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1. Introduction
This paper surveys the evolution of CAPM from 1964 to 2009. The original CAPM of Sharpe (1964), Lintner (1965), and Mossin (1966) is developed in a hypothetical world where the following assumptions are made about investors and the opportunity set: (1) Investors are risk-averse individuals who maximize the expected utility of their wealth; (2) Investors are price takers and have homogeneous expectations about asset returns that have a joint normal distribution; (3) There exists a risk-free asset such that investors may borrow or lend unlimited amounts at a risk-free rate; (4) The quantities of assets are fixed and all assets are marketable and perfectly divisible; (5) Asset markets are frictionless and information is costless and simultaneously available to all investors; and (6) There are no market imperfections such as taxes, regulations, or restrictions on short selling (Copeland, Weston and Shastri, 2005).  After Sharpe (1964), Lintner (1965), and Mossin (1966), many researchers have tried to develop more general asset pricing models by relaxing those assumptions of CAPM and tested the empirical implications.  Merton (1973) relaxes the single-period assumption to develop the intertemporal CAPM model with stochastic investment opportunities, stating that the expected return on any asset is deduced from a multi-beta version of CAPM in a continuous-time model.  However, Merton’s intertemporal CAPM with stochastic investment opportunities states that the expected excess return on any asset is given by a multi-beta version of the CAPM with the number of betas being equal to one plus the number of state variables needed to describe the relevant characteristics of the investment opportunity set.  Since all of those state variables are not easily identified, Breeden (1979) utilizes the same continuous-time economic framework as that used by Merton, likewise permitting stochastic investment opportunities. However, it is shown that Merton’s multi-beta pricing equation can be collapsed into a single-beta equation, where the instantaneous expected excess return on any security is proportional to its ‘beta’ (or covariance) with respect to aggregate consumption alone.  After Breeden (1979), it is important to emphasize, as Fama and French (1988a), and others have noted, that, in the context of intertemporal models, predictability is not necessarily inconsistent with the concept of market efficiency. Therefore, Balvers, Cosimano, and McDonald (1990) present a general equilibrium theory relating returns on financial assets to macroeconomic fluctuations in a context that is consistent with efficient markets in that no excess-profit opportunities are available. The intuition underlying their theoretical model arises from consumption smoothing by investors. Consumption opportunities are linked to output, and, consistent with conventional macroeconomic models, output is serially correlated and hence predictable. To maximize utility, investors attempt to smooth consumption by adjusting their required rate of return for financial assets.  For example, investors anticipating lower output in the next period will attempt to transfer wealth to this anticipated period of scarcity and therefore will accept a lower rate of return in order to smooth consumption over time.  Although Merton (1973) and Breeden (1979) relaxed the single-period assumption of CAPM, they just provided the demand-side models without supply-side.  Black (1976) examined the effects of disequilibrating shocks on individual behavior in financial markets and the effects of such modified behavior on market out-comes.  A short-run dynamic, multi-period capital asset pricing model is constructed by assuming rational expectations and adding the supply side to the static model of capital asset pricing.  After Black (1976), Grinols (1984) extended Merton's intertemporal capital asset pricing model with multiple consumers to include a description of the supply of traded securities.  The production decisions of firms are described in a model with stochastic investment opportunities and incomplete markets.  Moreover, Lee , Tsai and Lee argued that (2009) Black’s theoretically elegant model has never been empirically tested for its implications in dynamic asset pricing.  They first theoretically extend Black’s CAPM.  Then they use price, dividend per share and earnings per share to test the existence of supply effect with U.S. equity data.  They find the supply effect is important in U.S. domestic stock markets. 
Besides, Levy, Levy and Benita (2006) relaxed the homogeneous beliefs assumption of CAPM. CAPM can be derived under various sets of assumptions. However, one of the fundamental assumptions that all of the above-mentioned models share, which is considered as the most critical drawback of CAPM, is that all investors have the homogeneous beliefs regarding the expected returns and the variance-covariance matrix.  Under the homogeneous beliefs assumption, all investors invest in the same mix of risky assets, the CAPM holds, and there is a simple relationship between risk and return well known as the security market line (SML).  Levy, Levy and Benita (2006) examined the robustness of CAPM to the relaxation of one of its most problematic assumptions: homogeneous beliefs. They proved that in a heterogeneous-belief market with an infinite number of investors and an infinite number of risky assets, CAPM risk-return relationship precisely holds. Regarding the relaxation of homogeneous investment horizon assumption, Lee, Wu and Wei (1990) examined the effect of heterogeneous investment horizons on the functional form of capital asset pricing and proposed a translog model for estimating the risk-return relationship. In addition, their paper contended that some empirical findings that are inconsistent with the traditional CAPM have resulted from misspecification of the CAPM by ignoring the discrepancy between the observed data periods and the true investment horizons. 
Concerning the relaxation of taxation assumption, Brennan (1970) first proposed an extended form of the single period CAPM model that accounted for the differential taxation of dividends over capital gains. Litzenberger and Ramaswamy (1979) extended the model of Brennan (1970) to account for restrictions on investors’ borrowing. 
Sharpe (1964), Lintner (1965), and Mossin (1966), following the work of Markowitz (1959), developed the first formulations of the mean-variance capital asset pricing model (CAPM).  However, many researchers argued that assets pricing models should subsume the effects of the higher moments.  Lee (1977) first employed the transformation technique developed by Box and Cox (1964) to determine the true functional form for testing the risk-return relation and to examine the possible impact of skewness effect on capital asset pricing.  Then Sears and Wei (1988) indicated that although the estimated coefficient of co-skewness gives important information on the marginal rate of substitution between skewness preference that is independent of the effects of the market risk premium. Furthermore, Harvey and Siddique (2000) suggested that if asset returns have systematic skewness, expected returns should include re-wards for accepting this risk. They formalized this intuition with an asset pricing model that incorporates conditional skewness. Their results showed that conditional skewness helps to explain the cross-sectional variation of expected returns across assets. Besides the effect of the higher moments on utility function, traditional asset pricing theorists assume that investors seek to maximize expected utility. However, proponents of behavioral finance suggest that people behave more in accordance with a psychologically based theory, such as prospect theory which was developed by Kahneman and Tversky (1979).
After we discuss these theoretical models to relax the assumptions of traditional CAPM, we will talk about existence of equilibrium.  Hart (1974) argued that in deriving these properties of equilibrium prices, it has been assumed that equilibrium does in fact exist.  Surprisingly, no attempt appears to have been made to establish the existence of equilibrium in the basic Lintner-Sharpe model or in more general versions of the model.  Yet, the existence of equilibrium is not implied by any of the standard existence theorems since these theorems assume that consumption sets are bounded below, whereas the assumption that investors can hold securities in unlimited negative amounts implies that consumption sets are unbounded below.  In his paper, he found the conditions for the existence of equilibrium in a very general version of the Lintner-Sharpe model.  Moreover, Nielsen (1989) presents simple conditions and a simple proof of the existence of equilibrium in asset markets where short-selling is allowed and satiation is possible.  Unlike standard non-satiation assumptions, the one used here is weak enough to be reasonable in the mean-variance Capital Asset Pricing Model and in asset market models where investors maximize expected utility and where total returns to individual assets may be negative.
    The empirical evidence has led scholars to conclude that the pure theoretical form of the traditional CAPM does not agree well with reality.  For example Roll’s critique (1977), he argued “The only legitimate test of the CAPM is whether or not the market portfolio is mean-variance efficient” and” If performance is measured relative to an index that is ex post efficient, then from the mathematics of the efficient set no security will have abnormal performance when measured as a departure from the security market line.”  Besides, most empirical studies of the static CAPM assume that betas remain constant over time and that the return on the value-weighted portfolio of all stocks is a proxy for the return on aggregate wealth.  The general consensus is that the static CAPM is unable to explain satisfactorily the cross-section of average returns on stocks. Therefore, Fama and French (1992, 1996) provided the three-factors model to the cross-section of expected stock returns. So the great factor debate rages on. Sharpe (1998) said”...I’d be the last to argue that only one factor drives market correlation. There are not as many factors as some people think, but there’s certainly more than one …” 

