deferred to Appendix.

2 The Model

The main structure of our framework is to formulate the firm value process by a Markov
random walk, where the underlying Markov chain being the firm’s credit rating pro-
cess. The exogenous bankruptcy is then be triggered when the Markov chain goes into a
bankruptcy state, while the endogenous bankruptcy is defined as the first passage time of
the firm value process crosses a constant exogenous bankruptcy barrier. For consistency,
the Markovian credit rating process will be followed in the framework of Jarrow et al.
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(1997).

2.1 Model Formulation

To begin with, we consider a discrete-time, friction-less economy on a finite time horizon
[0, tmax], with a default-free money market account Bt and the risk corporate zero-coupon
bonds being traded, and with a filtered probability space (Ω,F , (Ft)0≤t≤tmax, P ). We as-
sume that the markets for these corporate bonds are complete and arbitrage-free; this
is equivalent to assuming an unique equivalent martingale measure that makes the price
processes of these securities martingales after discounting by the money market account.
See Harrison and Pliska (1981) for details.

Now, we begin our model formulation. First, we let V (t, T ) be the price of the corpo-
rate zero-coupon bond that pays one dollar if the bankruptcy has not occur at maturity
time T , and pays δ instead if the firm is bankruptcy before T , with t < T and 0 ≤ δ < 1.
Let τ be the random time at which the bankruptcy occurs. Then, under the equivalent
martingale measure,

V (t, T ) = E

(
Bt

BT
(δ1{τ≤T} + 1{τ>T})|Ft

)
. (2)

Second, we assume that the firm value process follows a Markov random walk based
on the firm’s credit-rating process. That is, let Jt be the credit rating of the firm at
time t, which is formed as a discrete time homogeneous Markov chain on a finite state
space S = {1, . . . ,K}, where states 1 to K − 1 represent the possible credit ratings, and
the state K represents the bankruptcy state. The transition probability matrix of this
Markov chain is given by

Q =




q11 q12 · · · q1K

q21 q22 · · · q2K
...

...
...

...
q(K−1)1 q(K−1)2 · · · q(K−1)K

0 0 · · · 1




(3)

under the equivalent martingale measure, with qij represents the probability for an i-
rating firm at time t to a j-rating firm at time t+1. Note that in the Markov chain with
transition probability matrix (3), the bankruptcy state K is an absorbing state. Next,
for given the Markov chain Jt, assume that the logarithm of the firm value process Vt

follows a random walk

ln
Vt

V0
:= St =

t∑

n=1

Xn, (4)

where the distribution of Xn depends only on Jn. That is, Xn|Jn=j follows a certain
distribution Fj and is independent of other factors.

Last, assume that the bankruptcy time τ is triggered by two types of bankruptcies.
The exogenous bankruptcy time, τ ex, is defined as the first time when the credit-rating
process reaches the bankruptcy state K,

τ ex := τ ex(K) = min{n : Jn = K,n > 0}. (5)
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And the endogenous bankruptcy time, τ en, is defined as the first-passage time of the firm
value process crosses an exogenous constant bankruptcy barrier H,

τ en := τ en(H) = min{n : Sn < H,n > 0}. (6)

The bankruptcy time τ is then defined to be the smaller one of these two

τ = min{τ ex, τ en}. (7)

Notice that our setting is a generalization of Jarrow et al. (1997) and Brockman and
Turtle (2003) by considering both exogenous and endogenous bankruptcies at the same
time; namely, we construct a hybrid version that elaborate these two models. When the
bankruptcy barrier tends to negative infinity, the model degenerates to Jarrow et al.’s
case as the endogenous bankruptcy is removed. When the state space degenerates to one
state only, our model becomes Brockman and Turtle’s case as the credit-rating process
is excluded.

As that in Jarrow et al. (1997), this model can be easily modified to the continuous
time case. Simply change the state process Jt to a continuous-time Markov chain with
transition probability matrix given by

Qt = exp(tΛ) =
∞∑

k=0

(tΛ)k/k!, (8)

where Λ is the K × K generator matrix

Λ =




Λ11 Λ12 · · · Λ1K

Λ21 Λ22 · · · Λ2K
...

...
...

...
Λ(K−1)1 Λ(K−1)2 · · · Λ(K−1)K

0 0 · · · 0




, (9)

and replace lnVt = St =
∫ t

0
dXz , where the distribution of dXz depends only on Jz. That

is, dXz|Jz=j follows Fj distribution and is independent of other factors.

2.2 Discussions

Several comments are given in this subsection. First, empirical studies show that the tran-
sition probability matrix of the credit-rating is nearly diagonal [cf. Jarrow et al. (1997)];
this assures the accuracy of our estimations provided in Section 3 below. Second, the
assumption of “time-homogeneous” is purely for simplicity. Studies after Brockman and
Turtle (2003) suggest non-time-homogeneous or even non-Markov model for credit rating
process; see Frydman and Schuermann (2008) for example. Our framework can be easily
modified to these changes and as one can see later on. Third, the order of the states is
irrelevant in this framework, namely, letting state 1 be the best state or the worst state
has no impact in this study.

Moreover, as one might have noticed, our model is similar to the practical-in-used
régime-switching-lognormal model (RSLN), where the distribution of the firm value’s
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logarithm under each state i is further specified as normal distributions N(µi, σi); see
Hamilton (1989) for details. Although it can be viewed as a parallel method of this kind
of model, three contributions are noted in our framework. Since there is no restriction
on the types of distributions in the model, it provides more freedom in model calibra-
tion and easy to use. First, we propose a Markov random walk model framework for
bankruptcy prediction, in which it can capture both the differences in bankruptcy prob-
abilities between firms with different ratings (exogenous), and between firms with the
same rating but with different characteristics (endogenous). Second, we derive accurate
numerical computation method to approximate the expected value and tail probabilities
of the bankruptcy time. Third, unlike most RSLN models using unobservable macroe-
conomic stage as the underlying régime, our model uses observable rating process as the
underlying Markov chain, which reduces the work of model calibration. Morever, this
numerical approximation can also be used to evaluate the power of a credit rating sys-
tem. Last but not least, even the RSLN model has been widely used both empirically and
academically, its corresponding bankruptcy prediction has not yet been well established,
the methods provided in this paper just fill in this gap. Henceforth, we think that our
framework would be useful in bankruptcy prediction by considering both rating informa-
tion and firm characteristics, and in the studying of efficiency for credit rating systems.
Other important issues in credit risk such as credit derivatives and related topics after
recent financial crisis can also be pursued under this model.

Last is the model calibration procedure. In order to build up a firm’s model from
observable data of stock markets and credit rating institutions, one may assume that the
firm values’ distributions, transition probability matrices and bankruptcy barriers are
determined by the industry. The model parameters can then be calibrated as follows.

• First, one can replace the targeting firm’s value by the book value of assets less than
the book value of shareholders’ equity, plus the market value of equity. This is a
standard procedure that has been used by previous literatures, including Brockman
and Turtle (2003). Same proxy should be taken throughout the next step.