2. Intertemporal Models

The static capital asset Pricing Model (CAPM) of Sharpe (1964), Lintner (1965), and Mossin (1966) states that the expected premium on any risky asset is proportional to the premium on the market as a whole.  It has been criticized for the requirement of additional assumption, especially homogeneous expectations and the single-period nature of the world.  An intertemporal model for the capital market is concluded from the multiperiod setting.
2.1 Merton Model

The theoretical linear relationship on static CAPM model, however, is subject to criticisms on the premises of a constant opportunity set. Merton (1973) subsequently relaxes this assumption, and shows that when the opportunity set fluctuates over time due to changes in the state of the economy, individual securities are also priced with respect to selected portfolios, providing a hedge against unanticipated fluctuations. 
Merton (1973) first develop the intertemporal CAPM model with stochastic investment opportunities states that the expected return on any asset is deduced from a multi-beta version of CAPM in a continuous-time model.  Consider K investors who are concerned with maximizing the expected utility of wealth at the end of period, where the utility functions are twice-differentiable concave function.   The k-th investor is assumed to be able to invest in a riskless asset with instantaneous rate of return 
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, and in i-th risky asset with instantaneous rate of return is given by the stochastic differential equation
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where 
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 is the increment to a standard Brownian motion.  Processes such as (1) are call Itô processes and while them are continuous and are not differentiable.  Thus the stochastic process for the investor’s wealth as
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where 
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 is the fraction of the wealth invested in the i-th asset, y is the wage income, and c is the consumption.  
For computational simplicity, they assume that investors drive all their income from capital gains and for notational simplicity, they introduce the state-variable vector, X, whose m elements, xi, denote the current levels of P, 
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.  The dynamics for X are written as the vector Itô processes,
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where F is the vector [f1, f2... fm], G is a diagonal matrix with diagonal elements [g1, g2... gm], dQ is the vector Wiener process [dq1, dq 2... dq m], 
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 is the instantaneous correlation coefficient between dqi and dzj, and 
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is the instantaneous correlation coefficient between dqi and dqj.  The necessary optimality conditions for an investor who act according to in choosing his consumption-investment program for using Ito’s lemma, at each point of time, 
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The n+1 first-order conditions derived from (4) are
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and
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where
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are the optimum consumption and portfolio rules as functions of the state variables and 
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are the instantaneous covariance between the returns on the i-th and j-th asset.  Solving explicitly for these functions by matrix inversion,
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where the 
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 are the elements of the inverse of the instantaneous variance covariance matrix of returns, 
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.  The demand function of (7) has two component: The first term, 
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, is the usual demand function for a risky asset by s single-period mean-variance maximizer, where A is proportional to the reciprocal of the investor’s absolute risk aversion; the second term, 
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, reflects the demand for the asset as a vehicle to hedge against shifts in the investment opportunity set.
Merton (1973) shows that if investment opportunities are varying over time, then long-term investors generally care about shocks to investment opportunities－the productivity of wealth－and not just about wealth itself.  They may seek to hedge their exposures to wealth productivity shocks, and this gives rise to intertemporal hedging demands for financial assets.
2.2 Consumption-based Models
The intertemporal CAPM model of Merton (1973) with stochastic investment opportunities states that the expected return on assets is derived from a multi-beta version of the CAPM with numbers of betas being equal to one plus the number of state variables needed to describe the relevant characteristics of the investment opportunity set.  However, Breeden (1979) utilizes the same continuous-time economic framework as that used by Merton, likewise permitting stochastic investment opportunities, shows that the expected return on any asset is proportional to its beta with respect to aggregate consumption alone.  He argues that a single beta relative to a specific variable, given certain stationary assumptions on the joint distributions of rates of return and aggregate consumption, make the model easier to test and implement.  Therefore, Breeden (1979) is the main theory of consumption-based capital asset pricing model explaining return variation across assets from an optimizing intertemporal perspective under the assumption that if agents have time-additive utility, that is, locally quadratic, then the expected return of assets are linear with their aggregate consumption.
An investor k’s portfolio holdings are founded in terms of his indirect utility function for wealth, 
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, where subscripts of U, J and c denote partial derivatives.  Define 
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where 
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 is the vector of instantaneous expected excess return on assets, Vjj  is their variance-covariance matrix on assets, and Vjx is the J×X matrix of covariances of asset returns with changes in the state variables.  Pre-multiplying (8) by 
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where 
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 is the vector of covariance of asset returns with wealth change.  Since k’s optimal consumption is a function, 
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The Equation (10) holds for each individual k and can be aggregated by summing over all individuals, with defining the aggregate consumption rate to be C, and defining the aggregate risk tolerance to be 
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For any portfolio M with weights 
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and pre-multiplying Equation (11) by Equation (12) gets
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where 
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are the consumption-betas of asset returns and of portfolio M’s return.  If there exists a security whose return is perfectly correlated with changes in aggregate consumption over the next instant, then the risk－return relation of Equation (13) can be written in terms of assets’ betas measured relative to that security’s return, 
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Therefore, Breeden (1979) derives a single－beta asset pricing model in a multi-good, continuous-time model with uncertain consumption-goods prices and uncertain investment opportunities.