• Second, for each given rating, one looks for similar firms as the desired company that
stays in the specific rating, and collects the stock price of them. Then estimates the
distribution parameters and barrier, which also gives the endogenous bankruptcy
probability of the target firm. The computation of the implied parameters can be
done through the similar process in Brockman and Turtle (2003). The existence of
stable-rating firms is assured by the almost-diagonal transition probability matrix
of the credit ratings. If, in rare cases, there is no firm in a specific rating, one may
approximate the parameters in the no-existing state by the parameters from neigh-
boring ratings; this could be done through linear interpolation or other methods.
The ambiguity from this approximation would not affect much to the model since,
as there is no firm in the specific rating, the transition probability going into this
state would be small, and hence, this state’s parameters would have a low weight of
impact on the model as a whole.

• Third, one estimates the transition probability matrix of the credit ratings among
the industry or similar corporations of the target company; this also determines the
firm’s exogenous bankruptcy probability. Usually, the rating institution’s annual
reports will provide the one-year transition probability matrices.
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• Last, one needs to adjust the barriers to a single uniform barrier across states. If
the maturity time was far enough, the underlying Markov chain, conditioned on not
going into the bankruptcy state, converges to the invariant measure computed as the
bankruptcy state is excluded. Therefore, we can set the desired single bankruptcy
barrier as the weighted average of implied barriers with respect to the weights of each
rating in the exogenous-bankruptcy-excluded invariant measure. This adjustment
will change the bankruptcy probabilities in each state, in which it can be added back
by adjusting the transition probability matrix with the bankruptcy state.

3 Bankruptcy Prediction

Up to now, we have developed a bankruptcy prediction model based on barrier-option
framework as well as credit-rating information. In this section, we will further investi-
gate bankruptcy time τ -related problems, in particular the approximation of Eν(τ ) and
Pν{τ > t} for 0 < t < T , where ν denotes an initial distribution. Note that the τ -related
terms can be used for bankruptcy prediction as well as pricing via equation (2). Moreover,
since the exogenous bankruptcy time τ ex depends only on the underlying Markov process,
it is of interest to study the endogenous bankruptcy time τ en for given non bankruptcy
credit rating. Therefore, we will first approximate Eν(τ

en) and Pν{τ en > t}, and then
combine these results with the exogenous bankruptcy time τ ex to have the approxima-
tions of Eν(τ ) and Pν{τ > t}. These two quantities can be regarded as proxies of the
bankruptcy time τ , and have further applications in studying credit ratings and related
topics, including the evaluation of the power for credit ratings systems.

The main goal of this section is to provide two types (credit-independent and credit-
dependent) of approximations for the expected bankruptcy time Eν(τ

en) and the tail
probabilities Pν{τ en > t} of the bankruptcy time τ en. The credit-independent approx-
imation is relatively easy to compute, however it is irrelevant to the initial rating as
shown in (19) below. The credit-dependent approximation, on the other hand, reflects
the differences in implied bankruptcy probabilities from distinct ratings and provides
more accurate approximation. There are two essential advantages of the second approxi-
mation. First, it is essential for the approximation depends on initial credit rating, since
it is natural for one to have different bankruptcy probabilities in each given credit rat-
ing. Therefore, the approximation which reflects the differences will be more suitable
for credit rating researches and related topics. Second, it is vital to have high accuracy
for the valuation of credit related securities. For instance, for corporate debts, whether
the targeting firm goes into bankruptcy before the maturity can dramatically change the
value of these securities. Even for the bankruptcy occurs at the day before maturity, or
the day after it, would determine whether the par value will be repaid or not. Hence,
this results in completely different valuations of these debts. The differences will be even
more significant for credit swaps, credit protections, and related derivative instruments.

To have approximations of τ en, in the following, we will assume that St is a Markov
random walk without exogenous bankruptcy. That is, qiK = 0 for all 1 ≤ i < K.
Let Jn be an ergodic (aperiodic, irreducible and positive recurrent) Markov chain on
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{1, . . . ,K − 1}, with the transition matrix given by

Q = (qij)
K−1
i,j=1 =




1 −
∑K−1

j 6=1 ε1j ε12 · · · ε1(K−1)

ε21 1 −
∑K−1

j 6=2 ε2j · · · ε2(K−1)

...
...

. . .
...

ε(K−1)1 ε(K−1)2 · · · 1 −
∑K−1

j 6=K−1 ε(K−1)j


 . (10)

Note that, as one may see in the following sections, the credit-dependent approxima-
tions are based on the Wald’s equation in Theorem 1 of Fuh and Lai (1998) and equation
(2.9) in Theorem 2 of Fuh (2004), and these formulae involve the following quantities: 3

ρ− = Eπ−(S2
τ−)/2Eπ−(Sτ−), (11)

where
τ− = min{n : Sn < 0, n > 0}, (12)

and π− is the stationary distribution of the Markov chain with the transition probability
matrix given by

q−ij = Pi

{
Jτ− = j

}
for i, j = 1, . . . ,K − 1. (13)

We will show how to approximate ρ−. Note that although the approximation is not
easy in Markov random walks, the terms E(Sτ−) and E(S2

τ−) appeared in simple ran-
dom walks have been well studied, and can be explicitly computed via the characteristic
function g(λ) = E(eiλX1) of X1 [cf. Chapter 10, Siegmund (1985)].

E(Sτ−) =
1√
2

exp
1

π

∫ ∞

0

1

λ
Im
[
ln(1 − g(−λ))

]
dλ, (14)

and
E(S2

τ−)

2E(Sτ−)
= −1

6
E(X3

1 ) − 1

π

∫ ∞

0

1

λ
Re
[
ln

2(1 − g(−λ))

λ2

]
dλ. (15)

By making use of (14) and (15), Theorem 1 provides an approximation of ρ−.

Theorem 1. Let Jn be an ergodic Markov chain on a finite state space {1, . . . ,K − 1},
with transition probability matrix (10), and invariant measure π = {π1, · · · , πK−1}. Let
Sn be a Markov random walk defined on Jn such that Eπ(|X1|3) < ∞. Then,

R− :=

∑K−1
i=1

∑K−1
j=1 πi ×

(
qij + sup{qkj|k 6= j} × (ES

max(τ−) − 1)
)
× ES

j (S2
τ−)

2
∑K−1

i=1

∑K−1
j=1 πi × (qij + sup{qkj|k 6= j} × (ES

max(τ−) − 1)) × ES
j (Sτ−)

≈ ρ−,

(16)
where:

ES
j (Sτ−) = Ej(Sτ−|∀n ∈ N, Jn = j), (17)

and:
ES

max(τ−) = max{ES
j (τ−) : 1 ≤ j ≤ K − 1} (18)

Furthermore, |R− − ρ−| → 0 as sup1≤i,j≤K−1,i 6=j εij → 0.