To understand the equity premium puzzle, consider the intertemporal choice problem of an investor k who can trade in some asset i and can obtain a gross simple rate of return 
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The left-hand side of Equation (15) is the marginal utility cost of consuming one real dollar less at time t ; the right-hand side is the expected marginal utility benefit from investing the dollar in asset i at time t, sell it at time t+1, and consuming the proceeds.  The investor equates marginal cost and marginal benefit, so Equation (15) must describe the optimum.  Dividing Equation (15) by 
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where 
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 is the intertemporal marginal rate of substitution of the investor, also known as the stochastic discount factor.  Equation (16) assumes the existence of an investor maximizing a time-separate utility function.  The existence of a positive stochastic discount factor is guaranteed by the absence of arbitrage in markets in which non-satiated investors can trade freely without transaction costs.  In general, different investors k whose marginal utilities follow different stochastic process will have different 
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In complete markets the stochastic discount factor 
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 is unique because investors can trade with one another to eliminate any idiosyncratic variation in their marginal utilities.  Equation (17) is written as the expectation of the product equals the product of expectations plus the covariance
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Substituting Equation (17) into Equation (18) and rearranging gets
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Equation (19) must hold for any asset, including a riskless asset whose gross simple return is 
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Equation (20) can be used to rewrite Equation (19) as
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Because the intertemporal marginal rate of substitution of the investor, also known as the stochastic discount factor is 
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.  Under the assumption on the form of utility function, we can get the stochastic discount factor from the first order conditions of maximizing investors’ utilities.  Then, according to Equation (21), we can describe any expected excess return on risky assets over the riskless rate.
Campbell and Cochrane (1999) present a habit persistence model to explain the dynamic pricing phenomena, that is, using lagged consumption as the state variable.  They replace the utility function 
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where 
[image: image70.wmf]t

X

 denotes the level of habit and 
[image: image71.wmf]d

 belongs to the time discount factor.  They use surplus consumption ratio 
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to capture the relation between consumption and habit.  The surplus consumption ratio increases with consumption: 
[image: image73.wmf]0

=

t

S

 means a bad state in which consumption is equal to habit; 
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 as consumption rises relative to habit.  Under the assumption that the habit is the external specification and the habit is determined by the history of aggregate consumption rather than the history of individual consumption.  Therefore the marginal utility is 
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In this model, the intertemporal marginal rate of substitution depends on change in the ratio of consumption to habit as well as on consumption growth,
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Lettau and Ludvigson (2001b) is the first reexamination of a consumption-based factor model, the first recent paper that finds some success in pricing the value premium from a macro-based model.  They examine a conditional version of the linear consumption-based CAPM model with time-varying coefficients, the stochastic discount factor is
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The innovation is to allow the slope coefficient b, which acts as the risk-aversion coefficient in the model, to vary over time; 
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 is consumption growth, the single factor in the asset pricing model.  However, the risk parameters at  and bt will depend on risk premium, thus they seek a scaling variable, log consumption-wealth ratio, to measure
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 [as in Lettau and Ludvigson (2001a)].  In the condition version of CAPM models, Jagannathan and Wang (1996) argue that the CAPM holds in a conditional sense, that is, betas and the market premium vary over time.  They add the labor income to explain the cross-section asset returns.  Furthermore, Kumar et al. (2008) examine the information-dependent conditional CAPM with adding the innovations in market volatility, oil prices, exchanges rates, and dispersion of analysts’ forecasts to explain the cross section of stock returns.
Balvers and Huang (2009) add money to the standard consumption-based CAPM of Breeden (1979).  Balvers and Huang (2009) consider asset pricing in a monetary economy that the consumption CAPM driving from real money growth as an additional factor to determine the asset return.  They argue that the availability of money as a source of liquidity improves transactions and affects the marginal value of wealth in generating consumption.  A representative consumer/investor in an endowment economy maximizes expected life time utility subject to a budget constraint and given that transaction costs to purchase consumption goods are mitigated by money holdings.
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subject to 
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where 
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 and 
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 represent respectively real financial wealth (excluding money holdings) and real money holdings; 
[image: image85.wmf]t

x

 indicates a set of state variables, assumed exogenous to the consumer-investor, that is sufficient to represent changes in the investment opportunity set.  
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 represents the real transaction cost of purchasing the current level of consumption and the agent in period t chooses current consumption ct . The choice of real money balances at the current price level to be used in the next period, 
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 and due to an assumed transfer of governance revenues from money creation, 
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.  To isolate the contribution of the money factor, Balvers and Huang (2009) exclude Merton (1973) factors by assuming that there are no changes over time in the exogenous dividend processes, ruling out shifts in the investment opportunities set and conclude that real money growth as an additional factor determine asset returns.
However, Campbell (1993) substitutes consumption out of the model to get a discrete-time version of the intertrmporal CAPM of Merton (1973).  The representative agent’s dynamic budget constraint can be written as
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where 
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 is total wealth, 
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represents gross return on the portfolio of all invested wealth from period t to period t+1.  The loglinear approximation begins by dividing Equation (29) by 
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or in logs


[image: image96.wmf](

)

t

t

t

m

t

w

c

k

r

w

-

÷

÷

ø

ö

ç

ç

è

æ

-

+

+

»

D

+

+

r

1

1

1

,

1

,               (31)

indicating that if consumption to aggregate wealth ratio is stationary, the budget constraint maybe be approximated by taking a first-order Taylor expansion of the equation.  In Equation (31), when the log consumption-wealth ratio is constant, then 
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 can be interpreted as (W-C)/W and k is a constant.  Solving Equation (31) by assuming that 
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Taking the conditional expectations of both side of Equation (32) to obtain
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Equation (33) shows that, if the aggregate consumption-wealth ratio is not constant, it must forecast changing returns to the market portfolio or changing consumption growth.  That is the consumption-wealth ratio can only vary if consumption growth or returns or both predictable.

Building on the work of Kreps and Porteus (1978), Epstein and Zin (1989, 1991) and Weil (1989) develop a more flexible version of the basic power utility model.  The objective function is 
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Here 
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 is the coefficient of relative risk aversion, 
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 is the elasticity of intertemporal substitution.  The Euler equation for asset i’s return, 
[image: image105.wmf]1

,

+

t

i

R

 can be written as


[image: image106.wmf](

)

(

)

ú

ú

û

ù

ê

ê

ë

é

+

ï

þ

ï

ý

ü

ï

î

ï

í

ì

+

ï

þ

ï

ý

ü

ï

î

ï

í

ì

÷

÷

ø

ö

ç

ç

è

æ

=

+

-

+

-

+

1

,

1

1

,

/

1

1

1

1

1

1

t

i

t

m

t

t

t

R

R

C

C

E

q

q

s

d

.           (35)
For the market portfolio itself, this takes the simpler form
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When asset returns and consumption are jointly conditional homoscedastic and lognormally distributed, the Euler equations (35) and (36) can be written in log form.  The log version of Equation (36) takes the form
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Equation (37) implies that there is a linear relationship between expected consumption growth and the expected return on the market portfolio, with the slope coefficient equal to the intertemporal elasticity of substitution 
[image: image109.wmf]s

. The relationship is 

[image: image110.wmf]1

,

1

+

+

+

=

D

t

m

t

m

t

t

r

E

c

E

s

m

                        (38)
where            
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The intercept term 
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 is related to the variance of the error term in the ex post version of the liner relationship (38), that is the degree of uncertainty about assumption growth relative to the return on the market.  
      The log version of general Euler Equation (35) can be used for cross-sectional asset pricing.  It takes the more complicated form
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When the asset under consideration is a risk-free real return 
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Substituting Equation (38) into Equation (33) to obtain
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Equation (41) means the log consumption-wealth ratio is a constant, plus 
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 times the discounted value of expected future returns on invested wealth.  Instead of substituting the wealth return out of the Epstein-Zin-Weil model, Compbell (1993) substitutes consumption out of the model to get a discrete-time version of the intertemporal CAPM of Merton (1973).  The innovation in consumption is 
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Thus the covariance of any asset return with consumption growth must satisfy
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where 
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 denotes the covariance of asset return i with revisions in expected future returns on wealth:
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The letter h here is used as a mnemonic for hedging demand [Merton (1973)], a term commonly used in the finance literature to describe the component of asset demand that is determined by investors’ responses to changing investment opportunities.  Substituting Equation (43) into Equation (40) and using the definition 
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The only parameter of the utility function that enters Equation (45) is the coefficient of relative risk aversion 
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.  The elasticity of intertemporal substitution 
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 does not appear once consumption has been substituted out of the model.  Intuitively, this result comes from the fact that 
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 plays two roles in the theory.  A low value of 
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 reduces anticipated fluctuations in consumption [Equation (38)], but it also increase the risk premium required to compensate for any contribution to the fluctuations [Equation (40)].  These offsetting effects lead 
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 to cancel out of the pricing Equation (45).
A large number of models amount the discount factor generalizes the power-utility case by adding another state variable [Cochrane (2005)].  It is very danger in such models that they often work well for short run returns, but not in the long run.  The trouble is that the marginal utility of consumption depends not only on consumption but also on an additional variable.  Even if they assume the function form of the utility function, there is no general agreement on how to measure the marginal utility of the consumption: any combination of state variable may have a quantitatively significant impact on marginal utility [Balvers and Huang (2007)].  Lewellen and Nagel (2006) have also criticized consumption model on the argument that the low covariance between the risk premium and the betas.  The covariance between consumption (market) betas and the consumption (market) risk premium obtain from a series of estimates over small time windows is too small to support the importance of any conditional variable.  
2.3 Production-based Models
After Breeden (1979), it is important to emphasize, as Fama and French (1988a), and others have noted, that, in the context of intertemporal models, predictability is not necessarily inconsistent with the concept of market efficiency.  Therefore, Balvers, Cosimano and McDonald (1990) present a general equilibrium theory relating returns on financial assets to macroeconomic fluctuations in a context that is consistent with efficient markets in that no excess-profit opportunities are available.  Balvers, Cosimano, and McDonald (1990) argue that aggregate output is equal or proportionate to aggregate consumption and that one can evaluate the marginal utility of consumption at the observed level of output so that aggregate output growth becomes the key asset pricing factor.  The advantage to this approach is that output growth is likely measured more accurately than consumption growth.  Balvers, Cosimano, and McDonald (1990) indicate that changes in aggregate output lead to attempts by agents to smooth consumption, which affect the required rate of return on financial assets.  Output yt at time t and at that time the firm divides the output into dividends, dt and investment, it.  The investment becomes productive as capital one period after, kt+1, and leads to production yt+1 after the random productivity shock θt is revealed.  The dividends, dt+1, are paid to the investors and, together with changes in share prices pt and pt+1, determine the gross realized return, Rt+1, on stock held in the period from t to t+1.  The representative firm determines its level of investment each period to maximize shareholder wealth
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subject to
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where A and B are positive constant, 
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 is less than one, and 
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 is one plus the appropriate discount rate.  Substituting Equation (47) and (48) into (46) and differentiating with respect to kt+1 yields the stochastic Euler condition:
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That is, the expectation of the marginal product of investment must equal the one unit of the consumption good sacrificed in favor of investment.  The consumer maximizes the present value of time-additive utility function from consumption of all goods.  The utility function indicates concave one-period consumption, ct and 
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 as the consumer’s discount factor for utility.  The consumer maximizes
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subject to 
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In the budget constraint, 
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 is the number of shares held at the beginning of period t.  Maximization by the representative consumer yields the following Euler equation with respect to the choice variable 
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The Euler equation relates the price and return of a share to the cost of delaying consumption, where they define
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as the realized holding period return on shares.  Equation (52) represents that the consumer will choose current consumption such that the utility of current consumption equals the expected discount return of buying a stock times the marginal utility of consumption when the stock is sold in the next period.  However, returns will vary since consumption caries due to the randomness in aggregate output.        Solving Equation (52) forward yields a general expression for ex-dividend share prices
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Under the assumption of logarithmic utility function to solve the general equilibrium model,
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Using the fact that 
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, the demand for consumption goods equals the net supply to the consumers of the multi-purpose good, the share pricing Equation (54) yields
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Under the logarithmic form of the utility function, 
[image: image152.wmf]t