3Notice that Fuh and Lai (1998) and Fuh (2004) study the stopping time τ(c) := min{n : Sn > c}, and hence consider
τ+ = min{n : Sn > 0}. We consider the descending ladder time to match our framework.
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The main concept behind Theorem 1 is that, since the transition probabilities matrix
is nearly diagonal, the credit rating process would mainly stays in a certain rating. Thus,
we could approximate the Markov process by corresponding simple random walk, and
hence, could estimate the desired ρ− through (14) and (15). Further off-diagonal adjust-
ments are done to take care of the rare probabilities that the rating changes, which is a
crucial adjustment since when the barrier is not close to the initial firm value, the chance
of going into another state is not ignorable, and thus need to take into considerations.

In the remaining of this section, we will apply Theorem 1 to approximate the endoge-
nous bankruptcy time τ en. Section 3.1 approximates the expected bankruptcy time τ en.
Section 3.2 estimates the tail probabilities of the bankruptcy time τ en. In Section 3.3,
we combine the results of the endogenous bankruptcy with the exogenous bankruptcy to
derive an approximation of the combining bankruptcy. The proof of Theorem 1 is given
in Appendix.

3.1 Approximations of Eν(τ
en)

For any given initial distribution (distribution of initial rating) ν, a simple way to estimate
the expected bankruptcy time Eν(τ

en) is via the following equation

Eν(τ
en) ≈ Eπ(τ en) ≈ H

µπ

, (19)

where µπ = Eπ(X1) < 0. If |H| is large enough, the above credit-independent approx-
imation can be accurate.

Note that approximation (19) contains no information about the initial distribution,
which means the credit-independent approximation is irrelevant to the initial rating.
However, to study the credit rating related topics, it is better to have an approximation
that can reflect the differences in implied bankruptcy probabilities due to distinct initial
ratings. This motivates us to propose a credit-dependent approximation. The main tool
of this approximation is based on Wald’s equation for Markov random walks in Fuh and
Lai (1998). We include here for completeness.

Proposition 1. Let {Jn, n ≥ 0} be an ergodic Markov chain on a finite state space
{1, . . . ,K − 1} with stationary distribution π. Assume Eπ(|X1|3) < ∞, Eπ(X1) = µπ < 0
and S0 = 0. Then, for any given initial distribution ν of J0, as H → −∞,

µπ × Eν(τ
en) = H +

Eπ−(S2
τ−)

2Eπ−(Sτ−)
+

K−1∑

j=1

∆(j)(πj − νj) + o(1), (20)

where the vector ∆ = {∆(j)}K−1
j=1 is given by the solution of the Poisson equation

(I − Q)∆ = Q




E(X1|J1 = 1) − µπ

E(X1|J1 = 2) − µπ
...

E(X1|J1 = K − 1) − µπ


 . (21)
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Note that although the solutions of (21) are not unique, the differences ∆i − ∆j

are unique determined for i, j = 1, . . . ,K − 1. Henceforth, the Wald’s equation is well-
defined. Combining Wald’s equation (20) with Theorem 1, we have the credit-dependent4

approximation for the expected bankruptcy time.

Theorem 2. Assume the conditions in Proposition 1 hold. Then, as H → −∞ and
εij → 0 for all 1 ≤ i, j ≤ K − 1 and i 6= j,

µπ × Eν(τ
en) = H + R− +

K−1∑

j=1

∆(j)(πj − νj) + o(1), (22)

where R− is defined in Theorem 1.

The approximation (22) will be more accurate when |H| is large, which means when
the firm value is far from the bankruptcy barrier and has a negative mean. This is the
case of a large firm that is decaying, which is just the situation that one would fairly
care about the expected bankruptcy time when holding the firm’s corporate bond, credit
bankruptcy swaps and others.

Note that all terms in the credit-dependent approximation (22) can be explicitly com-
puted via (14) and (15). Moreover, as the last terms in (22) depends on the initial state,
the approximation does differs when the initial credit rating changes. Therefore, the
credit-dependent approximation gives a better approximation in credit rating researches
and related topics.

3.2 Approximate Tail Probabilities of τ en

To approximate the tail probabilities of τ en, we need the following result first. The reader
is referred to Theorem 2 of Fuh (2004) for details. Denote σ2 = limn→∞ n−1Eν((Sn −
nµπ)2), and κ = limn→∞ n−1Eν((Sn − nµπ)3).

Proposition 2. Let {Jn, n ≥ 0} be an ergodic Markov chain on a finite state space
{1, . . . ,K − 1} with stationary distribution π. Assume S0 = 0, µπ = 0, σ = 1, and |κ| <
∞. Denote H = ξ

√
t for some ξ < 0. If there exists C > 0 such that infi P {X1 ≤ −C|J1 = i}

> 0. Then as t → ∞,

Pπ {τ en < t, St > H} = Φ

(
−κ/3 + H + 2ρ−√

t + κH/3

)
+ o(

1√
t
). (23)

Note that Proposition 2 holds for a general distribution after standardization i.e.,
µπ = 0, σ = 1. Furthermore, if X1 is symmetric under each state, and the discretization
period is small enough, then by reflection principle, we have

Theorem 3. Under the conditions as Proposition 2. Assume X1 is symmetric under
each state, then

Pπ {τ en > t} = 1 − Pπ {τ en < t} ≈ 1 − 2Pπ {τ en < t, St > H}

= 1 − 2Φ

(
−κ/3 + H + 2ρ−√

t + κH/3

)
+ o(

1√
t
). (24)

4Mathematically speaking, the credit-independent approximation for this expected value is also known as the first-order
approximation, while the credit-dependent one is also known as the second-order approximation with error term of o(1).
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The constant term ρ− in (24) can be estimated via R− in Theorem 1. Equation (24)
gives the credit-independent approximation of the tail probabilities, which is independent
of the initial rating. To have a more accurate approximation, we need to incorporate the
initial state information. Since the Markov chain is ergodic, the convergence of Qn, nth
convolution of Q, to the stationary distribution π is geometric fast, as n → ∞. Therefore,
one can choose a sufficient large N as a “cut-off point”, such that the distribution of
{Jn}∞n=N+1 can be approximated by the stationary distribution; while the distribution of
{Jn}N

n=1 is govern by the initial state. Then one can replace {Xn}N
n=1 with the distribution

under the initial state. That is,

Pi {τ en > t} ≈ Pπ {τ en(H −N × E(X1|J1 = i)) > t − N} , (25)

for 1 << N < t.
A more accurate approximation can be done by letting the drift-term decays exponen-

tially from the initial state to the invariant measure, that is,

Pi {τ en > t} ≈ Pπ

{
τ en

(
H − N × µπ − (E(X1|J1 = i) − µπ) ×

N∑

n=1

qn
ii

)
> t − N

}
.

(26)
Here we call (26) as the credit-dependent approximation of the tail probabilities. More

accurate approximation with o(1) error term along with the proof is an open problem.