p

 does not depend on future dividends.  From Equation (53) for share prices and (56) to define returns,
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Equation (47), (48), (49) and (57) characterize the dynamic path for 
[image: image154.wmf]t

d

,
[image: image155.wmf]t

k

,
[image: image156.wmf]t

y

and 
[image: image157.wmf]t

R

.  Where investment is proportional to output then yields 
[image: image158.wmf]t

t

y

k

ab

=

+

1

, which implies from Equation (47) that 
[image: image159.wmf](

)

t

t

y

d

ab

-

=

1

.  Therefore, Equation (44) becomes

[image: image160.wmf](

)

(

)

t

t

t

y

y

R

/

/

1

1

1

+

+

=

r

                      (58)

then substitution Equation (58) into (49) verifies that the posited solution is correct.  Since future output depends on current investment, it can be predicted from current observations.  The solution 
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where 
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.  Equation (58) and (59) together explain the return predictability in our model.  Therefore, Balvers, Cosimano, and McDonald (1990) develop an intertemporal equilibrium model relates financial asset returns to movements in aggregate output.
Cochrane (1991, 1996) is an attempt to extend the production-based ideas to describe the asset returns.  A bit similar to the consumption-based model, the production-based model ties asset returns to marginal rates of transformation, which are inferred from the investment through a production function.  It is derived from the producer’s first order condition for optimal intertemporal investment demand.  The discount factor of the form is 
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that describe the discount factor might be a linear combination of factors f with weights that vary as a vector of instrument z varies across different information set.  Scaling the factors f by the instrument z achieves the same result.  So Equation (60) is equivalent to
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here 
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 denote the investment return, functions of investment and capital only, that is
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.  Therefore, given the choice of instruments, performing the GMM estimation and testing with scaled factors is a completely general test of a dynamic, conditional factor pricing model based on the instruments.
Balvers and Huang (2007) they derive the stochastic discount factor that the productivity shock is the single factor in asset pricing model.  The social planner maximizes
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subject to 
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The lifetime utility of the representative consumer is maximized subject to a standard production function 
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 representing the zero-mean white noise productivity shock.  Per-capita consumption is given in Equation (64) as the part of capita production that is not invested.  Through Equation (62) to Equation (64) and the stochastic discount factor 
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with 
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represents a fundamental, nondiversifiable risk inherent in capital accumulation that cannot be ignored and should be needed for asset pricing.   Therefore, Balvers and Huang (2007) relates 
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 to shocks in the marginal value of capital to obtain an explicit production-based expression for the asset pricing model.
3. Supply-Side Models

Although Merton (1973) and Breeden (1979) relaxed the single-period assumption of CAPM, they just provided the demand-side models without supply-side effect.  Black (1976) examined the effects of disequilibrating shocks on individual behavior in financial markets and the effects of such modified behavior on market outcomes.  A short-run dynamic, multi-period capital asset pricing model is constructed by assuming rational expectations and adding a supply side to the static model of capital asset pricing.  After Black (1976), Grinols (1984) extended Merton's intertemporal capital asset pricing model with multiple consumers to include a description of the supply of traded securities.  The production decisions of firms are described in a model with stochastic investment opportunities and incomplete markets.  Moreover, Lee, Tsai and Lee (2009) argued that Black’s theoretically elegant model has never been empirically tested for its implications in dynamic asset pricing.  They first theoretically extend Black’s CAPM.  Then they use price, dividend per share and earnings per share to test the existence of supply effect with U.S. equity data.  They find the supply effect is important in U.S. domestic stock markets.  Lee, Tsai and Lee (2009) theoretically extend the dynamic, simultaneous CAPM model of Black (1976) to the existence of the supply effect in the asset pricing process.

3.1 Demand function of capital assets
The demand equation for the assets is derived under the standard assumptions of the CAPM.  An investor’s objective is to maximize the expected utility in terms of the negative exponential function of wealth:
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where the terminal wealth Wt+1 =Wt(1+ Rt); Wt  is initial wealth; and Rt  is the rate of return on the portfolio. The parameters, a, b and h, are assumed to be constants.
The dollar returns on N marketable risky securities can be represented by:
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where Pj, t+1 = (random) price of security j at time t+1, Pj, t  = price of security j at time t, amd Dj, t+1 = (random) dividend or coupon on security at time t+1.  These three variables are assumed to be jointly normal distributed.  After taking the expected value of Equation (67) at time t, the expected returns for each security, xj, t+1, can be rewritten as: 
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where 
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 is the given information available at time t.  Then, a typical investor’s expected value of end-of-period wealth is 

    
[image: image188.wmf](

)

1

1

1

1

1

+

+

+

+

+

¢

+

¢

-

*

+

=

=

t

t

t

t

t

t

t

t

t

x

q

P

q

W

r

W

W

E

w

,           (69)
where
[image: image189.wmf](

)

¢

=

t

N

t

t

t

t

P

P

P

P

P

,

,

3

,

2

,

1

,...,

,

,

;
[image: image190.wmf](

)

1

1

,

1

,

3

1

,

2

1

,

1

1

,...,

,

,

+

+

+

+

+

+

+

-

=

¢

=

t

t

t

t

t

t

N

t

t

t

t

D

E

P

P

E

x

x

x

x

x

 ; 
[image: image191.wmf](

)

¢

=

+

+

+

+

t

N

t

t

t

t

q

q

q

q

q

,

1

,

3

1

,

2

1

,

1

1

,...,

,

,

; 
[image: image192.wmf]=

+

1

,

t

j

q
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By substituting Equation (69) and (70) into Equation (71), Equation (71) can be rewritten as:
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Differentiating Equation (72), one can solve the optimal portfolio as:
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Under the assumption of homogeneous expectation, or by assuming that all the investors have the same probability belief about future return, the aggregate demand for risky securities can be summed as:
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where c = Σ (bk)-1.

In the standard CAPM, the supply of securities is fixed, denoted as Q*.  Then, Equation (74) can be rearranged as 
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, where c-1 is the market price of risk.  In fact, this equation is similar to the Lintner’s (1965) well-known equation in capital asset pricing.
3.2 Supply function of securities
It is assumed that there exists a solution to the optimal capital structure and that the firm has to determine the optimal level of additional investment.  The one-period objective of the firm is to achieve the minimum cost of capital vector with adjustment costs involved in changing the quantity vector, 
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subject to  
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where Ai is a n i × n i positive define matrix of coefficients measuring the assumed quadratic costs of adjustment.  If the costs are high enough, firms tend to stop seeking raise new funds or retire old securities.  The solution to equation (75) is 
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where 
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 is the scalar Lagrangian multiplier.

Aggregating equation (76) over N firms, the supply function is given by 


[image: image207.wmf](

)

1

1

1

+

-

+

-

=

D

t

t

t

i

t

D

E

BP

A

Q

,                  (77)
where 
[image: image208.wmf]ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

-

-

-

-

1

1

2

1

1

1

N

A

A

A

A

O

, 
[image: image209.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

I

I

I

B

N

l

l

l

O

2

1

, and 
[image: image210.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

N

Q

Q

Q

Q

M

2

1

.
Equation (77) implies that a lower price for a security will increase the amount retired of that security.  In other words, the amount of each security newly issued is positively related to its own price and is negatively related to its required return and the prices of other securities. 

3.3 Multiperiod Equilibrium Models
The aggregate demand for risky securities presented by Equation (74) can be seen as a difference equation.  The prices of risky securities are determined in a multiperiod framework It is also clear that the aggregate supply schedule has similar structure.  As a result, the model can be summarized by the following equations for demand and supply, respectively:
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Differencing Equation (74) for period t and t+1 and equating the result with Equation (77), a new equation relating demand and supply for securities is
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where Vt is included to take into account the possible discrepancies in the system. Here, Vt is assumed to be random disturbance with zero expected value and no autocorrelation.
Obviously, Equation (78) is a second-order system of stochastic differential equation in Pt, and conditional expectations Et-1Pt and Et-1Dt.  By taking the conditional expectation at time t-1 in Equation (78), and because of the properties of Et-1[Et Pt+1] = Et-1Pt+1 and 
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Subtracting Equation (78′) from Equation (78), 
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Equation (79) shows that prediction errors in prices (the left hand side) due to unexpected disturbance are a function of expectation adjustments in price (first term on the right hand side) and dividends (the second term on the right hand side) two periods ahead.  This equation can be seen as a generalized capital asset pricing model.
Lee, Tsai and Lee (2009) first theoretically extend Black’s CAPM.  Then they use price, dividend per share and earnings per share to test the existence of supply effect with U.S. equity data.  They find the supply effect is important in U.S. domestic stock markets and the existence of the supply effect in the asset pricing.

4. Equilibrium Models with Heterogeneity
One of the fundamental assumptions that all of the above-mentioned models share, which is considered as the most critical drawback of CAPM, is that all investors have the homogeneous beliefs regarding the expected returns and the variance-covariance matrix.  Also, in the consumption-based CAPM need to assume that assets can be priced if there is a representative agent who consumes aggregate consumption.  Therefore, in this section we will introduce the model of heterogeneous beliefs, agents, and investment horizon.
4.1 Heterogeneous Beliefs 
Basak (2005) provide a continuous-time pure-exchange framework to study asset pricing implication of the present of heterogeneous beliefs, within a rational Bayesian setting.  Equilibrium is determined in terms of a representative investor’s utility function with stochastic weighting driven by the investor’s disagreement about the aggregate growth.  In addition, Levy, Levy and Benita (2006) relaxed the homogeneous beliefs assumption of CAPM.  CAPM can be derived under various sets of assumptions.  Under the homogeneous beliefs assumption, all investors invest in the same mix of risky assets, the CAPM holds, and there is a simple relationship between risk and return well known as the security market line (SML).  They employ the mathematical analysis and numerical simulations to study the effect of the introduction of heterogeneity of beliefs on asset prices.  They prove that in an infinite market when number of investors and assets approach to infinite, with unbiased heterogeneous beliefs and bounded variance, the CAPM linear risk-return relationship precisely holds.
However, it is also possible that utility-maximizing stock market investors are heterogeneous in important ways.  If investors are subject to large idiosyncratic risks in their labor income and can share these risks only indirectly by trading a few assets such as stocks and Treasury bills, their individual consumption paths may be much more volatile than aggregate consumption.  Constantinides and Duffie (1996) assume an economy in which heterogeneous investors k have different consumption levels ckt.  The cross-sectional distribution of individual consumption is lognormal, and the change from time t to time t+1 in individual log consumption is cross-sectional uncorrelated with the level of individual log consumption at time t.  All investors have the same power utility function with time discount factor 
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 and coefficient of relative risk aversion 
[image: image218.wmf]g