3.3 Approximations for the Bankruptcy Time τ and the Evaluation of Rating
System’s Performance

Now, we combine our previous results on endogenous bankruptcy with existed exogenous
bankruptcy to have the bankruptcy time approximation. Let P en be the probability with
endogenous bankruptcy only. Then, a simple calculation leads to an estimation of the
tail probabilities of τ

Pν{τ > t} = Pν{τ ex > t, τ en > t} = Pν{τ en > t|τ ex > t} × Pν{τ ex > t}
= Pν{τ en > t|The exogenous bankruptcy is excluded} × Pν{τ ex > t}
= P en

ν {τ en > t} × Pν{τ ex > t}. (27)

Note that the first part of equation (27) can be approximated by (24) after adjusting the
transition probability matrix conditioned on not in the bankruptcy state, and the second
part can be computed directly through the transition probability matrix.

The approximation of Eν(τ ) can be done by summing up equation (27), which leads
to:

Eν(τ ) = Een
ν (τ en) −

∞∑

t=1

P en
ν {τ en ≥ t}Pν(τ

ex < t). (28)

Note that all terms related to endogenous bankruptcy could be computed through Section
3.1 and 3.2, while all terms related to exogenous bankruptcy could be directly calculated.
The infinite summation could be done numerically. Notice that this gives (28) gives
an upper bound of the expected bankruptcy time, and so does the expected exogenous

12



bankruptcy time Eν(τ
ex); thus, one can use the minimum of these to form an even better

approximation of the expected bankruptcy time, which would be demonstrated in Section
4.3 and 4.4, where this minimum would be denoted as the least-of-the-three approxima-
tion.

These results provide us a method in studying rating systems’ performance as we have
stated in the introduction. By simulation, one could examine the proportion of exogenous
bankruptcies among all bankruptcies. The larger the proportion, the stronger the rating
information could determine the bankruptcy probabilities. Alternatively, one could use
the following quantity, which we define as the power of the rating system,to examine the
performance:

Power :=
Eν(τ )

Eν(τ ex)
(29)

Notice that this 0 < power ≤ 1 and, as the bankruptcy be determined more exogeneously,
the power would be more close to 1. So, the larger the power is, the larger the proportion
of exogenous bankruptcy is, and so the better the rating system performs.

4 Numerical Results

To examine the performance of our proposed approximations and application, we pro-
vides four numerical examples in this section, where the first three illustrations using
given parameters to see their performance under the theoretical setting, and the last one
using real to double confirm them. The first two examples are designed to examine our
endogenous bankruptcy estimations provided in Sections 3.1 and 3.2, and the later two
are for the combining bankruptcy estimations derived in Section 3.3.

More precisely, Section 4.1 considers the case of endogenous-bankruptcy-only with 3
states and given transition probability matrix, in which it is simple to compute and can
be used for a simplified version of estimating the real cases with more states and complex-
ity. Section 4.2 studies the case of endogenous-bankruptcy-only with 7 states using given
transition matrix, which is closer to the real case in the number of states. Section 4.3
is a complete 8-state case, still with given matrix, with both endogenous and exogenous
bankruptcies that allows us to examine the approximations when both bankruptcy bar-
rier and bankruptcy state exist, and to demonstrate our application provided in Section
3.3. Last, Section 4.4 is similar to Section 4.3, but using historical Standard and Pool’s
credit-rating transition probability matrix of the year 2008, which additionally show that
our model is able to capture the miss-ordering phenomenon of credit rating, that is a
better rating but with higher bankruptcy probability.

The given parameters are chosen to approximate the empirical 1-year parameters,
while the last illustrations maintain all parameters except the transition matrix in order
to see the effect on the rating transition alone. These illustrations are numerical examples,
not empirical studies, which is simply designed to demonstrate the function of our models,
not to show any empirical phenomenon. We believe that these examples could lead to a
new examining procedure in the study of rating systems.
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4.1 Endogenous-Bankruptcy-Only: 3-state with Given Parameters

For simplicity, throughout the rest of this section, we will assume X1|Jj v N(µj , σj), the
normality of X1 in each state. Furthermore, to translate the yearly transition probability
matrix into daily setting to be consistent with the firm value process’s frequency, we will
do the adjustment based on 220 working days per year throughout the rest of this section.
That is,

Qadj = exp (lnQ/220) (30)

The first example deals with a 3-state transition probability matrix without the
bankruptcy state. The reason for doing so is that, as we have mentioned in Section
2, the empirical credit ratings transition probability matrix is almost diagonal. There-
fore, for a corporate security with short maturity, the firm’s credit rating will barely move
far away from the initial state, and most likely to stay in the current rating or the rating
right above/below. Hence a 3-state case with the matrix centered at the initial state will
be a good approximation for a real 7-state case when the maturity is not large.

Under this setting, the invariant distribution is given by

π1 =
(q21 + q23 + q32)q31 − (q31 − q21)q32

(q12 + q13 + q23)(q21 + q23 + q32) − (q31 − q21)(q32 − q12)
,

π2 =
−(q32 − q12)q31 + (q12 + q13 + q23)q32

(q12 + q13 + q23)(q21 + q23 + q32) − (q31 − q21)(q32 − q12)
,

π3 = 1 − π1 − π2,

and the δj terms, as stated in Fuh and Pang (2009), are given by



δ1 − δ2

δ2 − δ3

δ3 − δ1


 (31)

=



−1 − q22(q31+q32)+q23q32

q21(q31+q32)+q31q23
− q23(q31+q32)+q23q33

q21(q31+q32)+q31q23

0 − q22q31−q21q32

q21(q31+q32)+q31q23
− q23q31−q21q33

q21(q31+q32)+q31q23

1 − q32(q21+q22)+q23q32

q21(q31+q32)+q31q23
− q33(q21+q23)+q23q32

q21(q31+q32)+q31q23







E(X1|J1 = 1) − Eπ(X1)
E(X1|J1 = 2) − Eπ(X1)
E(X1|J1 = 3) − Eπ(X1)


 .

As stated in Jarrow et al.(1997), a historical credit-rating transition probability matrix
usually has its nonzero entries concentrated around the diagonal, and the probability of
staying in the same rating is much bigger than the probability of moving to next (large or
small) credit rating. To capture this phenomenon, we set the 1-year transition probability
matrix as:

Q =




0.89 0.1 0.01
0.1 0.8 0.1
0.01 0.1 0.89


 ,

where Ji = 1, 2, 3 represent the Standard and Poor’s rating AAA, AA and A respectively.
Xn are then assumed to follow N(µi, σi) condition on each given Jn = i, where the
parameters are chosen to represent a firm-value process under a specific credit rating,
and are reported in Table 15. For the barrier H, we follow the result in Brockman and

5More precisely, we select representative firms of AAA and CCC ratings respectively, calculate the log-return process of
its stock price across the year 2008, and compute the daily mean and standard deviation of it as our proxy parameters. For
other ratings, we use linear interpolation. For example, the Federal Bank(AAA) has a daily standard deviation of 0.0319,
while Ford Motor Co.(CCC) has a standard deviation of 0.0482.
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Turtle(2003), which is also reported in Table 16.

i µi σi S&P Rating H
1 -0.0006 0.0319 AAA −9.2672
2 -0.0007 0.0346 AA
3 -0.0008 0.0373 A

Table 1: Parameters for 3-State Simulations(Daily)

We run a Monte Carlo simulation with 1, 000 paths as the proxy of the real expected
value, and use it as our benchmark to compare with our approximations. The results
are reported in Table 2. Notice that although the credit-independent approximation per-
forms not bad, it is irrelevant to the initial rating. The credit-dependent approximation,
on the other hand, not only provides more accurate results for any given initial state, but
also has different values for different initial credit ratings, which is crucial in the study of
credit rating system. As a result, it is better to use the credit-dependent approximation
when one needs to apply this model and study the credit-rating related topics.

Initial Simulated Eν(τ en) Dependent Approx. Independent Approx.
State (Days. 1,000 Paths)
AAA 13619 13514 13239

AA 13482 13268 13239
A 12947 13022 13239

Table 2: Results of 3-State Illustration for Eν(τ en)

Last, Table 3 reports simulated tail probabilities and their estimations. The credit-
independent approximation uses equation (24), and the credit-dependent approxima-
tion uses equation (26) in which it divides the process as the initial state-part and the
invariant-measure part. The The cut-off point N was chosen to be 100. Note that the
results are similar to the one of expected bankruptcy times, where the credit-independent
approximations perform not bad, but the credit-dependent estimations show higher ac-
curacy and reflect the differences of distinct states.

4.2 Endogenous-Bankruptcy-Only: 7-state with Given Parameters

Example 2 provides another numerical illustration of how to estimate with 7 states, which
the number of states is much closer to many rating systems in practice, such as the Stan-
dard and Poor’s. We set the 1-year rating transition matrix in the way similar to the
3-state case, which is presented in Table 4, which also shows the parameters of N(µj , σj)

6Brockman and Turtle(2003) report an average firm-value of 6,662.53 and average bankruptcy barrier of 0.6920, which
is equivalent of a choice of H = ln 6662.53/0.6920 = −9.2672 in our model.

t 15 years 20 years
State AAA AA A AAA AA A

Simulated Prob.(1,000 paths) 0.9890 0.9740 0.9680 0.9600 0.9340 0.9280
Dependent Approx.(N=100) 0.9874 0.9823 0.9756 0.9509 0.9365 0.9191

Inependent Approx. 0.9797 0.9797 0.9797 0.9306 0.9306 0.9306

Table 3: Results of 3-State Illustration for Pν{τ en > t}
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Probability To Daily Parameters
Current State AAA AA A BBB BB B CCC/C µ σ

AAA 0.8900 0.1000 0.0100 0.0000 0.0000 0.0000 0.0000 -0.0006 0.0319
AA 0.1000 0.7900 0.1000 0.0100 0.0000 0.0000 0.0000 -0.0007 0.0346

A 0.0100 0.1000 0.7800 0.1000 0.0100 0.0000 0.0000 -0.0008 0.0373
BBB 0.0000 0.0100 0.1000 0.7800 0.1000 0.0100 0.0000 -0.0009 0.0401

BB 0.0000 0.0010 0.0100 0.1000 0.7800 0.1000 0.0100 -0.0010 0.0428
B 0.0000 0.0000 0.0000 0.0100 0.1000 0.7900 0.1000 -0.0011 0.0455

CCC/C 0.0000 0.0000 0.0000 0.0000 0.0100 0.1000 0.8900 -0.0012 0.0482

Table 4: Parameters for the 7-State Numerical Illustration

State AAA AA A BBB BB B CCC/C
Simulation (Days) 12213 11654 11348 10668 9800 9175 9118

Dependent Approx. 12234 11860 11161 10331 9506 8828 8401
Independent Approx. 10348 10348 10348 10348 10348 10348 10348

Table 5: Results of 7-State Illustration for E(τ en)

for X1 given J1 = j.

The barrier H is assumed to be the same as in Section 4.1, where the benchmark is still
set to be the result of Monte Carlo simulation with 1000 paths. The results are reported
in Table 5, which, in consistent with the 3-state case, demonstrate the differences between
credit-independent and -dependent approximations’ performances.

Last, Table 6 reports the simulated tail probabilities and their estimations under 7-
state case. The simulated paths are the same as in Table 5, and the cut-off point N used
in the credit-dependent approximation is 100. For simplicity, we only report the results
of the first, the middle, and the last ratings. The results are generally in consist with
Section 4.1. Notice that the the credit-dependent outperforms the other improvement
only occurs in the CCC/C case.

4.3 Combining Bankruptcy and Rating System Evaluations: 8-state with
Given Parameters

Example 3 provide the numerical illustration that combines exogenous and endogenous
bankruptcies by having bankruptcy barrier and bankruptcy state simultaneously. The
transition probabilities of going into the bankruptcy state are set from 0 to 0.32, where
the probability from the next rating is two times as the one from the last rating. The
rest of the transition probabilities are set so that the conditional transition probability
matrix of not going into the bankruptcy state is the same as the matrix used in Section
4.2. All other parameters remain the same. We present these parameters in Table 7.

t 15 years 20 years
State AAA BBB CCC/C AAA BBB CCC/C

Simulation Prob. 0.9720 0.9140 0.7960 0.9180 0.8190 0.6900
Dependent Approx.(N=100) 0.9291 0.8822 0.8148 0.8187 0.7362 0.6319

Independent Approx. 0.8726 0.8726 0.8726 0.7225 0.7225 0.7225

Table 6: Results of 7-State Illustration for Pν{τ ex > t}
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Probability To Parameters
Current State AAA AA A BBB BB B CCC/C Bankruptcy µ σ

AAA 0.8900 0.1000 0.0100 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0006 0.0319
AA 0.0990 0.7821 0.0990 0.0099 0.0000 0.0000 0.0000 0.0100 -0.0007 0.0346

A 0.0098 0.0980 0.7644 0.0980 0.0098 0.0000 0.0000 0.0200 -0.0008 0.0373
BBB 0.0000 0.0096 0.0960 0.7488 0.0960 0.0096 0.0000 0.0400 -0.0009 0.0401

BB 0.0000 0.0000 0.0092 0.0920 0.7176 0.0920 0.0092 0.0800 -0.0010 0.0428
B 0.0000 0.0000 0.0000 0.0084 0.0840 0.6636 0.0840 0.1600 -0.0011 0.0455

CCC/C 0.0000 0.0000 0.0000 0.0000 0.0068 0.0680 0.6052 0.3200 -0.0012 0.0482
Bankruptcy 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 7: Parameters for the 8-State Numerical Illustration with Given Parameters