.  In this economy each investor's own intertemporal marginal rate of substitution is a valid stochastic discount factor.  Hence the cross-sectional average of investors' intertemporal marginal rates of substitution, 
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, is not a valid stochastic discount factor when marginal utility is nonlinear.  This false stochastic discount factor would be used incorrectly by an economist who ignores the aggregation problem in the economy.  They state the Euler equation of consumption of consumer k-th for security j:
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Here 
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 denotes a cross-sectional variance of individual log consumption growth taken after aggregates at time t+1.  Equation (80) adds the exponential term to the standard consumption-based asset pricing equation.  The difference between the logs of these two stochastic discount factors is 
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Therefore, we can construct a discount factor to represent any asset pricing anomalies.
Another heterogeneous investors model in Constantinides (1982) argue that if a complete set of markets exists that enables households to insure against idiosyncratic income shocks, then the heterogeneous households are able to equalize, state by state, their marginal rates of substitution.  Therefore, the equilibrium of a heterogeneous-household, full information economy is in its pricing implications to the equilibrium of a representative-household, full-information economy.
Under the full consumption insurance assumption implies that heterogeneous consumers are able to equalize their marginal rate of substitution state by state.  However, Brav, Constantinides, and Geczy (1999)’s finding is based on the set of Euler equation of household consumption rather than the per capita consumption.  Since the individual consumption data are reported with substantial error and are difficult to test.  Therefore, they test the hypothesis that the stochastic discount factor given by the equally weighted sum of the household’s marginal rates of substitution is a valid stochastic discount factor.
4.2 Heterogeneous investment horizon
Lee (1976) derives two function forms for the CAPM, which will explicitly include the investment horizon parameter to improve the explanatory power of the CAPM.  To allow the investment horizon parameter to be explicitly included in the CAPM, it will be assumed that all investors have identical horizons.  The main contributions of Lee (1976) are to prove the observed function form of CAPM can become nonlinear and to show that wither the likelihood ratio method or constant elasticity of substitution function methods can employed to improve the explanatory power of CAPM.
      Levhari and Levy (1977) investigate the empirical implications of heterogeneous investment horizons.  While they have substantial contributed to the understanding of multi-period investments, but they do not provided a generalized asset pricing model for the equilibrium risk-return relationship under heterogeneous investment horizons.  Lee, Wu, and Wei (1990) examine the effect of heterogeneous investment horizons on the functional form of capital asset pricing and suggest a translog model for estimating the relation between risk and return.  They argue that some empirical findings that are inconsistence with traditional CAPM from misspecification of the CAPM by ignoring the inconsistency between observed data period and the true investment horizon.  They assume that the holding period returns of securities are serially independent and the return distributions are stationary.  Under these two assumptions, the expected returns and variance are identical over time, and the covariance of returns between two periods equals zero.  The translog model is a suitable function for estimating the relationship between risk and expected return.
5. Taxation Effect Models
Brennan (1970) first proposed an extended form of the single period CAPM model that accounted for the differential taxation of dividends over capital gains.  Litzenberger and Ramaswamy (1979) extend the model of Brennan (1970) to account for restrictions on investors’ borrowing.  Both these models assume that dividends and interest are taxed as ordinary income and capital gains are taxed at more favorable rates.  Brennan's model is under the assumption of proportional individual tax rate (not a function of income), certain dividends, and unlimited borrowing at the riskless rate of interest as
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where 
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 is the after-tax excess return of the market portfolio, 
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 represents a tax differential between dividends and capital gains.

Litzenberger and Ramaswamy (1979) extend this model by assuming both margin and income constraints on borrowing.  Their model is
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where 
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and c is a tax differential reduced by a shadow price that reflects increases in investors' ability to borrow from an additional dollar of dividends and 
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 is the expected return on a zero-beta portfolio with a dividend yield equal to the taxable riskless rate.  These models are the standard two-parameter pricing models adjusted for differential taxation of dividends and interest income relative to capital gains.
6. Skewness Effect Models
Sharpe (1964), Lintner (1965), and Mossin (1966), following the work of Markowitz (1959), developed the first formulations of the mean-variance capital asset pricing model (CAPM).  However, many researchers argued that assets pricing models should subsume the effects of the higher moments. Lee (1977) first employed the transformation technique developed by Box and Cox (1964) to determine the true functional form for testing the risk-return relation and to examine the possible impact of skewness effect on capital asset pricing. Then Sears and Wei (1988) indicated that although the estimated coefficient of co-sknewness gives important information on the marginal rate of substitution between skewness preferences that is independent of the effects of the market risk premium. Furthermore, Harvey and Siddique (2000) suggested that if asset returns have systematic skewness, expected returns should include re-wards for accepting this risk. They formalized this intuition with an asset pricing model that incorporates conditional skewness. Their results showed that conditional skewness helps to explain the cross-sectional variation of expected returns across assets and is significant even when factors based on size and book-to-market are included
7. Behavioral Finance 
The feature distinguishes the behavioral approach and traditional approach to asset pricing is the assumption of expected utility.  Traditional asset pricing theorists assume that investors seek to maximize expected utility.  However, proponents of behavioral finance suggest that people behave more in accordance with a psychologically based theory, such as prospect theory which was developed by Kahneman and Tversky (1979).
Preference-based behavioral models often work with the prospect theory of Kahneman and Tversky (1979).  According to this theory, people do not judge outcomes on an absolute scale but compare outcomes with an initial reference point. Their objective function has a kink at the reference point, so risk aversion is locally infinite at that point.  The objective function is concave for gains (outcomes above the reference point) but is convex for losses (outcomes below the reference point)

Tversky and Kahneman (1992) modifies their prospect theory by using a cumulative distribution function for the domain of gains and a cumulative distribution function for the domain of losses rather than separate decisions called Cumulative Prospect Theory.  The value function is a utility function defined over gains and losses.  Investor maximizes a value function of the form,
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where 0<α<1, 0<β<1, λ>1 and x is the change of wealth rather than total wealth.  Investor employs decision weights estimated by the formula,
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where P stands for cumulate probability, and w- and w+ denote the transformed cumulative probability in the negative and positive domain, respectively.
Although we know that the mean-variance analysis and the CAPM are based on the expected utility theory framework. However, Tversky and Kahneman (1979,1992) show that the investor is not always a rational as assumed by expected utility theory economists. Levy (2009) establishes a very interesting result; the prospect theory investor will choose a portfolio that is mean-variance efficient.  He also suggests that a modified version of mean-variance analysis and the traditional CAPM can be justified in the Cumulative Prospect Theory framework, despite the fact that under the Cumulative Prospect Theory, the expected utility theory is invalid.
The behavioral models cannot be tested using data on aggregate consumption or the market portfolio, because rational utility-maximizing investors neither consume aggregate consumption nor hold the market portfolio.  This makes it hard to test behavioral models without having detailed information on the investment strategies of different market participants.
8. Liquidity-based Models

Financial economists have long suspected that less liquid securities might have to offer an expected return higher than that justified by the covariance of the security’s return with the market or other factors, and thus the security might have a lower price level.
Pastor and Stambaugh (2003) find that stocks whose prices decline when the market gets more illiquid receive compensation in expected returns.  Dividing stocks into 10 portfolios based on liquidity betas (regression coefficients of stock returns on market liquidity, with other factors as controls), the portfolio of high-beta stocks earned 9% more than the portfolio of low beta stocks, after accounting for market, size, and value-growth effects with the Fama-French three factor model.  Almost this entire premium is accounted for by spread in liquidity betas and a factor risk premium estimated across 10 portfolios.  The standard asset pricing model is
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Acharya and Pedersen (2005) perform a similar but more general investigation as follows:

We are interested in how an asset’s expected return,
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depends on its relative illiquidity cost, 
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on the market return, 
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and on the relative market illiquidity,
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They rewrite the single-beta CAPM in net returns in terms of gross returns and get a liquidity-adjusted CAPM for gross return.
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where 
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is the risk premium.  Thus, the conditional expected gross return is  
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They examine all four channels for a liquidity premium.  First, a security might have to pay a premium simply to compensate for its particular illiquidity or transactions cost.  Second, a security might have to pay a premium because it becomes more illiquid in bad times, i.e. when the market goes down.  If you have to sell it, (and sellers are the marginal investor) this tendency amounts to a larger beta than would be measured by the midpoint of a bid-asked spread.  Third, the security’s price (the midpoint) might decline when markets as a whole become less liquid.  If “market liquidity” is a state variable, an event that drives up the marginal utility of a marginal investor, then this tendency will also result in a return premium.  This is the mechanism that Pastor and Stambaugh (2003) investigated.  Fourth, the security could become more illiquid when the market becomes more illiquid.  Then, they examine whether the four sources of covariation described above explain the variation in average returns.  Interestingly, their largest premium 
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 is the covariance of liquidity with market return — the chance the stock may get more illiquid if the market goes down.
9. Existence of Equilibrium

Hart (1974) argued that in deriving these properties of equilibrium prices, it has been assumed that equilibrium does in fact exist.  Surprisingly, no attempt appears to have been made to establish the existence of equilibrium in the basic Lintner-Sharpe model or in more general versions of the model.  Yet, the existence of equilibrium is not implied by any of the standard existence theorems since these theorems assume that consumption sets are bounded below, whereas the assumption that investors can hold securities in unlimited negative amounts implies that consumption sets are unbounded below.  In his paper, he found the conditions for the existence of equilibrium in a very general version of the Lintner-Sharpe model. Moverover, Nielsen (1989) presents simple conditions and a simple proof of the existence of equilibrium in asset markets where short-selling is allowed and satiation is possible. Unlike standard non-satiation assumptions, the one used here is weak enough to be reasonable in the mean-variance Capital Asset Pricing Model and in asset market models where investors maximize expected utility and where total returns to individual assets may be negative.
10. Conclusion

We survey the evolution of CAPM from 1964 to 2009. According to the assumptions of Sharpe (1964), Lintner (1965), and Mossin (1966), although they derived the static CAPM, many scholars tried to get more general asset pricing models by relaxing the assumption for the real world.  A number of important issues remain as challenges for future researches. There are two directions:

First, we can try to subsume behavioral finance into asset pricing models, for example investor sentiment. Obviously, many noise traders do affect stock returns but we still have no theoretical asset pricing model including their behaviors into a pricing factor.

In the other direction, we can try more efforts on the supply side of asset pricing models. In the past, there were relatively few literatures on the supply side. However, it is important, for example Holmstrom and Tirole (2001) suggested new determinants of asset prices such as the distribution of wealth within the corporate sector and between the corporate sector and the consumers. Also, leverage ratios, capital adequacy requirements, and the composition of saving affect the corporate demand for liquid assets and, thereby, interest rates.
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