EXPECTATION Eν(τ )
State AAA AA A BBB BB B CCC/C

Simulation(1,000 paths) 9040 7596 5994 4363 2822 1564 762
Least-of-the-Three 8965 8369 7551 6099 3659 1878 848

Eν(τ ex) 12874 11104 8763 6099 3659 1878 848
Dependent Approx.(N=100) 11466 10307 8638 6597 4537 2817 1900

Independent Approx. 8965 8369 7551 6492 5341 4325 3612

TAIL PROBABILITIES Pν{τ > t}
t 15 years 20 years

State AAA BBB CCC/C AAA BBB CCC/C
Simulation(1,000 paths) 0.9160 0.4840 0.0340 0.8550 0.3770 0.0180

Dependent Approx.(N=100) 0.8993 0.4756 0.0328 0.8153 0.3648 0.0214
Independent Approx. 0.8931 0.4744 0.0330 0.7872 0.3648 0.0200

Table 8: Results of 8-State Illustration with Given Parameters

We apply the method derived in Section 3.3 to approximate both Eν(τ ) and Pν{τ < t}.
The number of paths is 1, 000, the s value in computing for expectation is set to be
0.5 × Eν(τ

ex), and the cut-off point N for the credit-dependent approximation is 100.
The results were presented in Table 8, in which, we only report the tail probabilities
and their approximations of the first, the middle, and the last ratings for simplicity. For
the expected bankruptcy time, notice that the expected exogenous bankruptcy time and
both of the approximations are upperbounds for Eν(τ ), so we may choose the least of the
three to form a good estimation of Eν(τ ), which is shown in Table 8. And for the tail
probabilit, the results are generally in consistent with the previous illustrations, where
the major disimprovement occurs in the CCC/C rating, which is the least diagonal state
among all.

Last, we use this illustration to present how to examine the performance of a rating
system. The first method is to compute the ratio of exogenous bankruptcies among all
bankruptcies by Monte Carlo simulation with 1,000 paths. The results are shown in Ta-
ble 9. Notice that the ratio is ascending from the best rating to the worst rating, which
suggest that given the CCC/C rating, one could know much more information about the
firm’s bankruptcy probability then given other rating.

We also present the power of each rating in Table 9, which is defined in (??), where the
least-of-the-three approximations are applied. Notice that the second method is explicitly
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State AAA AA A BBB BB B CCC/C
Exogeneous Bankruptcy Ratio 0.5420 0.6320 0.7170 0.8240 0.9150 0.9580 0.9880
Power(By Least-of-the-Three) 0.6964 0.7537 0.8617 1.0000 1.0000 1.0000 1.0000

Table 9: Results of Exogenous Bankruptcy Ratio and Powers with 8 States, Given Parameters

Probability To Parameters
Current State AAA AA A BBB BB B CCC/C Bankruptcy µ σ

AAA 0.8710 0.0645 0.0323 0.0000 0.0000 0.0101 0.0202 0.0000 -0.0006 0.0319
AA 0.0000 0.8087 0.1794 0.0059 0.0000 0.0000 0.0020 0.0040 -0.0007 0.0346

A 0.0000 0.0167 0.9227 0.0518 0.0047 0.0000 0.0000 0.0040 -0.0008 0.0373
BBB 0.0000 0.0000 0.0274 0.9244 0.0382 0.0029 0.0021 0.0050 -0.0009 0.0401

BB 0.0000 0.0010 0.0000 0.0535 0.8365 0.0895 0.0113 0.0082 -0.0010 0.0428
B 0.0000 0.0000 0.0000 0.0016 0.0414 0.8231 0.0909 0.0430 -0.0011 0.0455

CCC/C 0.0000 0.0000 0.0000 0.0000 0.0000 0.1410 0.5257 0.3333 -0.0012 0.0482
Bankruptcy 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Table 10: Parameters for the 8-State Numerical Illustration with Historical Parameters

computable, and captures the pattern of the exogenous bankruptcy ratio, so it would lead
to the same conclusions. Thus, one could evaluate the rating system’s performance by
calculating the power instead of computing the ratio to avoid the simulations. A similar
method could be used to evaluate the performance between different rating systems.

4.4 Combining Bankruptcy and Rating System Evaluations: 8-state with
Historical Parameters

Lastly, Example 4 redo the 8-state case in Example 4, but replace the rating transition
matrix with the historical data, Standard and Poor’s 1-year transition matrix to be pre-
cise. We use this example to demonstrate the capability of our framework in dealing with
the real data, and additionally show that our model is able to capture the miss-ordering
phenomenon of credit rating, that is a better rating with a larger bankruptcy probability.

The parameters are shown in Table 10, with all parameters being the same as in
Example 3 except the rating transition matrix. The results in simulations and approxi-
mations are shown in Table 11, with the number of paths been set as 1, 000, the s value
in computing for expectation been set as 0.5 × Eν(τ

ex), and the cut-off point N for the
credit-dependent approximation been set as 100. The results were presented in Table
11, in which, we only report the results of the first, the middle, and the last ratings for
simplicity. The results are generally in consistent with the previous illustrations, where
the only disimprovement of the tail probability approximations occurs in the less diagonal
CCC/C rating.

Notice that the expected bankruptcy time in AAA rating is smaller than the one in
AA or A rating, which is because the transition probability from AAA to B and CCC/C
is comparably larger than from the AA rating. This demonstrates that our model is
capable in capturing the miss-ordering phenomenon, that is a better rating but with a
larger bankruptcy probability, possibly because of some extreme condition, such as the
financial crisis in the year 2008 which our parameters are set in.
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EXPECTATION Eν(τ )
State AAA AA A BBB BB B CCC/C

Simulation(1,000 paths) 7889 8803 8235 7298 5034 2848 1245
Least-of-the-Three 7956 8413 8374 8036 6866 3938 1549

Eν(τ ex) 13759 15528 14933 12383 7742 3938 1549
Dependent Approx.(N=100) 9614 10570 10266 9043 6866 4957 3614

Independent Approx. 7956 8413 8374 8036 6968 5559 4122

TAIL PROBABILITIES Pν{τ > t}
t 15 yeas 20 years

State AAA BBB CCC/C AAA BBB CCC/C
Simulation(1,000 paths) 0.8310 0.8390 0.1090 0.7520 0.7430 0.0830

Dependent Approx.(N=100) 0.8127 0.8328 0.1068 0.7281 0.7373 0.0757
Independent Approx. 0.7982 0.8241 0.1073 0.6769 0.6829 0.0703

Table 11: Results of 8-State Illustration with Historical Parameters

State AAA AA A BBB BB B CCC/C
Exogeneous Bankruptcy Ratio 0.4900 0.3660 0.4060 0.4960 0.7080 0.8800 0.9580
Power(By Least-of-the-Three) 0.5782 0.5418 0.5608 0.6490 0.8869 1.0000 1.0000

Table 12: Results of Exogenous Bankruptcy Ratio and Powers with 8 States, Historical Parameters

Lastly, we redo the examination in Section 4.3 as shown in Table 12. Notice that
the pattern of the power also matches the pattern of the ratio, which means that one
could use the explicitly computable power instead of the simulated ratio to examine the
rating systems. Moreover, notice that the examination also captures the miss-ordering
phenomenon where the AAA rating has a higher ratio and power than the AA and A
ratings. We believe that this illustration demonstrates that our framework could be ap-
plied to the real world data.

5 Conclusion

In this paper, three major parts are provided: a new model is formulated, two types of
estimations are derived, and an application of examine the power of rating systems is pro-
posed. The model can capture both the differences in bankruptcy probabilities between
firms with different ratings, and between firms with the same rating but with different
characteristics. The approximations are explicitly computable, where one is easier to
calculate, and the other is more accurate and could reflect the differences due to different
ratings. And the application could use to examine the proportion of bankruptcy that is
determined by the credit rating system, which indicates how well we could know about
bankruptcy probability of a firm when given the firm’s rating information only, and thus
could be used to evaluate the rating system’s performance.

We believe that our works provides sufficient tools in studying bankruptcies related
to rating transition, the performance of the rating systems, and other rating related top-
ics. Bankruptcy correlation studies are also possible; one can use this model to link the
bankruptcy correlations with the correlations of credit-rating changing, which can possi-
bly be a consequence of changes in sovereign rating or macro conditions. Credit-related
securities valuation and many other credit related issues arise after the recent financial
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crisis are still possible.
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Appendix. Proof of Theorem 1

The proof of Theorem 1, the estimation of ρ− = Eπ−(S2
τ−)/2Eπ−(Sτ−), could be divided

into three steps. First, we derive representations of the probabilities Pi{Sτ− ≥ x} and
Pi{S2

τ− ≥ x} for any given initial state i = 1, . . . ,K − 1. Second, for each given initial

state i, we estimate Ei(Sτ−) and Ei(S
2
τ−) by their corresponding simple random walks.

Third, we estimate Eπ−(Sτ−) and Eπ−(S2
τ−), and therefore provide the estimation of ρ−.

A.1 Representation of Tail Probabilities for Sτ−

We begin our method with the following representation of the joint probabilities of Sα
τ−

and Jτ− for α = 1, 2. For simplicity, for the rest of this appendix, we would use the
notations P S

i and ES
i to denote the probability and the expectation where the underlying

Markov chain is conditioned on state i, which degenerates the process into a simple
random walk. For example,

ES
i (Sτ−) = Ei(Sτ−|∀n ∈ N, Jn = i). (32)

The notations Pν and Eν would always mean the probability and expectation with J0

having the initial distribution ν, and for i ∈ {1, · · · ,K − 1}, Pi and Ei would always
mean the probability and expectation with J0 = i. Moreover, S0 is assumed to be 0 if not
further specified. The transition probability matrix, on the other hand, would be given
by:

Q = (qij)
K−1
i,j=1 =




1 −
∑K−1

j 6=1 ε1j ε12 · · · ε1(K−1)

ε21 1 −
∑K−1

j 6=2 ε2j · · · ε2(K−1)

...
...

...
...

ε(K−1)1 ε(K−1)2 · · · 1 −
∑K−1

j 6=K−1 ε(K−1)j


 , (33)

where 0 ≤ εij ≤ 1 and
∑K−1

j 6=i εij ≤ 1 for all 1 ≤ i, j ≤ K − 1 and i 6= j.

Lemma 1 (Representation of the Joint Probabilities). For α = 1, 2, x ≥ 0, and
i, j ∈ {1, · · · ,K − 1}:

Pi

{
|Sτ−|α ≥ x, Jτ− = j

}
=

∞∑

τ=1

qijq
τ−1
jj P S

i {|Sτ |α ≥ x, τ− = τ}

+
∞∑

m=1

∞∑

nv=1

K−1∑

k 6=j

qkjq
τ−1
jj

∫ ∞

0

Pi {Snv = y, τ− > nv, Jnv = k}

× P S
j

{
|Sm|α ≥ (x

1
α + y)α, τ− = m

}
dy. (34)

Proof. We provide only the proof for i = j = 1 and α = 1. The proof for the rest is
pretty much the same. Denote:

Nv =

{
max {nv ≤ τ− : Jnv 6= 1} if ∃n ≤ τ− s.t. Jn 6= 1

0 if @n ≤ τ− s.t. Jn 6= 1
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be the last index before τ− that makes the state process NOT in state 1. Since Jn = 1
for all Nv < n ≤ τ−, the process {Sn} beyond n = Nv can be treated as a simple random
walk that is “fixed” in state 1. Thus, we can divide the whole process {Sn}τ−

n=1 into a

“variant-state” part {Sn}Nv

n=1 and a “fixed-state” part {Sn}τ−
n=Nv+1. This is the key tech-

nique that we use to estimate the Markov random walk case via simple random walk cases.

The detail goes as follows. Notice that:

P1 {|Sτ | ≥ x, Jτ = 1, τ− = τ} =
τ−1∑

nv=0

P1 {Sτ ≤ −x, Jτ = 1, τ− = τ,Nv = nv}

=P1 {Sτ ≤ −x, Jτ = 1, τ− = τ,Nv = 0}

+

τ−1∑

nv=1

K−1∑

k=2

P1 {Sτ ≤ −x, Jτ = 1, τ− = τ,Nv = nv, Jnv = k}

=A0 +

τ−1∑

nv=1

K∑

k=2

Anv,k. (35)

For A0, since Nv = 0 indicates that the entire process stays in state 1, therefore,

A0 =P1 {Sτ ≤ −x, J1 = J2 = · · · = Jτ = 1, τ− = τ}
=P1 {J1 = J2 = · · · = Jτ = 1} × P1 {Sτ ≤ −x, τ− = τ |J1 = J2 = · · · = Jτ = 1}
=qτ

11P
S
1 {Sτ ≤ −x, τ− = τ} (36)

For Anv ,j, divide the process into the “variant-state” part {Sn}nv

n=1 and the “fixed-state”
part {Sn}τ−

n=nv+1. The variant-state part requires the Markov chain {Jn}nv

n=1 to end in
state j; this probability could be calculated through the transition probability matrix.
The fixed-state part, on the other hand, requires the Markov chain {Jn}τ−

n=nv+1 to stay in
state 1, and could be treated as a simple random walk that starts from Snv , which must
be positive since τ− > nv. Namely,

Anv,k =P1 {Sτ ≤ −x, τ− = τ, Jnv = k, Jnv+1 = · · · = Jn = 1}
=P1 {Sτ ≤ −x, τ− = τ, τ− > nv, Jnv = k, Jnv+1 = · · · = Jτ = 1}

=

∫ ∞

0

P1 {Sτ ≤ −x, Snv = y, τ− = τ, τ− > nv, Jnv = k, Jnv+1 = · · · = Jτ = 1} dy

=

∫ ∞

0

P1 {Sτ ≤ −x, τ− = τ |Snv = y, τ− > nv, Jnv = k, Jnv+1 = · · · = Jτ = 1}

× P1 {Snv = y, τ− > nv|Jnv = k, Jnv+1 = · · · = Jτ = 1}
× P1 {Jnv+1 = · · · = Jτ = 1|Jnv = k} × P1 {Jnv = k} dy

=P1 {Jnv+1 = · · · = Jτ = 1|Jnv = k}

×
∫ ∞

0

P1 {Sn − Snv ≤ −x− y, τ− = τ |Snv = y, τ− > nv, Jnv = k, Jnv<n≤τ = 1}

× P1 {Snv = y, τ− > nv|Jnv = k} × P1 {Jnv = k} dy

=qk1q
τ−nv−1
11

∫ ∞

0

P S
1 {Sτ−nv ≤ −x − y, τ− = τ − nv}

× P1 {Snv = y, τ− > nv, Jnv = k} dy. (37)
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The last equality comes from the fact that given Jn = 1 for all i ∈ N, Sn − Snv has the
same distribution as Sn−nv . Putting these back into equation (35), and we achieve:

(35) =qτ
11P

S
1 {Sτ ≤ −x, τ− = τ}

+
n−1∑

nv=1

K−1∑

k=2

qk1q
τ−nv−1
11

∫ ∞

0

P S
1 {Sτ−nv ≤ −x − y, τ− = τ − nv}

× P1 {Snv = y, τ− > nv, Jnv = k} dy.

By summing the last equation with respect to τ , and make a change of variable m = τ−nv,
we complete the proof.

Summing up the equality in Lemma 1 with respect to j gives us a representation of
P{|Sτ−|α ≥ x}.

A.2 Approximation of Sτ−’s Moments

Now, the approximation of E(Sα
τ−) is ready to be achieved through Lemma 1.

Lemma 2 (Approximations of Sτ−’s Moments). For all i ∈ {1, · · · ,K − 1} and
α = 1, 2,

Ei(|Sτ−|α) ≤
K−1∑

j=1

(qij + sup{Pi {Jn 6= j, Jn+1 = j} : n ∈ N} ×Ei(τ− − 1)) × ES
j (|Sτ−|α),

(38)
where the difference between the two converges to zero as sup1≤i,j≤K−1,i 6=j εij → 0.

Proof. Similarly, we only provide the proof for i = 1 and α = 1. Lemma 1 yields:

E1(|Sτ−|) =

∫ ∞

0

K−1∑

j=1

∞∑

τ=1

q1jq
τ−1
jj P S

j {|Sτ | ≥ x, τ− = τ} dx

+

∫ ∞

0

K−1∑

j=1

∞∑

m=1

∞∑

nv=1

K−1∑

k 6=j

qkjq
m−1
jj

∫ ∞

0

P1 {Snv = y, τ− > nv, Jnv = k}

× P S
j {|Sm| ≥ x + y, τ− = m} dydx. (39)

For the first part, notice that since qjj ≤ 1,

∫ ∞

0

K−1∑

j=1

∞∑

τ=1

q1jq
τ−1
jj P S

j {|Sτ | ≥ x, τ− = τ} dx

≤
K−1∑

j=1

q1j

∫ ∞

0

∞∑

τ=1

P S
j {|Sτ | ≥ x, τ− = τ} dx

=
K∑

j=1

q1jE
S
j (|Sτ−|). (40)
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For the second part, notice that since y ≥ 0 and qjj ≤ 1:

∫ ∞

0

∞∑

m=1

qm−1
jj P S

j {|Sm| ≥ x + y, τ− = m} dx

≤
∫ ∞

0

∞∑

m=1

P S
j {|Sm| ≥ x, τ− = m}dx

=ES
j (|Sτ−|). (41)

Therefore,

Second Part ≤
K−1∑

j=1

ES
j (|Sτ−|) ×

∞∑

nv=1

K−1∑

k 6=j

qkj

∫ ∞

0

P1 {Snv = y, τ− > nv, Jnv = k} dy

=
K−1∑

j=1

ES
j (|Sτ−|) ×

∞∑

nv=1

P1 {τ− > nv, Jnv 6= j, Jnv+1 = j} dy

=
K−1∑

j=1

ES
j (|Sτ−|) ×

∞∑

nv=1

P1 {τ− > nv|Jnv 6= j}P1 {Jnv 6= j, Jnv+1 = j}

≤
K−1∑

j=1

sup{P1 {Jn 6= j, Jn+1 = j} : n ∈ N} × E1(τ− − 1) × ES
j (|Sτ−|). (42)

Plug these back into (39), and we complete the proof. Notice that the equality holds
when qii = 1, that is, when the Markov random walk degenerates to a simple random
walk.

For computational concern, one can use a more loosen upper-bound:

Corollary 1. Let ES
max(τ−) = max{ES

l (τ−) : 1 ≤ l ≤ K − 1}. Then,

Ei(|Sτ−|α) ≤
K−1∑

j=1

(
qij + sup{qkj|k 6= j} × (ES

max(τ−) − 1)
)
× ES

j (|Sτ−|α), (43)

where the difference between the two converges to zero as sup1≤i,j≤K−1,i 6=j εij → 0.

The advantage of this corollary 1 is because that ES
i (τ+) could be computed explicitly

via the Wald’s equation of simple random walks:

ES
i (X1) × ES

i (τ−) = ES
i (Sτ−), (44)

and could be further computed via (14).

A.3 Estimating ρ− = Eπ−(S2
τ−)/2Eπ−(Sτ−)

Last, we apply Corollary 1 to estimate ρ−. Notice that:

Lemma 3. ||π− − π|| → 0 as εij → 0 for all 1 ≤ i, j ≤ K − 1 and i 6= j, where || • || is
the usual inner-product norm.
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Proof. Notice that:

q−ij = Pi

{
Jτ− = j

}
= Pi

{
Sτ− ≤ 0, Jτ− = j

}
. (45)

So by Lemma 1, one can easily show that q−ij → qij as εij → 0 for all 1 ≤ i, j ≤ K − 1
and i 6= j. This completes the proof.

Thus, by taking the weighted average of the results in Corollary 1, it is evident that,
as εij → 0 for all 1 ≤ i, j ≤ K − 1 and i 6= j,

R− :=

∑K−1
i=1

∑K−1
j=1 πi ×

(
qij + sup{qkj|k 6= j} × (ES

max(τ−) − 1)
)
× ES

j (S2
τ−)

2
∑K−1

i=1

∑K−1
j=1 πi × (qij + sup{qkj|k 6= j} × (ES

max(τ−) − 1)) × ES
j (Sτ−)

→
Eπ−(S2

τ−)

2Eπ−(Sτ−)
= ρ− (46)

which completes the proof of Theorem 1.

26


